Уравнение динамики движения центра масс твердого тела

Динамика твердого тела и системы. Все определения, законы и теоремы

Механическая система. Основные понятия

Свойства внутренних сил

Приводимые ниже свойства внутренних сил являются третьим законом Ньютона для системы материальных точек.

Свойство 1
Векторная сумма (главный вектор) всех внутренних сил системы равна нулю:
.

Свойство 2
Векторная сумма моментов всех внутренних сил системы, относительно произвольной точки O равена нулю:
.

Дифференциальные уравнения движения точек системы

Согласно второму закону Ньютона, дифференциальное уравнение движения материальной точки k массой mk , входящей в систему, имеет вид:
.
Спроектировав это уравнение на оси декартовой системы координат Oxyz , получим для каждой точки три уравнения:
.

Общие теоремы динамики механической системы

Общие теоремы динамики – это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс механической системы
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь – масса системы; – ускорение центра масс системы: ;
– скорость центра масс системы: ;
– радиус вектор (координаты) центра масс системы: ;
– координаты и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Теорема об изменении количества движения в дифференциальной форме
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса)
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую-либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Тело переменной массы. Движение ракеты

Уравнение Мещерского
Дифференциальное уравнение движения точки переменной массы называется уравнением Мещерского:
.
Здесь – масса тела, которая является функцией от времени t ; – векторная сумма приложенных к телу внешних сил; – скорость отделяющихся частиц относительно тела.

Реактивная сила направлена в сторону, противоположную истечению отделяющихся частиц (топлива), и определяется по формуле:
,
где – расход топлива (кг/с).

Формула Циолковского

Скорость v движения ракеты под действием одной только реактивной силы определяется по формуле Циолковского:
.
Здесь – начальная скорость ракеты; u – скорость истечения реактивных газов относительно ракеты; – масса сгоревшего топлива; – масса корпуса ракеты с остатками топлива. Когда топливо выгорает полностью, то – это масса корпуса ракеты с полезной нагрузкой.

Отношение первоначальной массы ракеты (с полным запасом топлива) к массе корпуса ракеты называется числом Циолковского:
.
Для достижения первой космической скорости км/с , при , требуется, чтобы скорость истечения реактивных газов была не менее км/с . В современных жидкостных двигателях удается получить скорость истечения км/с . Поэтому, для достижения космических скоростей, ракеты должны быть многоступенчатыми.

Теорема об изменении главного момента количества движения (теорема моментов)

Теорема моментов в инерциальной системе координат

Главный момент количества движения (или кинетический момент) системы является характеристикой вращательного движения. Возьмем систему координат Oxyz с началом в точке O . Тогда , проекции кинетического момента системы на оси координат являются моментами количества движения системы относительно этих осей:
;
;
.

Если система состоит из нескольких частей, то главный момент количества движения системы равен сумме моментов количеств движения отдельных ее частей.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра:
(М2) .

Выпишем компоненты уравнения (М2) в неподвижной системе координат Oxyz :
;
;
.

Закон сохранения главного момента количества движения (момента импульса)
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения:
.

Часто встречаются случаи, когда система вращается вокруг неподвижной оси. Тогда нужно спроектировать векторное уравнение (М2) на направление этой оси. В результате получим теорему моментов, применительно к вращению относительно оси.

Производная по времени от кинетического момента системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил системы относительно этой оси. Если сумма моментов всех приложенных к системе внешних сил относительно некоторой неподвижной оси равна нулю, то кинетический момент системы относительно этой оси будет постоянным.

Теорема моментов в системе координат, связанной с центром масс

Кинетический момент системы относительно неподвижного центра удобно использовать в тех задачах, в которых система имеет одну или несколько закрепленных точек. Например при вращении тела или системы тел вокруг точки или оси. Когда таких точек нет, то наиболее удобным в использовании является кинетический момент относительно центра масс в системе координат, в которой центр масс покоится, а оси остаются параллельными осям инерциальной системы отсчета. В общем случае, система отсчета, связанная с центром масс, не является инерциальной, но она не вращается относительно инерциальной системы отсчета.

Главным моментом количества движения системы относительно ее центра масс C называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно центра масс в системе отсчета, в которой центр масс покоится, а оси системы координат параллельны осям инерциальной системы координат:
(М3) .
Здесь – скорости точек системы и скорость ее центра масс в инерциальной системе отсчета. Тогда – скорость точки массой в системе отсчета, связанной с центром масс.

Связь кинетических моментов в различных системах отсчета
Кинетический момент системы относительно неподвижной точки O равен сумме кинетического момента центра масс C , если в нем сосредоточить всю массу системы, и кинетического момента системы относительно центра масс :
(М4) .

То есть можно сказать, что вращение системы вокруг неподвижной точки O складывается из вращения центра масс C вокруг точки O , и вращения элементов системы вокруг центра масс C .

В (М2) ⇑ мы использовали кинетический момент системы, вычисляемый относительно произвольной неподвижной точки в инерциальной системе отсчета. Уравнения для кинетического момента имеют тот же вид, если в качестве полюса взять центр масс C системы.

Теорема моментов относительно центра масс системы
Производная по времени от главного момента количества движения системы относительно ее центра масс C , равна сумме моментов всех внешних сил системы относительно того же центра:
(М5) .

В (М5) мы используем неинерциальную систему координат, начало которой, в течении всего движения системы, находится в центре масс, а оси параллельны осям инерциальной системы координат. Естественно, что если мы выберем инерциальную систему координат, начало которой в данный момент времени совпадает с центром масс, то теорема моментов не изменит своего вида (М5). То есть центр масс обладает такой особенностью, что теорема моментов относительно него имеет одну и ту же форму, как в инерциальной системе отсчета, так и в неинерциальной системе, начало которой на всем протяжении движения совпадает с центром масс, а оси параллельны осям инерциальной системы отсчета. Такая особенность возникает только для центра масс системы. Для других точек, уравнение моментов в неинерциальной системе отсчета не имеет вида (М5).

