Уравнение динамики двигателя постоянного тока

Основные теоретические положения

Важное свойство ДПТ с независимым возбуждением от постоянных магнитов состоит в том, что результирующий момент сил от всех проводников якоря, называемый электромагнитным моментом двигателя M, пропорционален току якоря Iя, потребляемому двигателем от источника питания:

,

где k m — коэффициент пропорциональности, называемый постоянной момента двигателя. Его размерность [Нм/А]. По законам электромагнитной индукции в проводнике, движущемся в магнитном поле, возникает электродвижущая сила. Суммарная ЭДС катушек якоря E через коллектор и щетки прикладывается к внешним выводам двигателя. В двигательном режиме работы эта ЭДС направлена против внешнего напряжения U я, подведенного к якорю от источника питания. Поэтому ЭДС двигателя часто называется противоЭДС. Она прямо пропорциональна угловой скорости вращения вала двигателя w дв[рад/с]:

,

где k ω — коэффициент пропорциональности, называемый постоянной ЭДС двигателя. Его размерность [Вс/рад].

Природа электромагнитных явлений в ДПТ такова, что если используется система единиц СИ, то значения коэффициентов k ω и km численно равны.

Уравнения, описывающие электрические процессы в ДПТ

В электрической якорной цепи двигателя протекает ток I я под действием напряжения постоянного тока Ua источника питания и противоЭДС двигателя.

Рис. 1

Эта цепь характеризуется параметрами: активным сопротивлением R я [Ом] и индуктивностью L я [Гн] якорной обмотки. Вращающийся ротор, обладающий моментом инерции Ja [Нм с 2 /рад] , приводится в движение одновременным действием электромагнитного момента двигателя M дв и момента внешних сил M вн, приложенного к валу двигателя.

Исходные дифференциальные уравнения ДПТ составляются на основании законов физики. Для электрической цепи используется второй закон Кирхгофа, согласно которому можно записать уравнение

,

где член R я I я характеризует падение напряжения на активном сопротивлении якорной цепи в соответствии с законом Ома, а член L я ( dI я/ dt ) отражает наличие ЭДС самоиндукции, возникающей в обмотке при изменении тока якоря. В представленном уравнении не учитывается падение напряжения на щетках, зависящее нелинейно от тока якоря, но имеющее, как правило, относительно небольшое значение по сравнению с напряжением U я .

Дифференциальное уравнение, характеризующее процессы в механической части двигателя, составляется на основании второго закона Ньютона:

,

где M вн — момент внешних сил, действующий относительно оси вращения вала двигателя. В этом уравнении не учитывается действие сил трения, возникающих при вращении ротора, но оказывающих относительно слабое действие на ускорение вала ДПТ.

Используя вышеприведенные формулы и приводя дифференциальные уравнения к нормальной форме Коши, получим описание ДПТ в форме:

Для исследования процессов с помощью ЭВМ удобно использовать структурное представление математической модели ДПТ. Для этого преобразуем полученную систему линейных дифференциальных уравнений по Лапласу при нулевых начальных условиях. В результате получим систему алгебраических уравнений:

в которых s — переменная Лапласа, а величины I я( s ), w дв( s ), U я( s ), M вн( s ) — изображения по Лапласу переменных I я , w дв, U я, M вн соответственно. После эквивалентных преобразований эти уравнения могут быть представлены в форме:

где Тэ = L я / R я — электромагнитная постоянная времени якорной цепи двигателя.

По уравнениям с помощью системы SIMULINK может быть сформирована структурная схема ДПТ для его математического моделирования (рис.1).

Важным параметром ДПТ, определяющим его динамические свойства, является электромеханическая постоянная времени двигателя:

.

Зависимость между электромагнитным моментом двигателя и частотой вращения ротора в установившемся режиме при постоянных U я и M вн называется механической характеристикой двигателя. Уравнение механической характеристики имеет вид:

.

При пуске двигателя, когда скорость равна нулю, развивается пусковой момент

.

Частота вращения вала двигателя при отсутствии сопротивления называется частотой вращения холостого хода

.

Основные уравнения двигателя постоянного тока (ДПТ)

В этой статье описаны основные формулы, величины и их обозначения которые относятся ко всем двигателям постоянного тока.

В результате взаимодействия Iя тока якоря в проводнике L обмотки якоря с внешним магнитным полем возникает электромагнитная сила создающая электромагнитный момент М который приводит якорь во вращение с частотой n.

