Уравнение де бройля принцип неопределенности гейзенберга

Уравнение де бройля принцип неопределенности гейзенберга

Элементы квантовой механики

Корпускулярно-волновой дуализм свойств частиц вещества.

§1 Волны де Бройля

В 1924г. Луи де Бройль (французский физик) пришел к выводу, что двойственность света должна быть распространена и на частицы вещества — электроны. Гипотеза де Бройля заключалась в том, что электрон, корпускулярные свойства которого (заряд, масса) изучаются давно, имеет еще и волновые свойства, т.е. при определенных условиях ведет себя как волна.

Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов.

Идея де Бройля состояла в том, что это соотношение имеет универсальный характер, справедливый для любых волновых процессов. Любой частице, обладающей импульсом р, соответствует волна, длина которой вычисляется по формуле де Бройля.

— волна де Бройля

p = mv — импульс частицы, h — постоянная Планка.

Волны де Бройля , которые иногда называют электронными волнами, не являются электромагнитными.

В 1927 году Дэвиссон и Джермер ( амер. физик ) подтвердили гипотезу де Бройля обнаружив дифракцию электронов на кристалле никеля. Дифракционные максимумы соответствовали формуле Вульфа — Брэггов 2 dsin j = n l , а брэгговская длина волны оказалась в точности равной .

Дальнейшее подтверждение гипотезы де Бройля в опытах Л.С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (Е » 50 кэВ) через фольгу из различных металлов. Затем была обнаружена дифракция нейтронов, протонов, атомных пучков и молекулярных пучков. Появились новые методы исследования вещества — нейтронография и электронография и возникла электронная оптика.

Макротела также должны обладать всеми свойствами ( m = 1кг, следовательно, l = 6 . 6 2 · 1 0 — 3 1 м — невозможно обнаружить современными методами — поэтому макротела рассматриваются только как корпускулы).

§2 Свойства волн де Бройля

  • Пусть частица массы m движется со скоростью v . Тогда фазовая скорость волн де Бройля

.

Т.к. c > v , то фазовая скорость волн де Бройля больше скорости света в вакууме ( v ф может быть больше и может быть менше с, в отличие от групповой ).

  • следовательно, групповая скорость волн де Бройля равна скорости движения частицы.

т.е. групповая скорость равная скорости света.

  • Волны де Бройля испытывают дисперсию. Подставив в получим, что vф = f (λ). Из-за наличия дисперсии волны де Бройля нельзя представить в виде волнового пакета, т.к. он мгновенно “ расплывется “ (исчезнет) за время 10 -26 с.

§3 Соотношение неопределенностей Гейзенберга

Микрочастицы в одних случаях проявляют себя как волны, в других как корпускулы. К ним не применимы законы классической физики частиц и волн. В квантовой физике доказывается, что к микрочастице нельзя применять понятие траектории, но можно сказать, что частица находится в данном объеме пространства с некоторой вероятностью Р. Уменьшая объем, мы будем уменьшать вероятность обнаружить частицу в нем. Вероятностное описание траектории (или положения) частицы приводит к тому, что импульс и, следовательно, скорость частицы может быть определена с какой-то определенной точностью.

Далее, нельзя говорить о длине волны в данной точке пространства и отсюда следует, что если мы точно задаем координату Х, то мы ничего не сможем сказать о импульсе частицы, т.к. . Только рассматривая протяженный участок D C мы сможем определить импульс частицы. Чем больше D C , тем точнее D р и наоборот, чем меньше D C , тем больше неопределенность в нахождении D р .

Соотношение неопределенностей Гейзенберга устанавливает границу в одновременном определении точности канонически сопряженных величин, к которым относятся координата и импульс, энергия и время.

Соотношение неопределенностей Гейзенберга: произведение неопределенностей значений двух сопряженных величин не может быть по порядку величины меньше постоянной Планка h

( иногда записывают )

Таким образом. для микрочастицы не существует состояний, в которых её координата и импульс имели бы одновременно точные значения. Чем меньше неопределенность одной величины, тем больше неопределенность другой.

Соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

следовательно, чем больше m , тем меньше неопределенности в определении координаты и скорости. При m = 10 -12 кг , ? = 10 -6 и Δ x = 1% ?, Δv = 6,62·10 -14 м/с, т.е. не будет сказываться при всех скоростях, с которыми пылинки могут двигаться, т.е. для макротел их волновые свойства не играют никакой роли.