Кинетический момент твердого тела

Пусть твердое тело вращается с угловой скоростью ω вокруг неподвижной оси Oz . Тогда его кинетический момент относительно этой оси равен произведению момента инерции относительно этой оси на угловую скорость вращения:
.
Если на твердое тело действуют внешние силы, то применяя теорему моментов, находим:
.
Если момент сил относительно оси Oz равен нулю: , то угловая скорость постоянна: .

В произвольном случае, кинетический момент выражается через компоненты угловой скорости и тензора инерции. Пусть, в данный момент времени, скорость точки O тела равна нулю: . То есть точка O является мгновенным центром вращения тела. Тогда компоненты кинетического момента тела относительно точки O определяется по формуле:
.
Здесь – компоненты тензора инерции тела ⇑ относительно точки O . Они связаны с моментами инерции формулами ⇑. Также подразумевается, что индексы p, q принимают значения x, y, z :
.

Здесь мы выбрали в качестве полюса неподвижную (в рассматриваемый момент времени) точку. Если, в качестве полюса выбрать центр масс тела, то компоненты момента импульса определяются по аналогичной формуле:
.
Для других точек, момент импульса выражается через угловую скорость более сложным образом.

В большинстве случаев, наиболее удобным полюсом оказывается центр масс C тела. Тогда, для компонент кинетического момента относительно произвольного центра O , имеем:
.
Здесь – радиус-вектор, проведенный из точки O в точку центра масс C ; m – масса тела; – скорость центра масс; – компоненты тензора инерции относительно точки C . Как видно, первое слагаемое является кинетическим моментом материальной точки, находящейся в центре масс тела и движущейся со скоростью центра масс. Второе слагаемое является вкладом вращения тела относительно его центра масс. То есть, как было указано выше ⇑, кинетический момент твердого тела относительно произвольной неподвижной точки O равен сумме кинетического момента поступательного движения центра масс относительно точки O и кинетического момента вращательного движения тела относительно его центра масс.

Теорема об изменении кинетической энергии

Кинетической энергия системы

Если система состоит из нескольких тел, то кинетическая энергия системы равна сумме кинетических энергий тел, составляющих систему.

Теорема Кенига
Кинетическая энергия системы равна сумме кинетической энергии центра масс C системы, масса m которого равна массе всей системы: , и кинетической энергии этой системы в ее движении относительно центра масс:
.
Здесь – скорость движения центра масс.

Если тело массы m совершает поступательное движение со скоростью , то скорости всех его точек равны . Кинетическая энергия поступательного движения:
(К1) .

Если тело вращается с угловой скоростью ω вокруг неподвижной оси Oz , то кинетическая энергия вращательного движения определяется по формуле:
(К2) ,
где – момент инерции тела относительно оси вращения.

В произвольном случае, кинетическая энергия равна сумме кинетической энергии поступательного движения центра масс и энергии вращательного движения относительно центра масс:
(К3) .
Здесь ω – абсолютное значение угловой скорости вращения тела; CL – ось, проведенная через центр масс, параллельно направлению вектора угловой скорости; – момент инерции относительно оси CL . Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Формула (К3) удобна, если тело вращается вокруг неподвижной оси. Если же вектор угловой скорости может менять направление относительно тела, то нам пришлось бы вычислять момент инерции относительно каждого положения оси вращения. В этом случае удобно выразить кинетическую энергию вращения через компоненты тензора инерции относительно центра масс тела:
(К4) .

Работа сил и мощность

Все сказанное в отношении работы и потенциальной энергии в разделе «Динамика материальной точки», имеет место и для динамики системы тел.
См. Работа силы. Мощность Силовые поля и потенциальная энергия
Единственное отличие заключается в том, что там силы приложены только к одной исследуемой точке. Для системы, внешние силы могут быть приложены к разным точкам, составляющих систему. При этом одна сила приложена только к одной точке, но этих сил может быть много. Точку, к которой приложена сила называют точкой приложения силы.

При рассмотрении твердых тел, мы можем упростить реальную систему сил, воспользовавшись результатами статики. Для этого нужно преобразовать сложную систему реальных сил на эквивалентную ей, более простую, систему. Так например, систему сил тяжести, действующих на каждую точку тела, можно заменить одной равнодействующей силой, приложенной к центру масс тела. Тогда все вычисления можно выполнять только для одной силы с точкой приложения в центре масс тела.

Работа при перемещении точки

Элементарная работа , которую совершает сила , при элементарном перемещении ее точки приложения, равна скалярному произведению векторов силы и перемещения:
;
.
То есть она равна произведению модуля вектора силы , перемещения и косинусу угла между ними. Это, в свою очередь, равно произведению касательной компоненты силы к траектории движения, и модуля элементарного перемещения . Здесь – скорость точки приложения силы; – промежуток времени, в течении которого происходит перемещение.

Мощность равна скалярному произведению векторов силы и скорости:
.

Работа , которую совершает сила , при перемещении точки ее приложения из точки в точку , равна сумме (интегралу) элементарных работ:
.

Работа при движении тела

Если тело движется поступательно, то скорости и перемещения всех его точек равны. В этом случае, работа и мощность вычисляются также как и при перемещении точки. Этот случай рассмотрен выше.

Для тела, вращающегося вокруг неподвижной оси Oz , элементарная работа равна произведению момента силы относительно этой оси на элементарный угол поворота dφ :

.
Здесь – мгновенное значение угловой скорости вращения; dt – время, в течении которого происходит поворот на угол dφ .
Мощность равна произведению момента силы на угловую скорость:
.

Для тела, вращающегося вокруг неподвижной точки O , элементарная работа равна скалярному произведению вектора момента силы относительно этой точки на вектор элементарного угла поворота :

.
Вектор элементарного поворота направлен вдоль вектора мгновенной угловой скорости : .
Мощность равна скалярному произведению векторов момента силы и угловой скорости:
.

При произвольном движении твердого тела, мы, произвольным образом, выбираем точку O , связанную с телом, которую называем полюсом. Тогда элементарная работа равна работе, которую совершает сила при перемещении полюса , и работе момента силы относительно полюса при элементарном повороте тела:
.
Заметим, что элементарный угол поворота и угловая скорость вращения не зависят от выбора полюса.
Мощность:
.