Противо ЭДС двигателя Eя

При вращении якоря пазовый проводник пресекает линии поля возбуждения с магнитной индукцией B и в соответствии с явлением электромагнитной индукции в проводнике наводится ЭДС Eя направленная навстречу Iя. Поэтому эта ЭДС называется противо ЭДС и она прямо пропорциональна Ф магнитному потоку и частоте вращения n.

Ce — постоянный коэффициент определяемой конструкцией двигателя.

Применив второй закон Кирхгофа получаем уравнение напряжения двигателя.

где ∑R — суммарное сопротивления обмотки якоря включающая сопротивление :

  • обмотки якоря
  • добавочных полюсов
  • обмотки возбуждения (для двигателей с последовательным возбуждением)

Ток якоря Iя

Выразим из формулы 2 ток якоря.

Частота вращения якоря

Из формул 1 и 2 выведем формулу для частоты вращения якоря.

Электромагнитная мощность двигателя

Электромагнитный момент

где: ω = 2*π*f — угловая скорость вращения якоря, Cм — постоянный коэффициент двигателя (включает в себя конструктивные особенности данного двигателя)

Момент на валу двигателя, т.е. полезный момент, где М0 момент холостого хода;

Уравнение динамики двигателя постоянного тока

Принцип действия электрической машины постоянного тока может быть рассмотрен на примере простейшего генератора постоянного тока, функциональная схема которого показана на .

Рис. 5-1а. Простейшая машина постоянного тока.

Она представляет собой рамку, содержащую один или w витков, и вращающуюся с частотой ω в постоянном магнитном поле, создаваемом постоянным магнитом или электромагнитом.

По закону электромагнитной индукции при изменении потокосцепления в проводниках возникает ЭДС

где Ψ- потокосцепление, w — число витков, B — магнитная индукция, S — сечение, через которое проходит поток при взаимодействии с обмоткой. ЭДС возникает, если меняется во времени хотя бы одна из величин, стоящих в числителе формулы . В трансформаторах и машинах переменного тока изменяется магнитная индукция, а в машинах постоянного тока индукция постоянна, а изменяется площадь сцепления обмоток якоря с полем возбуждения из-за вращения ротора.

Если проводник перемещается в магнитном поле в плоскости, перпендикулярной силовым линиям, как это бывает в линейных двигателях, то

,

где l — длина проводника в поле, v — линейная скорость перемещения проводника.

Тогда согласно

При вращении с частотой ω

,

где D — диаметр ротора, как показано на .

Рис. 5-1б. ЭДС, возникающая при вращении якоря машины постоянного тока.

В этом случае согласно получим

т.е. в обмотке якоря индуцируется ЭДС, изменяющаяся по периодическому закону с частотой (см. ).

Рис. 5-1в. ЭДС, возникающая при вращении якоря машины постоянного тока.

Чтобы во внешней цепи ток протекал в одном направлении, он должен быть выпрямлен. Для этого служит специальный электромеханический выпрямитель — коллектор (К), расположенный на валу машины. В простейшем случае, как на , используются две пластины с наложенными на них щетками. Последние так должны быть расположены в пространстве, чтобы коммутация происходила в моменты периода ЭДС через ноль. При этом ЭДС, снимаемая со щеток, будет иметь вид, показанный на сплошной линией, пульсирующая ЭДС. С увеличением количества рамок (секций) и соответственно пластин коллектора пульсации уменьшаются. Так, на , пунктирной линией показана ЭДС при четырех коллекторных пластинах, а при восьми коллекторных пластинах пульсация напряжения на щетках не превышает 1% от среднего, поэтому ток, протекающий во внешней цепи, можно считать практически постоянным.

Рис. 5-1г. Возникающая ЭДС.

Магнитное поле, создаваемое в машине постоянного тока, состоит из двух составляющих — поля возбуждения, создаваемого постоянным магнитом или электромагнитом (см. ) и поля якоря (реакции) якоря, создаваемого током якоря, протекающим в обмотках якоря, расположенных на роторе (см. ).

Рис. 5-2а,б. Картина магнитного поля в машине постоянного тока.

Поле возбуждения неподвижно относительно статора, а поле реакции якоря из-за синхронной коммутации обмоток якоря вращается относительно ротора с той же частотой ω, с какой вращается сам ротор, но в обратную сторону, и таким образом также неподвижно относительно статора.