Пусть электрон движется в атоме водорода. Допустим Δ x » 1 0 -10 м (порядка размеров атома, т.е. электрон принадлежит данному атому). Тогда

Δv = 7,27· 1 0 6 м/с. По классической механике при движении по радиусу r » 0 , 5 · 1 0 — 1 0 м v = 2,3·10 -6 м/с. Т.е. неопределенность скорости на порядок больше величины скорости, следовательно, нельзя применять законы классической механики к микромиру.

Из соотношения следует, что система имеющая время жизни D t , не может быть охарактеризована определенным значением энергии. Разброс энергии возрастает с уменьшением среднего времени жизни. Следовательно, частота излученного фотона также должна иметь неопределенность D n = D E / h , т.е. спектральные линии будут иметь некоторую ширину n ± D E / h , будут размыты. Измерив ширину спектральной линии можно оценить порядок времени существования атома в возбужденном состоянии.

§4 Волновая функция и ее физический смысл

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях — имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону ( т.е.

еiωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн ( немецкий физик ) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или y -функцией (пси — функцией).

Волновая функция — функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV — физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * — функция комплексно сопряженная с Ψ

Если частица находится в конечном объеме V , то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 Þ

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

y — функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

  • непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),
  • Волновая функция удовлетворяет принципусуперпозиции: если система может находится в различных состояниях, описываемых волновыми функциями y 1 , y 2 . y n , то она может находится в состоянии y , описываемой линейной комбинаций этих функций:

С n ( n =1,2. ) — любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

— Временное уравнение Шредингера.

— набла — оператор Лапласа

— потенциальная функция частицы в силовом поле,

Ψ( y , z , t ) — искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ — функция) может быть представлено в виде произведения двух сомножителей — один зависит только от координат, другой — только от времени:

(2)

Е — полная энергия частицы, постоянная в случае стационарного поля.

(3)

— Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

волновые функции должны быть регулярными, т.е.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии — собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр — дискретный, если непрерывные — сплошной или непрерывный.

§6 Движение свободной частицы

Частица называется свободной, если на нее не действуют силовые поля, т.е. U = 0.

Уравнение Шредингера для стационарных состояний в этом случае:

И собственные значения энергии:

Т.к. k может принимать любые значения, то, следовательно, и Е принимает любые значения, т.е. энергетический спектр будет сплошным.

Временная волновая функция

(- уравнение волны)

т.е. представляет плоскую монохромную волну де Бройля.

§7 Частица в “потенциальной яме” прямоугольной формы.

Квантование энергии.

Найдем собственные значения энергии и соответствующие им собственные функции для частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Предположим что, частица может двигаться только вдоль оси x . Пусть движение ограничено непроницаемыми для частицы стенками x = 0, и x = ?. Потенциальная энергия U имеет вид:

Уравнение Шредингера для стационарных состояний для одномерной задачи

За пределы потенциальной ямы частица попасть не сможет, поэтому вероятность обнаружения частицы вне ямы равна 0.Следовательно, и Ψ за пределами ямы равна 0 .Из условий непрерывности следует, что Ψ = 0 и на границах ямы т.е.

В пределах ямы (0 £ x £ l ) U = 0 и уравнение Шредингера.

введя получим

;

из граничных условий следует

Из граничного условия

Þ

Энергия Е n частицы в «потенциальной яме» с бесконечно высокими стенками принимает лишь определенные дискретные значения, т.е. квантуется. Квантованные значения энергии Е n называются уровнями энергии, а число n , определяющее энергические уровни частицы, называется главным квантовым числом. Т.е. частицы в «потенциальной яме» могут находиться только на определенном энергетическом уровне Е n (или находятся в квантовом состоянии n )

Собственные функции:

А найдем из усилия нормировки

— плотность вероятности. Из рис. видно, что плотность вероятности меняется в зависимости от n : при n = 1 частица, скорее всего, будет посередине ямы, но не на краях, при n = 2 — будет или в левой или в правой половине, но не посередине ямы и не на краях, и т.д. Т.е нельзя говорить о траектории движения частицы.