Теорема об изменении кинетической энергии системы

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Неизменяемая система – это механическая система, в которой расстояние между любыми двумя взаимодействующими точками остается постоянным во все время движения.
Идеальные связи – это связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю.

Для систем с идеальными связями и неизменяемых систем, сумма работ внутренних сил равна нулю: . Для таких систем, изменение кинетической энергии системы равно сумме работ всех внешних сил, приложенных к системе:
.

Коэффициент полезного действия

В машинах и механизмах, совершающих некоторую полезную работу, силы можно разделить на следующие виды.

Движущие силы – это силы, совершающие положительную работу Aзатр .
Силы полезного сопротивления – это силы, совершающие отрицательную работу – Aпол. сопр , но выполняют полезное действие.
Силы вредного сопротивления – это силы, совершающие отрицательную работу – Aвр. сопр , и не выполняющие полезных действий.
Попеременные силы – это силы, совершающие то положительную, то отрицательную работу, но за достаточно большой промежуток времени, их сумма работ равна нулю. Механический коэффициент полезного действия машины – это величина, равная отношению работы полезных сил сопротивления (полезной работы) к работе движущих сил (затраченной на приведение машины в движение):
.

Пусть Nмаш – полезная мощность машины; Nдв – мощность двигателя. Тогда
.

Закон сохранения полной механической энергии

Если система движется под действием потенциальных сил, то сумма кинетической T и потенциальной Π энергий сохраняет постоянное значение:
.

Механическая энергия – это сумма кинетической и потенциальной энергии.

Уменьшение механической энергии, как правило, связано с ее превращением в тепловую, электрическую, электромагнитную энергию, энергию звука и электромагнитных колебаний (свет, электромагнитные волны). Увеличение механической энергии связано с обратными процессами превращения различных видов энергии в механическую.

Геометрия масс

Моменты и тензор инерции твердого тела

В этом разделе мы рассматриваем величины, характеризующие распределение массы системы в пространстве.

Сложившаяся система обозначений

Тензор инерции твердого тела

Для вычисления момента импульса и кинетической энергии твердого тела, нам нужно знать всего несколько характеристик тела, величины которых зависят от распределения масс точек, составляющих тело. Эти величины составляют компоненты, так называемого, тензора инерции , который определяется относительно некоторого, предварительно выбранного, центра O , и вычисляется по формуле:
(И1) .
Здесь – координаты точки массы в декартовой системе координат, с началом в выбранном центре O ; при p = q , при p ≠ q . Индексы координат нумеруют цифрами, придерживаясь следующих обозначений:
.

Тензор инерции имеет следующие шесть компонент:
;
;
.
Если в качестве полюса O выбрать центр масс C тела, то компоненты момента импульса и кинетическая энергия тела T вычисляются по относительно простым формулам:
.
Здесь – скорость центра масс тела, – компоненты угловой скорости.

Моменты инерции твердого тела

Пользоваться тензором инерции (И1) ⇑ удобно, поскольку, при решении задач, мы сразу можем применить результаты теории тензорного исчисления. Однако сложилось так, что вместо тензора инерции вводят его отдельные компоненты, придав им специфические названия и обозначения.
Осевые моменты инерции:
;
Центробежные моменты инерции:
.
Все это может привести к путанице. Поэтому компоненты тензора инерции мы будем обозначать буквой I . А сложившиеся названия и обозначения его отдельных компонент – буквой J .

Определения моментов инерции

Свойства моментов инерции

Сумма осевых моментов инерции

Знаки моментов инерции
Осевые моменты инерции не могут быть отрицательными:
.
Центробежные моменты инерции могут быть положительными, отрицательными, или равными нулю.

Симметричность моментов инерции
Центробежные моменты инерции симметричны относительно своих индексов:
.

Все моменты инерции имеют размерность [кг·м 2 ].

Для вычисления моментов инерции сплошных тел, мы от суммирования переходим к интегрированию. При этом массу точки mk мы заменяем на дифференциал: . Дифференциал массы dm выражаем через плотность μ и элемент объема : . Далее интегрируем по объему тела V :
.

Моменты инерции в разных системах координат

Если мы от начальной системы координат Oxyz перейдем к другой системе O′x′y′z′ , то величины моментов инерции в новой системе будут отличаться от моментов в старой системе координат. Такие переходы называются преобразованиями системы координат.

Повороты системы координат

Сначала рассмотрим случай, когда две декартовы системы координат Oxyz и Ox′y′z′ имеют общее начало O . То есть вторая система получена из первой поворотом вокруг общего центра O . Согласно тензорной алгебре, любой симметричный тензор, поворотом системы координат можно привести к диагональному виду. То есть можно найти такую декартову систему координат, относительно которой все центробежные моменты равны нулю. Оси такой системы координат называются главными осями инерции тела.

Главная ось инерции тела , относительно некоторой точки O – это ось, для которой оба центробежных момента инерции, содержащие индекс этой оси, равны нулю. Например, если ось z – главная ось инерции, то .
Главный момент инерции тела , относительно некоторой точки O – это момент инерции относительно главной оси инерции.
Главная центральная ось инерции тела – это главная ось, проходящая через центр масс тела.
Главный центральный момент инерции тела – это момент инерции относительно главной центральной оси инерции.

Любое тело в пространстве имеет три главные оси инерции и три значения главных моментов инерции (относительно предварительно выбранной точки O ). При этом главные моменты инерции могут иметь равные значения.
Стоит подчеркнуть, что главные оси определяются относительно определенной точки тела. При выборе другой точки, главные оси могут иметь другие направления.

Тело с плоскостью симметрии
Если распределение массы тела в пространстве имеет плоскость симметрии, то любая ось, перпендикулярная к этой плоскости, будет главной осью инерции тела, а две другие главные оси лежат в плоскости симметрии.

Тело с осью симметрии
Если распределение массы тела в пространстве имеет ось симметрии, то эта ось является главной центральной осью инерции.

Параллельность главных осей
Если точка O расположена на главной центральной оси тела, то главные оси, проходящие через эту точку, параллельны главным центральным осям.

Главная ось, не проходящая через центр масс
Главная ось инерции, не проходящая через центр масс тела, является главной осью инерции только в одной точке.