Направление потока реакции якоря совпадает с линией, на которой размещены щетки машины. При этом результирующая картина магнитного поля машины приобретает вид, представленный на .

Рис. 5-2в. Картина магнитного поля в машине постоянного тока.

Происходит искажение поля возбуждения и отклонения так называемой физической нейтрали от геометрической нейтрали на угол α. Чем больше нагружена машина, тем больше ток якоря, происходит большее искажение поля, натяжение магнитных силовых линий и увеличение угла α.

Таким образом, по принципу действия машина постоянного тока является обращенной синхронной машиной с синхронным коммутатором, в которой создается вращающееся магнитное поле не относительно статора, а относительно ротора, причем благодаря наличию коллектора (синхронного коммутатора) это поле вращается синхронно с ротором, но в обратную сторону, а при увеличении нагрузки происходит фазовый разворот этого поля относительно поля статора на угол α.

Весьма важен в машине постоянного тока процесс коммутации. При коммутации ток в коммутируемой секции обмотки якоря ik меняет направление на обратное (см. ).

Рис. 5-3а,б,в. Коммутация секций обмотки якоря.

При отсутствии ЭДС в коммутируемой секции изменение тока ik происходит по линейному закону — линия 1 на (линейная коммутация). Эквивалентная схема линейной коммутации показана на , где rc — сопротивление секции, а r 1 и r 2 — сопротивления щеточных контактов, которые обратно пропорциональны площади щеточного контакта и меняются при повороте коллектора так, что токи i 1 и i 2 изменяются линейно за время коммутации, которое обычно составляет единицы миллисекунд.

В реальных условиях в короткозамкунотой секции существует ЭДС вращения, вызванная реакцией якоря, и ЭДС самоиндукции, которые приводят к задержке спада тока ik — замедленная коммутация (кривая 2 на ).

Это приводит к усилению искрения на сбегающем крае щеточного контакта, которое может оказаться опасным для машины. Для улучшения условий коммутации в больших машинах создаются дополнительные полюса, компенсирующая ЭДС самоиндукции и компенсационные обмотки, нейтрализующие реакцию якоря. В нереверсивных машинах малой мощности производится смещение щеток на физическую нейтраль.

Чрезмерно большой поток добавочных полюсов также нежелателен. При прекомпенсации возникает так называемая ускоренная коммутация, (кривая 3 на ), при которой появляется искрение под набегающим краем щетки.

Рассмотрим электромеханическое преобразование энергии в машине постоянного тока на примере двигателя с возбуждением от постоянного магнита, схема которого приведена на .

Рис. 5-4а. Двигатель постоянного тока.

Эквивалентная схема якорной цепи показана на , где R Я — активное сопротивление обмоток якоря, L Я — индуктивность обмоток, E Я — среднее значение ЭДС вращения.

Рис. 5-4б. Эквивалентная схема двигателя постоянного тока.

При достаточно большом количестве секций обмоток якоря и соответствующем ему количестве пластин коллектора ЭДС вращения E Я практически не имеет пульсаций и не зависит от положения ротора, а только от скорости его вращения. Поэтому ее можно вычислять не по , а по , приняв ; , где N — общее число проводников якоря, 2· a — число параллельных ветвей обмотки, D — диаметр якоря.

Магнитную индукцию B можно выразить через поток возбуждения ФВ:

,

где S — площадь полюсного наконечника.

,

где p — число пар полюсов машины.

Подставляя все эти выражения в формулу , получим

т.е. ЭДС вращения зависит от конструктивных параметров, потока возбуждения и частоты вращения. Обозначив совокупность конструктивных параметров в через коэффициент K ЭМ , получим выражение для ЭДС вращения в следующем виде:

При неизменном потоке возбуждения, как это принято в данном случае при возбуждении от постоянного магнита, вводят понятие электромагнитного коэффициента

,

который может быть определен по номинальным данным электрической машины. Тогда формула будет иметь вид:

Пользуясь эквивалентной схемой , можно построить энергетическую диаграмму двигателя. В установившемся режиме для эквивалентной схемы имеем электрические уравнения

где P 1 = U · I Я — мощность потребляемая из сети, P ЭП = I Я 2 · R Я — электрические потери в обмотке якоря, P ЭМ = E Я · I Я — электромагнитная мощность, содержащаяся в магнитном поле.