Энергетический интервал между соседними уровнями энергии:

При n = 1 имеет наименьшую энергию отличную от нуля

Наличие минимума энергии следует из соотношения неопределенностей, т.к.,

C ростом n расстояние между уровнями уменьшается и при n ® ¥ Е n практически непрерывны, т.е. дискретность сглаживается, т.е. выполняется принцип соответствия Бора: при больших значениях квантовых чисел законы квантовой механики переходят в законы классической физики.

Общая трактовка принципа соответствия: всякая новая, более общая теория является развитием классической, не отвергает ее полностью, а включает в себя классическую, указывая границы её применимости.

§ 8 Туннельный эффект.

Прохождение частицы через потенциальный барьер

Для классической частицы : при Е > U она пройдет над барьером, при Е U — отразится от него; для квантовой : при Е > U есть вероятность того, что частица отразится, при Е U есть вероятность того, что пройдет сквозь барьер.

Потенциальная энергия:

Уравнение Шредингера: для области 1 и 3 :

для области 2:

Решение этих диф. уравнений;

Для 1;

Для 2;

Для 3:

Т.к. в области 3 возможно распределение только прошедшей волны, то, Þ , В3=0.

В области 2 решение зависит от соотношений Е > U или Е U . Физический интерес представляет случай Е U .

q = i b , где

Тогда решение уравнения Шредингера запишутся в виде:

Для 1;

Для 2;

Для 3:

Качественный вид функций показан на рис. 2. Из рис. 2 видно, что функция не равна нулю внутри барьера, а в 3 имеет вид волны де Бройля, если барьер не очень широк.

Явление “проникновения” частицы сквозь потенциальный барьер, называется туннельным эффектом. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы можно объяснить используя соотношения неопределенностей: неопределенность импульса D р на отрезке D x = ? составляет . Связанная с этим разбросом в значениях импульса кинетическая энергия может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной энергии барьера.

§9 Линейный гармонический осциллятор

Линейный гармонический осциллятор — система, совершающая одномерное колебательное движение под действием квазиупругой силы — является моделью для изучения колебательного движения.

В классической физике — это пружинный, физический и математический маятники. В квантовой физике — квантовый осциллятор.

Записав потенциальную энергию в виде

Уравнение Шредингера запишется в виде:

Тогда собственные значения энергии:

т.е. энергия квантового осциллятора принимает дискретные значения, т.е. квантуется. Минимальное значение — энергия нулевых колебаний — является следствием состояния неопределенности так же, как и в случае частицы в “потенциальной яме”.

Наличие нулевых колебаний означает, что частицы не могут упасть на дно ямы, т.к. в этом случае был бы точно определен ее импульс p = 0, D p = 0, Þ , D x = ¥ — не соответствует соотношению неопределенностей. Наличие энергии нулевых колебаний противоречит классическим представлениям, по которым E min = 0. — уровни энергии расположенные на равных расстояниях друг от друга. Из квантового рассмотрения следует, что частицу можно обнаружить вне области. По классическому рассмотрению только в пределах – x £ x £ x (Рис.2).

Квантово-механическая модель строения атома. Корпускулярно-волновые свойства электрона: уравнение Де Бройля, принцип неопределенности Гейзенберга (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7

В 1911г. Э. Резерфорд предложил модель атома, согласно которой атом состоит из положительно заряженного ядра, в котором находится почти вся масса атома, и располагающихся вокруг ядра электронов. Ядро состоит из протонов и нейтронов. Число электронов равно числу протонов и, поэтому, атом электронейтрален.

В основе квантово-механической теории строения атомов лежат их корпускулярно-волновые свойства. С движущимся электроном ассоциируется волна, длина которой определяется уравнением Де-Бройля: где λ — длина волны, (м); m — масса электрона; V-скорость движения частицы (≈108 м/с), h — постоянная Планка. Принцип неопределенности Гейзенберга: невозможно описать с высокой степенью точности местонахождение электрона (координаты), и его энергию (импульс) в один и тот же момент времени.

2. Уравнение Шредингера. Квантовые числа, волновая функция, понятие об атомной орбитали.

Уравнение Шрёдингера (1926 г) описывает волновые и корпускулярные свойства электрона в атоме водорода. Решениями уравнения Шредингера являются энергии электрона и волновая функция ψ(пси).

