Уравнение даламбера для плоской волны

Тема 5. волновые уравнения для векторов ЭМП

Однородные и неоднородные волновые уравнения для векторов ЭМП. Уравнения Даламбера. Решение однородных уравнений Даламбера. Сферическая волна. Волновой фронт. Волновые уравнения Гельмгольца.

Плоские волны как частные решения волновых уравнений. Плоская волна как предельный случай сферической волны. Решения волновых уравнений для гармонических полей в виде плоских и сферических волн.

Плоские ЭМВ в однородной изотропной среде. Отличие понятий «волна» и «колебание». Свойства плоской волны, структура и ориентация векторов ЭМП. Коэффициенты фазы и ослабления. Длина волны. Фазовая скорость, скорость распространения энергии, групповая скорость.

Характеристическое и волновое сопротивления. Ослабление ЭМВ, глубина проникновения ЭМП в вещество.

Указания к теме

Решением волновых уравнений являются функции координат и времени, которые описывают ЭМВ, распространяющиеся в свободном пространстве, направляющих системах и других устройствах. Необходимо получить четкое представление о таких понятиях, как фазовая поверхность (волновой фронт) и ее форма, однородная и неоднородная волна, затухающая волна.

Следует выучить определения длины волны, коэффициентов затухания и фазы, групповой и фазовой скоростей, волнового и характеристического сопротивлений, глубины проникновения ЭМВ в вещество.

Основные сведения

Для анализа распространяющихся ЭМВ из системы уравнений Максвелла в дифференциальной форме целесообразно вывести уравнения, которые зависят либо только от , либо только от . Если параметры среды (s, e, m) не зависят от координат и времени, то после преобразований получим [1–6]

; (5.1)

. (5.2)

Как показали расчеты и эксперименты, константа с ( ) для ЭМП удивительным образом совпадает со значением скорости света в вакууме. Из этого был сделан вывод о том, что ЭМВ и свет имеют одну и ту же природу. В пространстве без потерь ЭМВ распространяются со скоростью света.

Уравнения (5.1) и (5.2) называют волновыми уравнениями Ж. Д’Аламбера [5, 12]. Если правая часть равна нулю, то уравнение называют однородным, а если нет – неоднородным. При отсутствии электрических зарядов (r = 0) уравнения (5.1) и (5.2) практически совпадают, что подтверждает равноправие векторов и у распространяющегося в пространстве ЭМП.

Несмотря на кажущуюся независимость уравнений (5.1) и (5.2), следует помнить о том, что у переменного ЭМП векторы и связаны уравнениями Максвелла и не могут существовать друг без друга.

Волновые уравнения в комплексной форме имеют вид

; , (5.3)

где волновое число:

. (5.4)

Уравнения (5.3) называют волновыми уравнениями Г. Гельмгольца. При отсутствии потерь проводимости (s = 0) исчезают вторые слагаемые в уравнениях (5.1) и (5.2), а также в (5.3)–(5.4) возможно упрощение:

.

Рассмотренные уравнения называются волновыми потому, что их решениями являются волны и, в частности, ЭМВ.

Фазовым фронтом волны называют поверхность, проходящую через точки с одинаковыми фазами, по форме этой поверхности определяется название волны (сфера – сферическая ЭМВ, плоскость – плоская и т. д.) [1–3].

Решение однородного волнового уравнения для плоских волн

. (5.5)

Каждое из слагаемых выражения (5.5) описывает возмущения F1 и F2, исходящие из точки z0 в момент t = 0 и к моменту времени t приходящие в точку z = z0 – vt для F1 и в точку z = z0 + vt для F2 со скоростью v [1].

Для сферических волн решение волнового уравнения имеет вид:

. (5.6)

Первое слагаемое выражения (5.6) представляет собой сферическую волну, расходящуюся от источника. Второе слагаемое часто отбрасывают, поскольку волна, движущаяся внутрь источника, обычно не рассматривается [1].