Электромагнитную мощность, исходя из закона сохранения энергии, можно представить через электромагнитный момент M :

.

Откуда, учитывая выражения

Согласно диаграмме на мощность, поступающая на вал P 2 , будет меньше электромагнитной мощности на величину потерь в стали PMAT и механических потерь PMEX . Вращающий момент (момент на валу) будет соответственно меньше электромагнитного момента

Рис. 5-4в. Энергетическая диаграмма двигателя постоянного тока.

из-за этих потерь, так как

,

.

5.2. Двигатели постоянного тока

Двигатели постоянного тока различаются по характеру возбуждения. Двигатели могут быть независимого, параллельного, последовательного и смешанного возбуждения (см. ). Свойства двигателей в значительной мере определяются их системой возбуждения.

Рис. 5-5а,б,в,г. Возбуждение ДПТ.

Поскольку в автоматике применяются в основном двигатели независимого возбуждения, будем в дальнейшем рассматривать двигатели этого типа ( ).

Различают статические и динамические режимы работы двигателей. В статическом режиме ω= const ; I Я = const ; U ДВ = const и он описывается так называемыми механическими характеристиками

.

В статическом режиме двигатель независимого возбуждения описывается следующей системой уравнений:

где первое уравнение — уравнение якорной цепи, второе и третье — и , четвертое — механическое уравнение, пятое — уравнение цепи возбуждения.

Из первых четырех уравнений получим уравнение механической характеристики:

Поскольку применяемые в системах автоматического управления двигатели являются управляемыми, различают два типа управления двигателями постоянного тока — якорное управление и полюсное управление.

При якорном управлении производится изменение напряжения, подаваемого в якорную цепь без изменения возбуждения. При полюсном управлении, наоборот, меняется поле возбуждения путем изменения тока в обмотках главных полюсов iB . Для расширения диапазона управления применяют также комбинированное управление.

При полюсном управлении Ф B = const , поэтому уравнение механической характеристики согласно будет иметь вид:

Графически эта характеристика при фиксированном напряжении на двигателе представляет собой прямую, пересекающую координатные оси в точках ω0 и M К.З. (см. ), где ω0— частота вращения холостого хода, а M К.З. — момент короткого замыкания, когда ротор двигателя неподвижен.

Рис. 5-6а. Статическая характеристика ДПТ.

Электрическая машина работает в режиме двигателя при 0 M M К.З. , при M > M К.З. происходит вращение двигателя в противоположную сторону под действием внешнего момента — машина работает в режиме тормоза (режим противовключения), при ω>ω0 машина работает в режиме генератора на сеть, имеющую напряжение UH .

Рис. 5-6б. Статическая характеристика ДПТ.

Механические характеристики при различных напряжениях питания двигателя выглядят, как семейство прямых, показанных на . Часто их строят в функции тока якоря I Я , тогда аналитическое выражение для механических характеристик примет вид:

откуда видно, что падение скорости при нагрузке двигателя зависит исключительно от сопротивления якорной цепи R Я .

Кроме механических, существуют регулировочные характеристики. Для якорного управления это зависимость частоты вращения от напряжения питания U ДВ . Вид этих характеристик показан на , где U ТР — напряжение трогания двигателя.

Регулировочная характеристика для полюсного управления может быть получена из при U ДВ = const .

Рис. 5-6в. Статическая характеристика ДПТ.

Вид этих характеристик при различных нагрузках показан на .

Рис. 5-6г. Статическая характеристика ДПТ.

Для холостого хода, когда M =0, эта характеристика имеет вид гиперболы

Двигатель постоянного тока как динамическая система описывается следующими уравнениями в операторной форме:

На основании этих уравнений может быть построена структурная схема двигателя как динамической системы ( ).

Рис. 5-7а. Структурная схема ДПТ.

Из структурной схему получим передаточные функции двигателя:

где — коэффициент передачи, — постоянная времени якоря, — электромеханическая постоянная времени.

Пользуясь формулой Хевисайда, по передаточным функциям можно построить переходные процессы, например при пуске двигателя, как это показано на .

Рис. 5-7б. Переходный процесс при пуске ДПТ.

При TM » T Я , как это обычно бывает, получим выражения для тока и скорости при пуске:

Для анализа динамики двигателя постоянного тока при полюсном управлении рассматривают уравнения, аналогичные уравнениям в отклонениях, так как регулировочная характеристика при полюсном управлении является нелинейной.