Инвариантность суммы осевых моментов инерции
Если от одной системы координат Oxyz , мы перейдем к другой Ox′y′z′ с тем же началом, то сумма осевых моментов инерции не изменится при переходе от одной системы к другой:
.

По этой причине, величина полярного момента инерции не зависит от поворотов системы координат. То есть является инвариантом относительно поворотов системы координат. Она зависит от выбранного центра, относительно которого определяются моменты инерции.

Момент инерции относительно произвольной оси

Пусть нам известны моменты инерции тела относительно осей Oxyz . И пусть OL – произвольная ось, проходящая через начало O , составляющая углы с осями Ox, Oy, Oz . Тогда момент инерции тела относительно оси OL определяется по формуле:

.
Если оси x,y,z являются главными осями, то
.

Перенос системы координат. Теорема Гюйгенса-Штейнера

Отсюда следует, что осевой момент инерции будет иметь наименьшее значение относительно той оси, которая проходит через центр масс тела.

Моменты инерции некоторых тел

Однородный стержень

Рассмотрим тонкий однородный стержень длины l и массы m . Выберем начало координат O на одном из его концов. Направим ось Ox вдоль стержня; оси Oy и Oz – перпендикулярно. Эти оси будут главными осями инерции стержня относительно центра O . Осевые моменты инерции имеют следующие значения:
.

Центр масс стержня находится по его середине, в точке C ; . Проведем через нее оси координат Cxy′z′ , параллельные предыдущим. Эти оси являются главными центральными осями инерции со следующими значениями осевых моментов:
.

Прямоугольный параллелепипед

Рассмотрим прямоугольный параллелепипед с длинами ребер a, b, c (см. рисунок). Его центр масс C находится в центре параллелепипеда. Оси, проведенные через центр масс параллельно сторонам, будут главными центральными осями инерции. Моменты инерции прямоугольного параллелепипеда:

.

Полый цилиндр

Рассмотрим полый цилиндр высоты H и радиусами . Его центр масс находится на оси цилиндра, на расстоянии от основания. Через точку C проводим главные центральные оси инерции: ось Cz – вдоль оси цилиндра; оси Cx, Cy – перпендикулярно. Моменты инерции полого цилиндра:

.

Однородный сплошной диск
Тонкий обруч

Динамика твердого тела

Свободное движение твердого тела

Рассмотрим твердое тело массы m , перемещение которого не ограничено в пространстве. Пусть на тело действуют внешние силы , приложенных в точках . Для определения уравнений движения, мы воспользуемся теоремой о движении центра масс ⇑, теоремой моментов относительно центра масс системы ⇑, и выражением кинетического момента тела через компоненты угловой скорости ωq и тензора инерции Ipq тела (в системе координат с началом в центре масс, оси которой параллельны осям неподвижной системы):
(Т1) ;
(Т2) ;
(Т3) .
Здесь – радиус-вектор, проведенный в центр масс тела.

При известных внешних силах , из уравнения (Т1) можно определить закон движения центра масс тела.

Уравнения (Т2)–(Т3) определяют закон движения тела при его вращении. Они записаны в системе отсчета, начало которой находится в центре масс C , а оси параллельны осям инерциальной системы отсчета. Чтобы ими воспользоваться, мы должны найти способ, с помощью которого можно задать положение тела при его вращении. Это можно сделать с помощью углов Эйлера. Тогда оси вращающейся системы координат, связанной с телом, удобно направить вдоль главных центральных осей инерции тела ⇑. Тогда правые части уравнений (Т3) будут выражаться через главные центральные моменты инерций тела ⇑, три угла Эйлера и их производные по времени. Дифференцируя (Т3) и подставляя в (Т2), получим систему дифференциальных уравнений второго порядка для трех углов Эйлера.

Поступательное движение твердого тела

Рассмотрим поступательное движение твердого тела. Для него угловая скорость и угловое ускорение равны нулю: . Тогда момент количества движения постоянен и равен нулю: . Из (Т2) следует, что и главный момент всех внешних сил относительно центра масс должен равняться нулю: .
Дифференциальные уравнения поступательного движения определяются по формулам (Т1) ⇑:
.
Здесь – проекции внешней силы на оси координат. При поступательном движении, все точки тела имеют равные скорости и равные ускорения. Потому определив закон движения одной точки – центра масс , мы получаем закон движения произвольной точки A :
.

Плоское движение твердого тела

Рассмотрим плоское движение твердого тела. Выберем инерциальную систему координат Oxyz . Оси Ox и Oy направим в плоскости движения. Тогда положение тела полностью определяется тремя величинами – двумя компонентами радиус-вектора центра масс C : ; и углом поворота φ . Внешние силы также лежат в рассматриваемой плоскости. Кинетический момент направлен вдоль оси z и выражается через угловую скорость и момент инерции относительно оси, проходящей через центр масс C , перпендикулярно плоскости движения: .

Уравнения (Т1)-(Т3) ⇑ принимают вид:
(Т4) ;
(Т5) .
Здесь – проекции внешней силы на оси координат; – это алгебраический момент силы относительно центра C – то есть проекция момента силы на ось Oz .

Вращение твердого тела вокруг неподвижной оси

Рассмотрим вращение твердого тела вокруг неподвижной оси Oz . Выберем декартову систему координат. Ось Oz направим вдоль оси вращения; оси Ox и Oy – перпендикулярно. Считаем, что перемещение параллельно оси вращения отсутствует. Тогда это плоское движение. Оно происходит в плоскости Oxy . Положение тела определяется только углом поворота φ вокруг оси вращения.

Применяя теорему моментов ⇑ и связь момента с угловой скоростью ⇑, получим дифференциальное уравнение вращения твердого тела вокруг неподвижной оси:
(Т6) .
Здесь – момент инерции тела относительно оси вращения; – вращающий момент – то есть сумма моментов всех внешних сил относительно оси вращения.

Вводя угловое ускорение , дифференциальное уравнение вращения примет вид:
.
Оно аналогично уравнению прямолинейного движения под действием силы Fx :
.