Волновая функция ψ зависит от координат (x, y, z), и энергии E электрона и не имеет определенного физического толкования. Квадрат волновой функции ψ2 определяет плотность вероятности нахождения электрона в точке с координатами (x, y, z). ψ2·ΔV –вероятность нахождения электрона в данном объеме атома ΔV. Чем больше ψ2·ΔV, тем плотнее электронное облако в данном объеме атома.

Область пространства, в которой вероятность нахождения электрона составляет не менее 90%, называют атомной орбиталью. Атомные орбитали различаются по энергии, размерам, форме, ориентации в пространстве и могут быть охарактеризованы тремя квантовыми числами (n, l, ml).

Главное квантовое число характеризует энергию электрона в атоме. принимает только целые положительные значения n = 1, 2, 3…∞. С увеличением n энергия и размер электронного облака (атомной орбитали) возрастает. Совокупность атомных орбиталей с одинаковым значением n называют уровнем или электронным слоем.

Орбитальное квантовое число l принимает значения от 0 до (n-1), например, при n = 3: l = 0, 1, 2. Характеризует форму атомных орбиталей (электронных облаков), для которых в зависимости от l приняты соответствующие обозначения: l 0, 1, 2, 3, 4, 5…

обозначение s, p, d, f, g, h…

Магнитное квантовое число определяет возможные ориентации электронного облака в пространстве. ml – может принимать положительные и отрицательные целочисленные значения от –l до +l через нуль. Так, для s — орбиталей (l = 0, ml = 0), возможна одна ориентация. Для р — орбиталей (l=1, ml = -1, 0, +1), что соответствует трем ориентациям р — орбиталей относительно трех осей. Для d — орбиталей (l=2, ml = -2, -1, 0, +1, +2) число возможных ориентаций – пять, для f – орбиталей — семь.

Спиновое (ms) квантовое число характеризует сложное движение электрона вокруг собственной оси; принимает значения +1/2 и –1/2.

3. Энергетическая диаграмма возможных состояний электрона в атоме водорода.

4. Распределение электронов по АО в многоэлектронных атомах. Принцип Паули, правило Гунда, правила Клечковского.

Распределение электронов в многоэлектронных атомах основано на трех положениях: принципе минимума энергии, принципе В. Паули и правиле Ф. Хунда.

Принцип наименьшей энергии. Электроны занимают в атоме орбитали с наименьшей энергией. Последовательность расположения АО по уровням энергии при заполнении электронами определяется правилом Клечковского: электроны в невозбужденном атоме располагаются в состояниях, где меньше сумма (n+l), так как энергия электронов зависит от n и l и не зависит от ml и ms. При одинаковом значении этой суммы в первую очередь заполняется орбиталь с меньшим значением главного квантового числа (n).

Принцип Паули. В атоме не может быть двух электронов, имеющих четыре одинаковых квантовых числа. Один электрон от другого на атомной орбитали должен отличаться спиновым квантовым числом. Как следует из принципа Паули, на атомной орбитали максимально может быть два электрона, отличающихся спином и это обозначается: ↑↓.

Правило Хунда. При заполнении энергетического подуровня, электроны стремятся заполнить свободные орбитали, сначала по одному с параллельными спинами, а затем по второму с противоположными спинами.

5. Периодический закон. Периодическая система. Электронные конфигурации атомов.

Периодический закон: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов.

Периодическую систему химических элементов в настоящее время рассматривают как классификацию элементов в зависимости от зарядов ядра и от строения электронных оболочек невозбужденных атомов. Распределение электронов по атомным орбиталям называют электронной конфигурацией атома. И представляют в виде а) полной электронной формулы, например: 22Ti 1s22s22p63s23p64s23d2; б) краткой электронной формулы: 22Ti [Ar]4s23d2; в) электроно-графической формулы, в которой атомные орбитали обозначают в виде клеток (энергетических или квантовых ячеек), а электроны – стрелками ↑↓.

6. Периодические свойства атомов (радиусы атомов, энергия ионизации, сродство к электрону, электроотрицательность).

— атомный и ионный радиусы (r), определяемые как средние радиусы атома или иона, находимые из экспериментальных данных по межатомным расстояниям в различных соединениях;

— энергия ионизации, определяемая количеством энергии, необходимой для отрыва электрона от атома ();

— сродство к электрону, определяемое количеством энергии, выделяющейся при присоединении дополнительного электрона к атому ();

Электроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары.

