Уравнение давления газа на стенки сосуда

Уравнение давления газа на стенки сосуда

Компьютерная модель иллюстрирует вывод формулы давления идеального газа на стенку сосуда.

Давление газа на стенку сосуда можно вычислить, используя модель идеального газа.

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υ скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υ скорости, параллельная стенке, остается неизменной (рис. 1).

Поэтому изменение импульса молекулы будет равно 20υ , где 0 – масса молекулы.

Выделим на стенке некоторую площадку (рис. 2). За время Δ с этой площадкой столкнутся все молекулы, имеющие проекцию скорости υ , направленную в сторону стенки, и находящиеся в цилиндре с основанием площади и высотой υ Δ.

Пусть в единице объема сосуда содержатся молекул; тогда число молекул в объеме цилиндра равно υ Δ. Но из этого числа лишь половина движется в сторону стенки, а другая половина движется в противоположном направлении и со стенкой не сталкивается.

Следовательно, число ударов молекул о площадку за время Δ равно .

Поскольку каждая молекула при столкновении со стенкой изменяет свой импульс на величину 20υ , то полное изменение импульса всех молекул, столкнувшихся за время Δ с площадкой , равно .

По законам механики это изменение импульса всех столкнувшихся со стенкой молекул происходит под действием импульса силы Δ, где – некоторая средняя сила, действующая на молекулы со стороны стенки на площадке . Но по 3-му закону Ньютона такая же по модулю сила действует со стороны молекул на площадку . Поэтому можно записать:

Разделив обе части на , получим:

где – давление газа на стенку сосуда.

При выводе этого соотношения предполагалось, что все молекул, содержащихся в единице объема газа, имеют одинаковые проекции скоростей на ось . На самом деле это не так. На самом деле в данную формулу должнен входить средний квадрат проекции υ скорости молекул. С учетом этого формула для давления газа запишется в следующем виде:

Модель может быть использована в режиме ручного переключения кадров и в режиме автоматической демонстрации ( Фильм ).

Давление газа на стенки сосуда

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Газ: агрегатное состояние

В мире есть три агрегатных состояния — твердое, жидкое и газообразное. Их характеристики — в таблице

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Давление газа

Мы только что выяснили, что молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.

Например, в комнате, в которой вы сейчас находитесь, на каждый квадратный сантиметр за 1 с молекулами воздуха наносится столько ударов, что их количество выражается двадцати трехзначным числом.

Хотя сила удара отдельной молекулы мала, действие всех молекул о стенки сосуда приводит к значительному давлению. Это как если бы один комар толкал машину, то она бы и не сдвинулась с места, а вот пару сотен миллионов комаров вполне себе способны эту машину сдвинуть.

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Зависимость давления от других величин

Зависимость давления от объема

В механике есть формула давления, которая показывает: давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.

Давление
p = F/S

p — давление [Па]
F — сила [Н]
S — площадь [м^2]

То есть, если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы они толкали грузовой автомобиль (просто потому что легковая меньше грузовика).

Из формулы давления следует, что давление на легковой автомобиль будет больше из-за меньшей площади.

Давайте рассмотрим аналогичный пример с двумя сосудами разной площади.

Давление в левом сосуде будет больше, чем во втором, по аналогичной схеме — потому что площадь меньше. Но если площадь основания меньше, то и объем меньше. Это значит, что давление будет зависеть от объема следующим образом: чем больше объем, тем меньше давление — и наоборот.

При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):

Такая зависимость называется законом Бойля-Мариотта.

Она экспериментально проверяется с помощью такой установки.

Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.

Зависимость давления от температуры

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в Жаком Шарлем.

Газ нагревался в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Пренебрегая ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке.

Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, измеряли температуру газа по термометру, а соответствующее давление — по манометру.

Этот эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.

С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейно:

Эта зависимость называется законом Шарля.

Хранение и транспортировка газов

Если нужно перевезти значительное количество газа из одного места в другое, или когда газы необходимо длительно хранить — их помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.

Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.

Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или любым способом пытаться сделать в них отверстие, даже после использования.

Физика. 10 класс

Давление идеального газа

Основное уравнение МКТ

Необходимо запомнить

Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами – массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа.

Давление газа на стенку сосуда обусловлено ударами молекул. Давление газа пропорционально концентрации молекул: чем больше молекул в единице объёма, тем больше ударов молекул о стенку за единицу времени. Каждая молекула при ударе о стенку передаёт ей импульс, пропорциональный импульсу молекулы $m_0 \nu$.

Давление пропорционально второй степени скорости, так как, чем больше скорость молекулы, тем чаще она бьётся о стенку сосуда. Расчёты показывают, что основное уравнение молекулярно-кинетической теории идеального газа имеет вид:

где $m_0$ – масса одной молекулы газа,

$n$ концентрация молекул,

$\overline<\upsilon^2>$ – среднее значение квадрата скорости молекул.

Коэффициент $ \frac<1><3>$ обусловлен трёхмерностью пространства – во время хаотического движения молекул все три направления равноправны.

Средняя кинетическая энергия поступательного движения

тогда уравнение примет вид:

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.


источники:

http://skysmart.ru/articles/physics/davlenie-gaza-na-stenki-sosuda

http://resh.edu.ru/subject/lesson/6291/main/