Если вращающий момент является постоянной величиной: , то уравнение (Т6) имеет решение:
.
Здесь – угол поворота и угловая скорость вращения в начальный момент времени ; – угловое ускорение, постоянная величина.

Физический и математический маятники

Далее мы будем приводить данные только для плоского движения маятника. То есть мы считаем, что маятник совершает колебания вокруг неподвижной оси.

Уравнение вращательного движения физического маятника имеет вид:
.
Здесь ось вращения проходит через точку O ; φ – угол поворота между осью маятника и вертикальной прямой; JO – момент инерции маятника относительно оси вращения; P =mg – сила тяжести, действующая на маятник массы m ; a – расстояние от оси вращения O до центра масс C маятника; g – ускорение свободного падения. Введем обозначение: . Тогда
.

Рассмотрим малые колебания . При этом . И мы получаем уравнение гармонических колебаний:
.
Общее решение этого уравнения имеет вид:
.
Здесь – постоянные, которые определяются из начальных условий.

Во многих случаях удобно выразить общее решение уравнения малых колебаний через амплитуду α и начальную фазу колебаний β :
.
Величина k называется угловой частотой колебаний. Период колебаний: . Для малых колебаний, период не зависит от амплитуды. Этот результат является приближенным. При увеличении амплитуды такая зависимость появляется.

Математический маятник – это материальная точка, подвешенная на нерастяжимой невесомой нити, и совершающая колебания под действием силы тяжести. Математический маятник.

Математический маятник является частным случаем физического маятника. Пусть L – длина нити математического маятника. Его центр масс C находится в материальной точке: L = |OC| . Момент инерции: . Выразив силу тяжести P через массу m и ускорение свободного падения g , получим угловую частоту колебаний:
.

Теперь вернемся к физическому маятнику. Если положить , то частота физического маятника будет совпадать с частотой математического маятника длины L :
.

Приведенная длина физического маятника – это длина математического маятника, частота колебаний которого совпадает с частотой колебаний рассматриваемого физического маятника.
Центром качаний физического маятника называется точка K на оси физического маятника, находящаяся на расстоянии его приведенной длины от точки подвеса.

Свойство взаимности
Если физический маятник подвесить за центр качаний K , то его частота колебаний не изменится, а прежняя точка подвеса O станет центром качаний нового маятника.

Положение центра качания
Центр качаний всегда расположен ниже центра масс:
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Принцип Даламбера
Если в любой момент времени к каждой точке системы приложить силы инерции и реально действующие силы, то полученная система сил будет находиться в равновесии, и к ней можно применять уравнения статики.

Рассмотрим пример. Путь тело массы m совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
Превращается в задачу статики:
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил . Мы предполагаем, что эти моменты создают угловое ускорение εz . Далее мы вводим момент сил инерции M И = – Jz εz . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений.
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы – это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Общее уравнение динамики (принцип Даламбера — Лагранжа)

Принцип Даламбера — Лагранжа – это объединение принципа Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера — Лагранжа.
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики.

Уравнения Лагранжа

Число обобщенных координат n совпадает с числом степеней свободы системы.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + . + Qn δqn .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа – это уравнения движения механической системы в обобщенных координатах:

Здесь T – кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
А. П. Маркеев, Теоретическая механика, «Ижевская республиканская типография», 1999.
Н. Н. Никитин, Курс теоретической механики, «Высшая школа», 1990.
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.
А. А. Яблонский, Курс теоретической механики, часть 2, динамика «Высшая школа», 1986.

Автор: Олег Одинцов . Опубликовано: 20-07-2015 Изменено: 23-08-2019

Уравнение динамики движения центра масс твердого тела

При поступательном движении все точки тела получают за один и тот же промежуток времени равные по величине и направлению перемещения, поэтому скорости и ускорения всех точек в каждый момент времени оказываются одинаковыми. Поэтому достаточно определить движение одной из точек тела (например, его центра инерции) для того, чтобы полностью охарактеризовать его движение.

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для описания вращательного движения нужно задать положение в пространстве оси вращения и угловую скорость тела в каждый момент времени.

Любое движение твердого тела может быть представлено как суперпозиция двух вышеуказанных основных видов движения. Покажем это на примере плоского движения, при котором все точки тела перемещаются в параллельных плоскостях. Таким образом, например, происходит качение цилиндра по плоскости. Элементарное перемещение какой-либо точки тела можно разложить на два — «поступательное» и «вращательное»:

причем для всех точек тела одно и то же. Разделив на соответствующий промежуток времени dt, получим скорость точки:

где — одинаковая для всех точек тела скорость поступательного движения и — различная для разных точек тела скорость вращательного движения.

Линейная скорость точки с радиус-вектором , обусловленная вращением твердого тела, равна:

Следовательно, скорость этой точки при сложном движении тела имеет значение:

1.5.2. Движение центра инерции
(центра масс) твердого тела

Разбив тело на элементарные массы Δmi, можно представить его как систему МТ, взаимное расположение которых остается неизменным. Любая из этих элементарных масс может находиться под воздействием внутренних и внешних сил. Напишем для каждой элементарной массы уравнение второго закона Ньютона:

где — результирующие всех внутренних и всех внешних сил, действующих на данную элементарную массу. Суммируя, для всех элементарных масс имеем:

Однако сумма всех внутренних сил, действующих в системе, равна нулю. Поэтому (1.5.5) можно упростить так:

Используя определение центра инерции, можно записать:

Дифференцируя (1.5.7) дважды по времени, можно получить:

Подставляя (1.5.8) в (1.5.6), имеем:

Следовательно, центр инерции твердого тела движется так, как двигалась бы МТ с массой, равной массе тела, под действием всех приложенных к телу сил.

1.5.3. Момент силы

Рассмотрим схему установки на Рис. 1.5.1.

Рис. 1.5.1. Схема установки для исследования
равно-ускоренного вращательного движения

Под действием груза Р крестовина будет вращаться с возрастающей угловой скоростью, и вращение будет равно-ускоренным. Варьируя величину груза Р, радиус шкива l, массу грузов m и их расстояние R от оси вращения, можно прийти к заключению, что угловое ускорение β:

  1. прямо пропорционально натяжению нити f и радиусу шкива l;
  2. обратно пропорционально массе грузов m и квадрату их расстояния R от оси вращения.