Производят линеаризацию системы для малых отклонений относительно каких-то нулевых значений, представив переменные в следующем виде:

; ; ; ;

Тогда на основании уравнений можно написать уравнения в отклонениях (при T Я =0).

На основании этих уравнений может быть построена структурная схема двигателя как динамической системы при полюсном управлении ( ).

Рис. 5-8а. Структурная схема ДПТ при полюсном управлении.

С помощью этой схемы получим передаточную функцию для ДПТ при полюсном управлении

По этой передаточной функции, пользуясь формулой Хевисайда, можно получить кривые переходного процесса в двигателе при ступенчатом изменении напряжения возбуждения, показанные на .

Рис. 5-8б. Переходный процесс при пуске ДПТ при полюсном управлении.

5.3. Генераторы постоянного тока

Генераторы постоянного тока, также как и двигатели, различают по характеру их возбуждения. В зависимости от этого их подразделяют на генераторы независимого возбуждения и самовозбуждением. В генераторах независимого возбуждения поток возбуждения может создаваться обмоткой возбуждения (электромагнитное возбуждение) или с помощью постоянного магнита (магнитоэлектрическое возбуждение). Генераторы с самовозбуждением бывают параллельного и смешанного возбуждения(см. ).

Рис. 5-9а. Схема генератора постоянного тока.

О свойствах генератора судят по его основным характеристикам, к которым относят характеристику холостого хода, а также нагрузочную, внешнюю и регулировочную.

Под характеристикой холостого хода понимают зависимость U = f ( IB ) при I Я =0 и ω= const (кривая 1 на ). Эта зависимость характеризует свойства магнитной цепи машины, и по ней можно определить условие самовозбуждения генератора с параллельным возбуждением, это возможно, если сопротивление обмоток возбуждения меньше критического R ВХ . При выполнении этого условия установившееся значение напряжения на выходе генератора будет соответствовать точке пересечения характеристики холостого хода и прямой IB · RB (см. ).

Рис. 5-9б. Статическая характеристика генератора постоянного тока.

Внешняя характеристика ( ) представляет собой зависимость U = f ( I Я ) при ω = const .

Рис. 5-9в. Статическая характеристика генератора постоянного тока.

Кривая 1 соответствует генератору с независимым возбуждением при IB = const .С увеличением тока якоря (нагрузки) напряжение на зажимах генератора уменьшается из-за падения напряжения на сопротивлении якоря R Я и реакции якоря. В генераторе с параллельным возбуждением это уменьшение происходит более интенсивно (кривая 2), так как оно усугубляется уменьшением тока возбуждения. Для компенсации уменьшения напряжения при увеличении нагрузки применяется комбинированное возбуждение (кривая 3).

Нагрузочная характеристика — это зависимость U = f ( IB ) при I Я = const (кривая 2 на ). Она проходит ниже характеристики холостого хода 1 вследствие падения напряжения в якорной цепи и реакции якоря. Чем больше ток якоря, тем ниже характеристика 2 проходит по отношению к характеристике 1.

Регулировочная характеристика — это зависимость IB = f ( I Я ) при U = const ( ). Чтобы поддержать напряжение постоянным, необходимо при увеличении тока I Я увеличивать ток возбуждения.

Рис. 5-9г. Статическая характеристика генератора постоянного тока.

В системах автоматического управления широкое применение имеют тахогенераторы постоянного тока. Тахогенераторы представляют собой генераторы небольшой мощности, служащие для преобразования частоты вращения в электрический сигнал. Как правило, тахогенераторы выполняют с независимым электромагнитным или магнитоэлектрическим возбуждением ( ).

Рис. 5-10а,б. Схема тахогенератора.

Выходная характеристика тахогенератора — это зависимость U ТГ = f (ω). Она может быть получена из анализа эквивалентной схемы якорной цепи, представленной на . Откуда в установившемся режиме получим:

Из этих уравнений получим выражение для выходной характеристики:

где K ТГ — коэффициент передачи тахогенератора, который определяет крутизну выходной характеристики тахогенератора (см. ). Чем больше КЭМ=К`ЭМ·Ф B и больше RH по сравнению с R Я тем больше крутизна характеристики.

Рис. 5-10в. Характеристики тахогенератора.