7. Характерные степени окисления элементов.

Степень окисления — условный заряд атома в молекуле, вычисленный в предположении, что все связи имеют ионный характер. Понятие степени окисления введено в предположении о пол­ном смещении пар электронов к тому или другому атому (показывая при этом заряд ионов, образующих ионное соедине­ние). Поэтому следует помнить, что в полярных соединениях сте­пень окисления означает число электронов, лишь смещенных от данного атома к атому, связанному с ним.

8. Ковалентная химическая связь: механизмы её образования, разновидности. Длина, энергия, порядок (кратность) ковалентной связи.

Связь, образованную посредством перекрывания электронных облаков, то есть осуществляемую общей парой электронов с противоположными спинами, называют ковалентной связью.

Для объяснения природы ковалентной связи и механизма ее образования используются два метода – метод валентных связей (ВС) и метод молекулярных орбиталей (МО). В основе метода ВС лежит теория Льюиса об образовании ковалентной связи формированием общей пары электронов между взаимодействующими атомами. Основные характеристики ковалентной химической связи – длина связи, энергия связи. С увеличением кратности связи уменьшается длина связи и увеличивается суммарная энергия связи.

9, 10. Насыщаемость ковалентной связи и валентные возможности атомов.

Направленность ковалентной связи и геометрия молекулы.

Ковалентной связи присущи следующие особенности – насыщаемость и направленность. Насыщаемость определяет стехиометрию молекулярных химических соединений (формульный состав, массовые соотношения элементов) и валентные возможности атомов (способность образовать ограниченное число ковалентных связей).

Направленность ковалентной связи определяет геометрическую структуру (форму) молекулы. Атомные орбитали имеют разные формы и размеры, разную ориентированность в пространстве, и перекрываются по определенным, предпочтительным направлениям, в которых достигается максимальная плотность перекрывания. Это приводит к образованию молекулы определенной геометрической формы (линейной, угловой, тетраэдрической и др). Например, атом серы в сероводороде образует связи с атомами водорода за счет p-электронов, ориентированных вдоль осей координат под углом 90о.

11. Полярность и поляризуемость ковалентной связи. Полярность молекулы.

Связь в двухатомных молекулах, образованная из одинаковых атомов (Н2) или атомов близких по электроотрицательности (ЭО), называется неполярной (гомеополярной). Связь, образованная различными атомами, отличающимися ЭО, называется полярной (гетерополярной).

Полярность связи обуславливается различием ЭО и размеров атомов. Полярность связи обуславливает полярность молекулы – то есть несимметричное распределение электронной плотности, при котором «центры тяжести положительных и отрицательных зарядов» в молекуле не будут совпадать в одной точке. Поляризуемостью ковалентной связи и (или) молекулы называют ее способность под действием внешнего электрического поля становиться полярной или более полярной. Поляризуемость π-связи выше, чем поляризуемость σ-связи. Поляризуемость молекулы возрастает с увеличением ее объема и числа π-связей.

12. Металлическая связь. Деление элементов на металлы и неметаллы. Металлические структуры.

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Металлическая связь возникает в металлах, сплавах, интерметаллических соединениях. Валентные электроны внешних оболочек металла относительно легко удаляются, из атомов образуются катионы металла. Электроны делокализованы и могут свободно перемещаться по всему кристаллу. Оставшиеся катионы металлов притягиваются делокализованным электронным облаком («электронным газом»), заполняющим пространство между ними. Образованную подобным образом химическую связь называют металлической связью. Металлическая связь характеризуется ненаправленностью и ненасыщаемостью. Строение металлических кристаллов наиболее точно описывается «структурами с плотнейшей укладкой шаров».

Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов(дуализм), принцип неопределенности Гейзенберга

Степень окисления

Степень окисления – это условный заряд атома в молекуле химического соединения,

вычисленный исходя из предположения, что все молекулы химического соединения состоят

из ионов, то есть общие электронные пары переходят к наиболее электроотрицательному

элементу. Степени окисления атомов могут быть положительными, отрицательными или нулевыми (в том случае, когда молекулы вещества состоят из однородных атомов). Очень важное условие: суммарная степень окисления молекулы всегда равна нулю. Следует также знать, что величина степени окисления атома элемента не всегда совпадает с его валентностью. Хороший пример тому – углерод. Можете сами убедиться, вспомнив формулы некоторых органических молекул, у него при одинаковой валентности, равной четырем, могут быть разные степени окисления. Металлы при соединении с неметаллами всегда имеют положительные степени окисления. Неметаллы же, соответственно, отрицательные. Если же соединение состоит из атомов разных неметаллов, то более электроотрицательным (то есть имеющим отрицательную степень окисления) будет тот элемент, который располагается в таблице Менделеева выше и правее. Его высшую отрицательную степень окисления можно найти, вычтя из цифры 8 номер группы, в которой он находится. Второй элемент, соответственно, будет иметь положительную степень окисления, равную номеру уже его группы. Например, оксид азота N2O5. Найдите степени окисления элементов, входящих в его состав, руководствуясь этими правилами. И азот, и кислород – неметаллы. Какой из этих элементов более электроотрицательный? Согласно таблице Менделеева это кислород, поскольку он расположен на одном уровне с азотом, но правее (в шестой группе, а азот – в пятой). Значит, его степень окисления отрицательна и равна -2. Степень окисления азота, таким образом, положительна и равна +5. Проверьте, нейтральна ли эта молекула (с учетом индексов). Суммарный заряд атомов азота +10. Суммарный заряд атомов кислорода – 10. Условие соблюдено.

«Классы и номенклатура неорганических соединений»

Важнейшими классами неорганических соединений являются оксиды, кислоты, основания и соли. 1)Оксиды – это сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления (– 2). При написании формулы оксида символ элемента, образующего оксид, ставится на первое место, а кислорода – на второе. Общая формула оксидов: ЭхОу. В случае, когда элемент обладает переменной степенью окисления и образует несколько оксидов, после названия этого элемента указывают его степень окисления римской цифрой в скобках, или прибегают к помощи греческих числительных (1-моно, 2-ди, 3-три, 4-тетра, 5-пента, 6-гекса, 7-гепта, 8-окта). Например, VO – оксид ванадия (II) или монооксид ванадия; Особую группу кислородных соединений элементов составляют пероксиды. Обычно их рассматривают как соли пероксида водорода Н2О2, проявляющего слабые кислотные свойства. У пероксидов атомы кислорода химически связаны не только с атомами других элементов, но и между собой (образуют пероксидную группу –О–О–). Например, пероксид натрия Na2O2 (Na–O–O–Na), а оксид натрия Na2O (Na–O–Na). В пероксидах степень окисления кислорода равна (–1). Так, в пероксиде бария BaO2 степень окисления бария равна +2, а кислорода –1.

2) Основания – это электролиты, диссоцирующие в водном растворе с образованием катиона металла (или иона аммония NH4+) и гидроксогруппы ОН–.Названия оснований Общая формула оснований: Мe(ОН)n. Согласно международной номенклатуре названия оснований составляются из слова гидроксид и названия металла. Например, NaOH – гидроксид натрия, Ca(OH)2 – гидроксид кальция. Если элемент образует несколько оснований, то в названии указывается степень его окисления римской цифрой в скобках: Fe(OH)2 – гидроксид железа (II),Fe(OH)3 – гидроксид железа (III).Помимо этих названий для некоторых наиболее важных оснований применяются и другие, в основном традиционные русские названия. Например, гидроксид натрия NaOH называют едким натром, гидроксид кальция Ca(OH)2 – гашеной известью, КОН – едким кали. Число ОН– -групп, содержащихся в молекуле основания, определяет его кислотность. По этому признаку основания делятся на одно кислотные (КОН), двух кислотные (Cu(OH)2), трех кислотные(Cr(OH)3).Гидроксиды, растворимые в воде, называют щелочами. Это гидроксиды щелочных и щелочно-земельных металлов: NaOH, KOH, RbOH, CsOH, Ba(OH)2, Ca(OH)2, Sr(OH)2.