Следовательно, ускорение вращательного движения зависит не только от величины действующей на тело силы, но и от расстояния l от оси вращения до линии, вдоль которой действует сила. Произведение fl дает величину так называемого момента силы относительно оси вращения.

Из этого опыта следует также, что на величину углового ускорения влияет не только масса вращающегося тела, но и распределение массы относительно оси вращения. Величина, которая это учитывает, называется моментом инерции тела относительно оси вращения.

Моментом силы относительно некоторой точки О называется величина , равная векторному произведению:

где — радиус-вектор, проведенный из точки О в точку приложения силы (Рис. 1.5.2).

Рис. 1.5.2. К определению момента силы

Вектор , по определению, перпендикулярен плоскости векторов и и направлен от нас. Это — аксиальный вектор. Модуль вектора равен:

где α — угол между направлениями векторов и , а l = r sinα — длина перпендикуляра, опущенного из точки О на прямую, вдоль которой действует сила. Эта длина называется плечом силы относительно точки О.

Если можно представить силу в виде суммы сил, имеющих общую точку приложения , то формулу (1.5.10) можно записать так:

Парой сил называются две равные по величине и противоположно направленные силы, не действующие вдоль одной и той же прямой (Рис. 1.5.3). Расстояние l между прямыми, вдоль которых действуют силы, называется плечом пары сил .

Рис. 1.5.3. Момент пары сил

Покажем, что момент пары сил относительно любой точки будет один и тот же. Пусть точка лежит в плоскости, в которой действуют силы, и выполняется . Момент силы равен fl1 и направлен к наблюдателю, момент силы равен fl2 и направлен от наблюдателя. Результирующий момент силы направлен от наблюдателя и равен:

Полученное выражение не зависит от положения точки О на плоскости, в которой лежит пара сил.

Суммарный момент внутренних сил Силы, с которыми взаимодействуют друг с другом две любые элементарные массы, лежат на одной и той же прямой (Рис. 1.5.4).

Рис. 1.5.4. Момент внутренних сил

Их моменты относительно произвольной точки О равны по величине и противоположны по направлению. Поэтому моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил для любой системы МТ, в частности, для твердого тела, всегда равна нулю.

1.5.4. Момент импульса материальной точки.
Закон сохранения момента импульса

Аналогично моменту силы введем момент импульса МТ относительно некоторой точки О:

где — радиус-вектор, проведенный из точки О в точку пространства, в которой находится МТ (Рис. 1.5.5).

Рис. 1.5.5. К определению момента импульса

Введя плечо l = rsinα, можно получить модуль вектора момента импульса в виде:

Продифференцируем (1.5.16) по времени:

Первое слагаемое равно нулю в силу того, что оно представляет собой векторное произведение векторов одинакового направления: . Вектор . Поэтому соотношение (1.5.17) можно переписать так:

где — момент приложенных к МТ сил, взятый относительно той же точки О, относительно которой рассчитан момент импульса . Для замкнутой системы из N материальных точек легко получить аналогичное (1.5.18) соотношение. В отсутствие или при взаимной компенсации внешних сил их суммарный момент , действующий на тела системы, равен нулю. В результате этого суммарный момент импульса не зависит от времени. Таким образом, формулируется закон сохранения момента импульса : момент импульса замкнутой системы материальных точек остается постоянным.

1.5.5. Уравнение динамики
вращательного движения

Если МТ вращается по окружности радиуса r (Рис.1.5.6), то момент ее импульса относительно оси вращения О равен:

Рис. 1.5.6. К выводу уравнения динамики вращательного двмжения

Пусть ω — угловая скорость вращения, тогда v = ωr, и (1.5.18) будет иметь вид:

Если вокруг оси О вращается система МТ с одной и той же угловой скоростью ω, то:

где, момент инерции системы МТ относительно оси вращения, равный сумме произведений масс МТ на квадраты их расстояний до оси вращения.

Если угловая скорость и момент инерции — переменные величины, то, подставляя (1.5.21) в (1.5.18), получим:

где М — момент внешних сил относительно оси вращения. Соотношение (1.5.22) — это основное уравнение динамики вращательного движения вокруг неподвижной оси.

Важным частным случаем является вращение неизменяемой системы МТ или твердого тела вокруг неподвижной оси. В этом случае момент инерции I остается постоянным при вращении, и уравнение (1.5.22) будет иметь вид:

Сопоставляя уравнения динамики вращательного движения с уравнениями динамики поступательного движения, легко заметить, что при вращательном движении роль силы исполняет момент силы, роль массы — момент инерции и т д. (Табл. 1.5.1).

Сопоставление закономерностей
поступательного и вращательного движений
— сила— момент силы
— масса— момент инерции
— линейная скорость— угловая скорость
— линейная скорость— угловая скорость
— линейное ускорение— угловое ускорение
— импульс— момент импульса

Предположим, что твердое тело может изменять свою конфигурацию в результате перераспределения масс. Пусть в результате происходит изменение момента инерции от значения I1 до I2. Если такое перераспределение осуществляется при отсутствии моментов внешних сил, то согласно закону сохранения момента импульса должно выполняться равенство:

где ω1 — исходное, а ω2 — конечное значение угловой скорости тела. Следовательно, изменение момента инерции влечет за собой соответственное изменение угловой скорости тела. Этим объясняется такое явление: человек, стоящий на вертящейся скамье, разводя руки в стороны, начинает вращаться медленнее, а, прижимая руки к туловищу, будет вращаться быстрее.

1.5.6. Момент инерции. Теорема Штайнера

Из определения момента инерции:

следует, что момент инерции — величина аддитивная. Это означает, что момент инерции тела равен сумме моментов инерции его частей. Каждое тело, независимо от того, вращается оно или покоится, обладает определенным моментом инерции.