Из следует, что выходное напряжение U ТГ и при нагрузке является линейной функцией частоты вращения. Однако практически выходная характеристика отклоняется от линейной ( ) из-за реакции якоря, ослабляющей поток возбуждения ФВ. Отклонение от линейности определяет одну из основных погрешностей тахогенератора. Для уменьшения ее следует нагружать тахогенератор на относительно большое сопротивление нагрузки RH и использовать небольшой диапазон частот вращения.

Тахогенератор как динамическая система описывается уравнениями, аналогичными уравнениям :

Откуда может быть получена передаточная функция тахогенератора

где — постоянная времени тахогенератора.

5.4. Вентильные двигатели

Машины постоянного тока имеют более высокие технические показатели (линейность характеристики, высокий КПД, малые габариты), чем машины переменного тока. Существенный недостаток — наличие электромеханического коллектора, который снижает надежность, создает радиопомехи, взрывоопасность и т.д.

Этих недостатков лишен бесконтактный двигатель постоянного тока, называемый вентильным двигателем. В этом двигателе щеточный аппарат заменен полупроводниковым коммутатором, якорь находится на статоре, а ротор представляет собой двухполюсный (реже четырехполюсный) постоянный магнит. Для упрощения коммутатора число секции обмотки якоря выбирается малым — три, четыре.

Рис. 5-11а. Трехфазный вентильный двигатель.

Схема трехфазного вентильного двигателя с двухполюсным ротором представлена на . Существенным элементом двигателя является датчик положения — ДПР. Он может основан на разных принципах — фотоэлектрические, индуктивные, емкостные, на эффекте Холла, и т.д. В рассматриваемом двигателе применяется фотоэлектрический датчик, содержащий три неподвижных фотоприемника mlk , которые закрываются поочередно вращающейся шторкой. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора (шесть фаз), это соответствие кодов и фаз приведено в верхней части .

В этой таблице единице соответствует наличие сигнала на выходе датчика, т.е. когда фотоприемник открыт, а нулю — отсутствие сигнала, когда соответствующий фотоэлемент закрыт шторкой.

Рис. 5-11б. Трехфазный вентильный двигатель.

Сигналы датчиков преобразуются управляющим устройством УУ ( ) в комбинацию управляющих напряжений U 1 — U 6 , которые управляют транзисторными ключами K 1 — K 6 согласно нижней части , так, что в каждый такт (фазу) работы двигателя включены два ключа — верхний и нижний и к сети подключены последовательно две из трех обмоток якоря. Обмотки якоря a , b , c расположены на статоре со сдвигом на 120·град (см. ) и их начала и концы соединены так, что при переключении ключей создается вращающееся магнитное поле. Одному циклу работы коммутатора соответствует один оборот ротора. Цикл делится на шесть тактов (временных фаз), которым соответствует пространственный угол α=60·град. Коммутация производится так, что поток возбуждения Ф0 отстает на угол α от потока якоря. На токи в обмотках и положение ротора показаны для фазы 1. В результате взаимодействия потока якоря и возбуждения создается вращающий момент M , который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.

Рис. 5-12б. Временная диаграмма трехфазного вентильного двигателя.

Временная диаграмма работы вентильного двигателя приведена на . Как видно из диаграммы, вентильный двигатель работает как в данном случае трехфазный синхронный двигатель, частота вращения его ротора пропорциональна частоте вращения поля. Основным отличием от синхронного является его самосинхронизация с помощью ДПР, в результате чего у этого двигателя, наоборот, частота вращения поля пропорциональна (в данном случае при двухполюсном якоре равна) частоте вращения ротора, а частота вращения ротора зависит от напряжения питания, т.е. двигатель работает как двигатель постоянного тока.

В отличие от двигателя постоянного тока, так как вентильный двигатель имеет мало секций в обмотке якоря, момент имеет пульсации, и среднее значение момента зависит от периода включения ключа β, показанного на .

В получена формула для среднего значения электромагнитного момента вентильного двигателя

где M * и ω * — относительные момент и частота вращения по отношению к базовым:

; ; ; ,

где m — число обмоток (секций), R — сопротивление секции.

Учитывая эти соотношения, из можно получить выражение для механической характеристики вентильного двигателя

где A и B — коэффициенты, зависящие от β.

;

Эти коэффициенты зависят от способа коммутации обмоток и приведены в .


источники:

http://electrikam.com/osnovnye-uravneniya-dvigatelya-postoyannogo-toka-dpt/

http://elib.spbstu.ru/dl/059/CHAPTER5/Chapter5.html