3) Кислоты – это электролиты, диссоцирующие в водном растворе с образованием катиона водорода Н+ и аниона кислотного остатка .Названия кислот В общем виде формула кислоты записывается как НmЭ или НmЭОn, где Э –кислотообразующий элемент. По химическому составу, а именно по отсутствию или наличию атомов кислорода вмолекулах, кислоты делятся на кислородосодержашие (H2SO4, HNO3) и бескислородные (H2S, HF, HCl).Кислоты имеют традиционные и систематические названия, составляемые по номенклатурным правилам ИЮПАК для сложных соединений. Традиционное название кислоты складывается из двух слов. Первое слово – прилагательное с корнем от русского названия кислотообразующего элемента, второе – слово «кислота», например, серная кислота, азотная кислота. В названиях кислородосодержащих кислот для обозначения степени окисления кислотообразующего элемента используются следующие суффиксы:–н, –ов, –ев – (высшая или любая единственная степень окисления), как HClO4 – хлорная,H2SO4 – серная, HMnO4 – марганцовая кислота; H2SiO3 – метакремниевая кислота.–новат – (промежуточная степень окисления +5), как HClO3 – хлорноватая, HIO3 – йодноватая,H2MnO4 – марганцоватая кислота.–овист, –ист – (промежуточная степень окисления +3, +4), как H3AsO3 – ортомышьяковистая кислота; HClO2 – хлористая; HNO2 – азотистая.–новатист – (низшая положительная степень +1), как HClO – хлорноватистая. Если элемент в одной и той же степени окисления образует несколько кислородосодержащихкислот, то к названию кислоты с меньшим содержанием кислородных атомов добавляют префикс «мета», при наибольшем числе – префикс «орто»: НРО3 – метафосфорная кислота, Н3РО4 –ортофосфорная кислота (степень окисления фосфора равна +5).Названия бескислородных кислот производятся от названия неметалла с окончанием «о» и прибавлением слова водородная: HF – фтороводородная или плавиковая кислота HCl – хлороводородная или соляная кислота

4) Соли – это электролиты, диссоцирующие в водном растворе с образованием катионов основных остатков и анионов кислотных остатков. Формулы и названия солей Состав соли описывается формулой, в которой на первое место ставится формула катиона, а на второе – формула аниона. Названия солей образуются от названия кислотного остатка (в именительном падеже) и названия основного остатка (в родительном падеже), входящих в состав соли. Степень окисления металла, образующего катион, указывается римскими цифрами в скобках, если это необходимо. Например, K2S – сульфид калия, FeSO4 – сульфат железа (II),Fe2(SO4)3 – сульфат железа (III).Анион бескислородной кислоты имеет окончание «ид». Например, FeCl3 – хлорид железа (III).Названия кислых солей образуются также, как и средних, но при этом к названию аниона добавляют приставку «гидро», указывающую на наличие атомов водорода, число которых обозначается греческими числительными: ди, три и.т.д. Например: Fe(HSO4)3 – гидросульфат железа (III), NaH2PO4 – дигидрофосфат натрия. Названия основных солей образуются также, как и средних, но при этом к названию катиона добавляют приставку «гидроксо», указывающую на наличие гидроксо групп, число которых обозначается греческими числительными: ди, три и.т.д. Например: (CuOH)2CO3 – карбонат гидроксомеди (II), Fe(OH)2Cl – хлорид дигидроксо железа (III).

Планетарная модель атома Резерфорда.

Планетарная модель атома, или модель Резерфорда — историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеиванием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, — подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики. Рассеяние -частиц при прохождении через фольгу вызывается кулоновскими силами, т.е. электрическим взаимодействием частицы и заряда атома. Гравитационное взаимодействие в 10 33 раз меньше, поэтому фактически роли не играет. Электроны не могут этого сделать, так как их масса много меньше массы частицы: m=7350me.При взаимодействии с электронами быстро движущаяся частица не изменяет направление своего движения. Причиной рассеяния частицы является их взаимодействие с положительно заряженными частицами атома, занимающими очень малую область атома. Резерфорд назвал эту область ядром. В ядре сосредоточена почти вся масса атома и весь положительный заряд. Обобщив результаты опытов, Резерфорд предложил следующую модель строения атома:1. в центре атома — положительно заряженное ядро: заряд ядра q = Z·e, где Z-порядковый номер элемента в таблице Менделеева, e =1.6·10 -19 Кл — элементарный заряд; размер ядра 10 -13 см; масса ядра фактически равна массе атома. 2. электроны движутся вокруг ядра по круговым и эллиптическим орбитам, как планеты вокруг Солнца: электроны удерживаются на орбите кулоновской силой притяжения к ядру, создающей центростремительное ускорение. число электронов в атоме равно Z ( порядковый номер элемента), электроны движутся с большой скоростью, образуя электронную оболочку атома.