В отличие от выражения (5.5) амплитуда сферической волны (5.6) уменьшается при удалении от источника как 1/r (мощность – как 1/r 2 ), что связано с тем, что мощность изотропного источника распределяется по расходящимся сферам (4.10).

Таким образом, даже при отсутствии потерь в пространстве плотность потока мощности сферической волны уменьшается с расстоянием как 1/r 2 .

На большом расстоянии от источника ЭМВ (в дальней зоне антенны) сферический волновой фронт в области приемной антенны можно аппроксимировать плоскостью, подобно тому, как земную поверхность считают плоской при малых высотах и на дистанциях, много меньших расстояния прямой видимости.

Плоская ЭМВидеализированная волна, имеющая плоский фазовый фронт (z = const), у которой существуют две взаимно перпендикулярные составляющие и , зависящие только от координаты z и расположенные в плоскости, перпендикулярной z. ЭМВ называется однородной, если ее амплитуда постоянна во всех точках фазового фронта, и неоднородной, если ее амплитуда зависит от координат точек фазового фронта.

В дальнейшем будем считать, что направление распространения ЭМВ совпадает с осью z. Уравнения Максвелла в комплексной форме для составляющих векторов плоской волны в ДСК имеют вид

; ; ; . (5.7)

Из формул (5.7) следует, что и взаимно перпендикулярны. (Это можно доказать, рассмотрев скалярное произведение векторов [11].) В дальнейшем будем обозначать координаты этих векторов и , подчеркивая их поперечную направленность и расположение в плоскости x0y.

Зная или , можно легко найти другую поперечную составляющую и перейти к обычным координатам ( , , , ).

Вектор Пойнтинга в данном случае имеет только продольную составляющую (рис. 5.1). Решение уравнений (5.3) имеет вид

. (5.8)

Первое слагаемое выражения (5.8) соответствует прямой волне, второе слагаемое – обратная волна, и – комплексные амплитуды данных бегущих волн (для – аналогично). Подставляя выражение (5.8) в (5.7), получим

. (5.9)

Запишем связь волнового числа ( ) с комплексным коэффициентом распространения (g) для среды без магнитных потерь :

, (5.10)

Уравнение плоской волны с учетом (5.10) можно записать в виде

. (5.11)

Для мгновенных значений из выражения (5.11) получаем

. (5.12)

Направление распространения ЭМВ можно определить из анализа зависимости полной фазы (5.12) от времени. Зафиксировав волновой фронт в какой-то момент времени, получаем, что если , то в следующий момент времени ЭМВ сместится в положительном направлении оси z, а при волновой фронт будет двигаться в отрицательном направлении оси z(рис. 5.2) [1].

Из анализа формул (5.10)–(5.12) очевидно, что a– это коэффициент затухания, а bкоэффициент фазы.

Подставляя формулу (5.12) в (5.1), после решения уравнений относительно a и b получаем

, (5.13)

. (5.14)

Множитель в выражениях (5.10)–(5.12) показывает затухание при распространении ЭМВ вдоль оси z. Чем больше a, тем больше затухание.

Ослаблением (A) ЭМВ по полю называют величину (AP = A 2 ослабление ЭМВ по мощности)

, . (5.15)

На практике часто используют ослабление в децибелах (дБ):

. (5.16)

С ослаблением непосредственно связана глубина проникновения ЭМП в вещество ( ), называемая также толщиной поверхностного слоя (скин-слоя, но это понятие логичнее использовать для металлов):

. (5.17)

При прохождении слоя вещества z =D° амплитуда ЭМП ослабляется в е (е = 2,718…) раз, и соответственно в следующий слой (рис. 5.3) проходит лишь 1/е 2 мощности ЭМП. Получается, что в поверхностном слое концентрируется 86,5% энергии ЭМП, в слое 2D°98,2%,а в слое 3D°99,8%.

Таким образом, зная коэффициент затухания, можно определить область преимущественной концентрации энергии ЭМВ в веществе.

В случае диэлектриков толщина поверхностного слоя значительна, в то время как для проводников на ВЧ и ОВЧ она составляет доли миллиметра [1].