Распределение массы в пределах тела можно охарактеризовать с помощью физической величины, называемой плотностью. Если тело однородно, то его плотность может быть вычислена так:

где m — масса, V — объем тела. Для тела с неравномерно распределенной массой соотношение (1.5.26) дает среднюю плотность. Плотность в данной точке определяется в этом случае так:

Уменьшение объема в (1.5.27) следует производить до тех пор, пока не будет получен физически бесконечно малый объем, который достаточно мал, чтобы в его пределах макроскопические свойства вещества можно было считать одинаковыми, и достаточно велик, чтобы не могла проявиться дискретность (атомарное строение) вещества.

Согласно (1.5.27), элементарная масса тела может быть вычислена так:

Следовательно, момент инерции следует записать в виде:

Если плотность постоянна, ее можно вынести за знак суммы:

Устремляя ΔVi к нулю, можно в (1.5.30) перейти к интегрированию:

В качестве примера найдем момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр (Рис. 1.5.7).

Рис. 1.5.7. К расчету момента инерции диска

Разобьем диск на кольцевые слои толщиной dr. Все точки одного слоя будут находиться на одинаковом расстоянии от оси, равном r. Объем такого слоя равен:

где b — толщина диска. Поскольку диск однороден, плотность можно вынести за знак интеграла:

где R0 — радиус диска. Применяя обозначение для массы диска , получим для момента инерции однородного диска:

В данном случае вычисление момента инерции упрощалось благодаря однородности и симметричности тела. Если бы нужно было отыскать момент инерции относительно оси О’О’ (Рис. 1.5.7), перпендикулярной к диску и проходящей через его край, вычисления оказались бы значительно сложнее. В таких случаях отыскание момента инерции облегчается, если воспользоваться теоремой Штайнера : момент инерции I относительно произвольной оси равен сумме момента инерции I C относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

В соответствии с теоремой Штайнера момент инерции диска относительно оси О’О’ равен:

1.5.7. Работа и кинетическая энергия
вращающегося твердого тела

Если МТ вращается по окружности с радиусом r, то элементарная работа при повороте на угол dφ равна:

Такое же выражение получится и для твердого тела, так как его можно рассматривать как систему МТ, вращающихся с общей угловой скоростью ω. Роль силы в (1.5.37) играет момент внешних сил, роль линейного перемещения — угловой поворот.

Кинетическая энергия твердого тела, вращающегося с угловой скоростью ω, может быть записана так:

Это выражение напоминает соответствующую формулу для кинетической энергии МТ и может быть получено из нее формальной заменой m → I, v → ω.

© ФГОУ ВПО Красноярский государственный аграрный университет, 2013

Динамика движений твёрдого тела

5.4.1. Динамика поступательного движения твёрдого тела

Поступательным движением твёрдого тела называют такое его движение, при котором любая прямая линия, проведённая на теле, остается во всё время движения параллельной своему начальному положению.

Рассмотрим поступательное движение твёрдого тела на плоскости в инерциальной системе отсчёта OXYZ под действием активных сил и реакций внешних связей (рис. 5.16).

Из курса кинематики известно, что при поступательном движении твёрдого тела траектории всех его точек одинаковы (при наложении друг на друга траектории движения точек совпадают), а скорости и ускорения всех точек геометрически равны.

Эти свойства позволяют свести изучение поступательного движения твёрдого тела к изучению движения его отдельной точки. За такую точку, как правило, выбирают центр масс твёрдого тела.

Выражения XC = f1(t), YC = f2(t), ZC = f3(t), описывающие движение центра С масс твёрдого тела в пространстве, называют уравнениями поступательного движения твёрдого телав пространстве.

Твёрдое тело рассматривается как неизменяемая механическая система, в которой геометрическая сумма внутренних сил Σ (главный вектор R J внутренних сил) всегда равна нулю (Σ = R J = 0).

Таким образом, центр С масс твёрдого тела при его поступательном движении движется под действием активных сил и реакций внешних связей.

Основное уравнение динамики движения центра масс твёрдого тела имеет вид

aС = Σ + Σ = + ,

где = Σ , = Σ – главные векторы активных сил и реакций внешних связей.

Главные векторы , прикладывают в центре масс твёрдого тела.

Как правило, основное уравнение динамики поступательного движения твёрдого тела записывают в виде

aС = Σ + Σ .

Произведение массы тела на ускорение его центра масс равно геометрической сумме активных сил и реакций внешних связей, приложенных к нему.

Спроецируем это векторное равенство на координатные оси неподвижной (инерциальной системы отсчёта) OXYZ:

= Σ + Σ ;

= Σ + Σ ;

= Σ + Σ ,

где m – масса тела; , , – проекции ускорения центра масс тела на координатные оси; Σ , Σ , Σ , Σ , Σ , Σ – суммы проекций соответственно активных сил и реакций внешних связей на координатные оси инерциальной системы отсчёта.

Последние выражения называют дифференциальными уравнениями поступательного движения твёрдого тела в пространстве.

По дифференциальным уравнениям поступательного движения твёрдого тела решают прямые и обратные задачи динамики. Алгоритмы решения таких задач не отличаются от алгоритмов решения задач динамики точки, приведённых в подразделах данного учебно-методического пособия, поэтому здесь они подробно не приводятся.

Так как курсовых заданий на решение дифференциальных уравнений поступательного движения твёрдого тела по учебной программе не предусмотрено, то и примеры решения таких задач здесь не приведены.

5.4.2. Динамика вращательного движения твёрдого тела

Вращательным движением твёрдого тела называется такое его движение, при котором все точки, находящиеся на прямой, неизменно связанной с телом и называемой осью вращения, остаются неподвижными.

Рассмотрим вращательное движение твёрдого тела в инерциальной системе отсчёта OXYZ под действием активных сил и реакций внешних связей (рис. 5.17).

При вращении тела угол его поворота φ изменяется в зависимости от времени t.

Эту аналитическую зависимость называют уравнением вращательного движения твёрдого тела. При вращательном движении твёрдого тела все его точки описывают окружности с центром на оси вращения и радиусом ri.

По известному уравнению φ = f(t) вращательного движения тела определяют его угловую скорость и угловое ускорение .

= dφ/dt; = d2φ/dt 2 .