В 1913 году Бор показал, что несовпадение с экспериментом выводов, основанных на модели Резерфорда, возникла потому, что поведение микрочастиц нельзя описывать теми же законами, что и макроскопических тел. Бор предположил, что величины характеризующие микромир, должны квантоваться, т.е. они могут принимать только определенные дискретные значения. Законы микромира — квантовые законы! Эти законы в начале 20 столетия еще не были установлены наукой. Бор сформулировал их в виде трех постулатов. дополняющих ( и «спасающих») атом Резерфорда. Первый постулат: Атомы имеют ряд стационарных состояний соответствующих определенным значениям энергий: Е1, Е2. En. Находясь в стационарном состоянии, атом энергии не излучается несмотря на движение электронов. Второй постулат: В стационарном состоянии атома электроны движутся по стационарным орбитам, для которых выполняется квантовое соотношение: m·V·r = n·h/2· (1)где m·V·r =L — момент импульса, n=1,2,3. h-постоянная Планка. Третий постулат: Излучение или поглощение энергии атомом происходит при переходе его из одного стационарного состояния в другое. При этом излучается или поглощается порция энергии (квант), равная разности энергий стационарных состояний, между которыми происходит: = h·= Em-En (2)

Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов(дуализм), принцип неопределенности Гейзенберга

В 1924 году французский физик Луи де Бройль высказал гипотезу о том, что установленный ранее [1] для фотонов корпускулярно-волновой дуализм присущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию и импульс, абсолютное значение которого равно , то с ней связана волна, частота которой и длина волны , где — постоянная Планка. Эти волны и получили название волн де Бройля. Для частиц не очень высокой энергии, движущихся со скоростью (скорости света), импульс равен (где — масса частицы), и . Следовательно, длина волны де Бройля тем меньше, чем больше масса частицы и её скорость. Например, частице с массой в 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с м, что лежит за пределами доступной наблюдению области. Поэтому волновые свойства несущественны в механике макроскопических тел. Для электронов с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от

1 нм до 10 −2 нм, то есть в интервале длин волн рентгеновского излучения. Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей. Первое подтверждение гипотезы де Бройля было получено в 1927 году в опытах американских физиков К. Дэвиссона и Л. Джермера. Пучок электронов ускорялся в электрическом поле с разностью потенциалов 100—150 В (энергия таких электронов 100—150 эВ, что соответствует нм) и падал на кристалл никеля, играющий роль пространственной дифракционной решётки. Было установлено, что электроны дифрагируют на кристалле, причём именно так, как должно быть для волн, длина которых определяется соотношением де Бройля.

Принцип неопределенности Гейзенберга заключается в том, что в 1926 г. В.Гейзенберг разрабатывает свой вариант квантовой теории в виде матричной механики, отталкиваясь при этом от принципа соответствия. В своем принципе неопределенности Гейзенберг строил матричную теорию, все величины которой должны описывать лишь наблюдаемые явления. И хотя наличие в аппарате его теории матриц, изображающих координаты и импульсы электронов в атомах, оставляет сомнение в полном исключении ненаблюдаемых величин, Гейзенберту удалось создать новую квантовую концепцию, составившую новую ступень в развитии квантовой теории. Суть принципа неопределенности Гейзенберга состоит в замене физических величин, имеющих место в атомной теории, матрицам — таблицам чисел. Результаты, к которым приводили методы, используемые в волновой и матричной механике, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные. Методы матричной механики, в силу своей большей компактности часто быстрее приводят к нужным результатам. Методы волновой механики, как считается, лучше согласуется с образом мышления физиков и их интуицией. Большинство физиков при расчетах пользуется волновым методом и использует волновые функции. Гейзенберг сформулировал принцип неопределенности, в соответствии с которым координаты и импульс не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы важно иметь возможность точно измерять ее положение и скорость. При этом чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости.

Дата добавления: 2016-07-09 ; просмотров: 1477 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://pandia.ru/text/80/353/5866.php

http://helpiks.org/8-40524.html