Параметры ЭМВ. Длиной волны l называется расстояние между двумя фронтами ЭМВ, различающимися по фазе на 2p (360°):

. (5.18)

Фазовой скоростью vф называется скорость перемещения фазового (волнового) фронта ЭМВ. При анализе выражения (5.12) ранее были определены направление движения и скорость фронта ЭМВ

. (5.19)

Фазовая скорость может изменяться в любых пределах (может быть больше с!), поскольку не является скоростью переноса энергии [1].

Групповой скоростью vгр называют скорость движения фронта (например, максимума) огибающеймодулированного сигнала.

Информационный сигнал не является монохроматическим, он занимает полосу частот. Каждая спектральная составляющая может иметь свою скорость распространения, что в диспергирующих средах приводит к искажениям сигнала.

Понятие «групповая скорость» вводится для сред с малыми потерями, поэтому при Dw vф ( >0).

При Dw/w0 ® 0 период огибающей стремится в бесконечность, понятие «группа волн» распространяется на весь сигнал, и в итогеvгр ® vЭ.

Групповая скорость узкополосного сигнала – это скорость передачи энергии, она не может быть выше скорости света.

Характеристическое сопротивление (Zс) [41] ЭМВ равно отношению амплитуд поперечных составляющих электрического и магнитного полей

. (5.21)

При комплексном Zс отстает или опережает по фазе вектор на некоторый угол. На рис. 5.5 вектор опережает на 90° (π/4), а на рис. 5.1 данные векторы синфазны.

Определим характеристическое сопротивление плоской волны. Пусть , а , тогда из формул (5.7) следует:

, . (5.22)

Получается, что характеристическое сопротивление [41]зависит только от параметров среды. Zв называют волновым сопротивлением среды. Следует отметить, что стандартом [41] рекомендуется термин «характеристическое сопротивление». Для ЭМВ, распространяющейся в некоторой среде, Zc = Zв.

Волновое сопротивление вакуума Z0 (s = 0, e = m = 1) :

377,0 Ом. (5.23)

Тогда выражение (5.22) можно записать в виде

. (5.24)

Список рекомендуемой литературы:[1, гл. 6–7, с. 30–38; 2, с. 50–56; 3, гл. 6–7, с. 27–34; 4, с. 26–33; 5, с. 26–30; 6, с. 116–123, 128–142, 198–205; 7, с. 67–82, 250–259; 8, с. 62–68; 9, с. 69–74; 10, с. 68–73; 11, с. 67–69, 130–139; 12, с. 182–194; 13, с. 140–149, 174–177, 187–190; 15, с. 302–307].

Контрольные вопросы и задания

1. Почему рассматриваемые в этой теме уравнения называются волновыми?

2. Чем волна отличается от колебания?

3. Чем отличаются волновые уравнения Д’Аламбера и Гельмгольца?

4. Следует ли из волновых уравнений независимость электрической и магнитной составляющих ЭМП?

5. Можно ли считать свет ЭМ волной?

6. Какие упрощения возможны в волновых уравнениях для сред без потерь?

7. Можно ли по виду электрической или магнитной составляющей плоской ЭМВ определить расположение другой составляющей ЭМП и направление распространения ЭМВ?

8. При каких условиях волновые уравнения для векторов и идентичны?

9. Каково простейшее решение системы уравнений Максвелла?

10. Дайте определение волнового фронта.

11. Почему плотность потока энергии сферической волны уменьшается при удалении от источника даже в пространстве без потерь?

12. Какие упрощения в анализе ЭМП дает понятие «плоская волна»? В каких практических случаях допустимо ЭМВ считать плоской?

13. Чем отличаются однородные и неоднородные плоские волны?

14. Дайте определение коэффициентам затухания и фазы плоской ЭМВ.

15. Чем отличается волновое число k от g ?

16. Какова пространственная структура плоской ЭМВ?

17. Как определить направление распространения ЭМВ?

18. Как с помощью понятия толщины поверхностного слоя можно оценить область преимущественной концентрации ЭМП?

19. Дайте определение основным характеристикам ЭМВ.

20. Чем групповая скорость отличается от фазовой?

21. Может ли фазовая скорость иметь бесконечное значение?

22. Чем волновое сопротивление отличается от характеристического?

23. Является ли групповая скорость скоростью передачи энергии?

24. Что такое дисперсия? Приведите примеры дисперсионных сред.

25. Укажите условие неискаженной передачи сигнала.

26. Чем нормальная дисперсия отличается от аномальной?

Лекция 6. Метод Даламбера

В этой лекции решение задачи Коши для волнового уравнения

Шаг 1. Заменим переменные (x, t) новыми переменными (ξ,η), в которых волновое уравнение примет другой вид: Такая замена выполняется по формулам

После подстановки этих производных в волновое уравнение, получим:

что и требовалось доказать.

Шаг 2. Преобразованное уравнение легко решается двумя последовательными интегрированиями (сначала по переменной η , а затем по ξ):

где C1(η) – произвольная функция от η. Так как C(ξ) – произвольная функция, то и – также произвольная функция.

Окончательно, общее решение U(ξ,η) имеет вид

Шаг 3. Для нахождения общего решения первоначального уравнения подставим в (25) вместо ξ и η выражения (24):

Шаг 4. Определим функции C1 и C2, используя начальные условия из (23). После подстановки первого условия получим

Найдем производную функции U в (26) по переменной t и подставим второе условие:

В результате будем иметь систему уравнений

Если проинтегрировать второе уравнение системы (27) по x в пределах от xo до х , то получим следующую систему:

При сложении этих уравнений получим

Если из первого уравнения системы вычесть второе уравнение, то будем иметь

Подставим теперь полученные функции в общее решение (26):

Поменяем местами пределы интегрирования во втором интеграле, стоящем в скобках в (28). В результате получим решение исходной задачи Коши

Формула (29) называется формулой Даламбера.

Далее мы исследуем решение, определяемое по формуле Даламбера.

Пространственно-временная интерпретация формулы Даламбера

При исследовании формулы Даламбера будем исходить из физического смысла волнового уравнения. Рассмотрим уравнение свободных колебаний бесконечной струны

и начальные условия

Такая задача Коши с помощью замены независимой переменной сводится к задаче (23):

Решение преобразованной задачи имеет вид (см. формулу Даламбера (29):

Если теперь в эту формулу вместо τ подставить at, то получится решение исходной задачи

Прежде, чем перейти к физической интерпретации этой формулы, сделаем следующее замечание.

Замечание. Рассмотрим в отдельности функции C1(x-at) и C2(x-at), входящие в общее решение (26) (коэффициент а в них появился потому, что нас сейчас интересует более общее уравнение (30)). Начнем с функции C1(x-at) и построим графики этой функции при возрастающих значениях t: t=to, t=t1, t=t2 и т.д. (см. рис. 8).

Если по очереди проецировать эти картинки на экран (как в мультфильмах), то они «побегут» вправо. Процесс передвижения отклонения по струне называется волной. При этом коэффициент а является скоростью распространения волны. В самом деле, предположим, что параллельно оси х движется наблюдатель со скоростью а. Пусть в некоторый момент to он находился в точке xo. Тогда за промежуток наблюдатель сместится вправо на величину и окажется в точке Если в точке xo наблюдатель видел отклонение струны на величину то в момент t величина отклонения – будет точно такой же! То есть наблюдатель будет видеть форму струны не изменяющейся.

Вторая функция C2(x-at) тоже представляет собой волну, но только она будет распространяться со скоростью а влево. Часто функции C1(x-at) и C2(x-at) называют, соответственно, прямой и обратной волной. Таким образом, общее решение U(x,t) (формула (26)) волнового уравнения является суперпозицией прямой и обратной волны.

Теперь дадим интерпретацию формулы Даламбера для двух частных случаев.

СЛУЧАЙ 1. Предположим, что начальное отклонение отлично от нуля, а начальная скорость равна нулю. Это означает, что начальные условия имеют вид

При таких начальных условиях получается решение задачи Коши, которое называется волной отклонения. Уравнение волны отклонения определяется формулой Даламбера

то есть решение U в некоторой точке xo в момент времени to зависит от значений начальной функции φ в двух точках на оси х: в точке (xo — ato) и в точке (xo + ato) (см. рис. 9).

Значение U равно среднему арифметическому значений начальной функции φ в точках (xo — ato) и (xo + ato). На рис. 9 изображена плоскость xOt, которая называется фазовой плоскостью. На оси х указаны точки (xo — ato, 0) и (xo + ato, 0), в которых начальные отклонения струны определяют величину отклонения струны в точке xo в момент времени to. Эти точки являются точками пересечения прямых x — at = xo — ato и x + at = xo + ato с осью х. Указанные прямые называются характеристиками волнового уравнения. Треугольник с вершиной в точке o, to) и основанием, которое получается при пересечении характеристик с осью х (см. рис. 9), называется характеристическим треугольником.

Используя такую интерпретацию формулы Даламбера, изобразим фазовую картину решения следующей задачи:

Замечание. На самом деле начальные отклонения струны не могут быть разрывными в точках х = -1 и х = 1, ведь струна не разрывается. Однако мы не слишком сильно погрешим против истинной картины распространения колебаний, если будем считать их кусочно постоянными. Дело в том, что, во-первых, рассматриваются очень малые колебания струны, и, во-вторых, малые изменения начальных значений незначительно влияют на решение задачи.

На рисунке 10 изображена фазовая плоскость x0t. Решение U(x,t) задачи отлично от нуля только в заштрихованных областях, причем начальное отклонение распространяется с одинаковой скоростью в двух противоположных направлениях – возникает прямая и обратная волны. Границы этих областей – это характеристики волнового уравнения: x — at = -1, x — at = 1, x + at = -1, x + at = 1.

Если рассмотреть процесс колебания некоторой фиксированной точки струны x = xo, то нетрудно заметить, что она колеблется только в конечный промежуток времени: от момента до момента , то есть В остальное время точка xo находится в покое. Говорят, что в момент t1 через точку x = xo проходит передний фронт волны, а в момент t2 — задний фронт волны. Вообще, фронтом волны называется граница между возмущенной (колеблющейся) и невозмущенной областями среды (точками струны). Для прямой волны уравнение переднего фронта x — at = 1, а заднего фронта x — at = -1. Для обратной волны, соответственно, x + at = -1 — уравнение переднего фронта, а x + at = 1 — заднего фронта.

СЛУЧАЙ 2. Пусть начальное отклонение равно нулю, а начальная скорость отлична от нуля. Это означает, что начальные условия имеют вид

В этом случае решение задачи Коши называют волной импульса. Оно имеет вид (см. формулу Даламбера)

то есть решение U в некоторой точке xo в момент времени to зависит от начальных скоростей ψ во всех точках отрезка [xo — ato , xo + ato] (см. рис 11). Значение U равно (интегральному) среднему значению начальной скорости на отрезке [xo — ato , xo + ato], умноженному на промежуток времени t.

На рис. 11 изображена фазовая плоскость x0t. Точки (xo — ato, 0) и (xo + ato, 0) являются точками пересечения характеристик x — at = xo — ato и x + at = xo + ato с осью х. В качестве примера приведем фазовую картину решения следующей задачи:

Рис. 12 описывает процесс колебания струны, которой сообщается начальная единичная скорость на отрезке -1

При вычислении интеграла всегда удобно представить себе характеристический треугольник с вершиной в точке, лежащей в соответствующей области (см. рис 12). Тогда значение U(x,t) будет определяться значениями начальной функции ψ(x) в основании характеристического треугольника.

2. В области 2 функция

3. В области 3 функция

4. В области 4 функция

5. В области 6 функция

Это решение в различные моменты времени можно изобразить на плоскости x0U (см. рис 13). Здесь для простоты положим a=1.

Графики функции U(x,t), изображенные на рис. 13, задают форму струны в различные моменты времени.


источники:

http://vicaref.narod.ru/PDE/index6.htm