Согласно рис. 5.17 на рассматриваемую механическую систему (твёрдое тело) кроме активных сил действуют реакции внешних связей. К этим реакциям отнесены: XA, YA, ZA, XB, YB, – соответственно реакции подпятника А, цилиндрического шарнира В и реакция тела другой механической системы в точке С.

R E = Σ = XA + YA + ZA + XB + YB + ,


где R E = Σ – главный вектор реакций внешних связей.

Необходимо отметить, что в динамике твёрдое тело рассматривается как неизменяемая механическая система, в которой геометрическая сумма внутренних сил (главный вектор R J внутренних сил) всегда равна нулю (Σ = R J = 0).

С учетом этого дифференциальное уравнение вращательного движения твёрдого тела относительно оси вращения OZ имеет вид

JOZ· = ΣMOZ( ) + ΣMOZ( ),

где JOZ – момент инерции твёрдого тела относительно оси вращения; ΣMOZ( ), ΣMOZ( ) – соответственно суммы моментов активных сил и реакций внешних связей относительно оси вращения.

Сравним дифференциальное уравнение вращательного движения твёрдого тела (JOZ· = ΣMOZ( ) + ΣMOZ( )) с одним из дифференциальных уравнений поступательного движения твёрдого тела (m· = Σ + Σ ).

Очевидно, что момент инерции JOZ твёрдого тела при вращательном движении имеет то же значение, что и масса m при его поступательном движении.

Таким образом, момент инерции является мерой инертности тела при его вращательном движении.

По дифференциальному уравнению вращательного движения твёрдого тела (JOZ· = ΣMOZ( ) + ΣMOZ( )) решают следующие задачи:

1. По заданному уравнению движения φ = f(t) и его моменту инерции JOZ определяют главный момент внешних сил, действующих на тело:

= ΣMOZ( ) + ΣMOZ( ).

2. По заданным активным силам и реакциям внешних связей, а также по начальным условиям вращения ( , ) и по моменту инерции JOZ тела относительно оси вращения определяют уравнение движения φ = f(t).

3. Определяют момент инерции JOZ относительно оси вращения по известным величинам углового ускорения и главного момента внешних сил, действующих на тело.

Поскольку учебной программой выполнение курсовых заданий на применение дифференциальных уравнений вращательного движения твёрдого тела не запланировано, то и примеры решения задач на эту тему в данном учебно-методическом пособии не приведены.

5.4.3. Динамика плоскопараллельного движения

Плоскопараллельным (плоским) движением твёрдого тела называется такое движение, при котором каждая точка тела движется в плоскости, параллельной некоторой неподвижной плоскости.


Рассмотрим плоскопараллельное движение твёрдого тела в инерциальной системе отсчёта OXY, происходящее под действием активных сил и реакций внешних связей (рис. 5.18).

Поскольку твёрдое тело рассмотрено как неизменяемая механическая система, то главный вектор R J внутренних сил , приложенных к точкам тела, всегда равен нулю (R J = Σ = 0). Так как внутренние силы не влияют на движение центра С масс тела, то они на рис. 5.18 не показаны.

Из курса кинематики известно, что плоскопараллельное движение можно рассматривать как сложное движение, представляющее собой сумму двух движений: 1 – поступательное движение со скоростью VC центра масс в неподвижной системе отсчёта OХY; 2 – вращательное движение относительно подвижной оси CZ1, проходящей через центр масс, при этом подвижная система отсчёта CX1Y1Z1 совершает поступательное движение.

Необходимо отметить, что начало системы отсчёта CX1Y1Z1 всегда располагают в центре С масс тела.

Уравнения плоскопараллельного движения твёрдого тела в динамике, как правило, записывают в следующем виде:

С использованием этих уравнений движения дифференциальные уравнения плоскопараллельного движения твёрдого тела имеют вид:

= Σ + Σ ;

= Σ + Σ ;

JСZ1· = ΣMСZ1( ) + ΣMСZ1( ),

где m – масса тела; , – проекции ускорения центра С масс тела на координатные оси неподвижной системы отсчёта OXY; Σ , Σ – суммы проекций активных сил на координатные оси OX, OY; Σ , Σ – суммы проекции реакций внешних связей на координатные оси OX, OY; – угловое ускорение тела; JСZ1 – момент инерции твёрдого тела относительно подвижной оси CZ1 вращения, проходящей через центр масс; ΣMСZ1( ), ΣMСZ1( ) – соответственно суммы моментов активных сил и реакций внешних связей относительно подвижной оси CZ1 вращения, проходящей через центр масс тела.

С помощью этих дифференциальных уравнений движения твёрдого тела можно решать как прямые (первые), так и обратные (вторые) задачи динамики.

При решении обратных задач динамики (определение движения по заданным силам) приходится интегрировать систему дифференциальных уравнений плоскопараллельного движения твёрдого тела. Для определения шести постоянных интегрирования (С1,…, С6) должны быть заданы шесть начальных условий движения: XC0, YC0, ZC0, , , .

В учебной программе могут быть предусмотрены курсовые задания по излагаемой теме, поэтому необходимо привести алгоритм решения таких задач.

Решение задач динамики плоскопараллельного движения твёрдого тела рекомендуется выполнять по следующему алгоритму.

1. Выбрать неподвижную (инерциальную) систему отсчёта OXY.

2. Изобразить тело в системе отсчёта OXY в произвольный момент времени.

3. В центре С масс твёрдого тела разместить начало подвижной системы отсчёта.

4. Изобразить на рисунке все внешние силы ( , ), приложенные к твёрдому телу.

5. Составить дифференциальные уравнения плоскопараллельного движения твёрдого тела:

= Σ + Σ ;

= Σ + Σ ;

JСZ1· = ΣMСZ1( ) + ΣMСZ1( ).

Дальнейший ход решения зависит от того, какая задача динамики должна быть решена – прямая или обратная.

5.4.4. Динамика сферического движения твёрдого тела

Рассмотрим движение тела, одна из точек которого во всё время движения остается неподвижной. При таком движении все остальные точки тела движутся по сферическим поверхностям, центры которых совпадают с неподвижной точкой. Такое движение называют сферическим движением твёрдого тела.

Сферическое движение твёрдого тела – движение, при котором скорость одной точки тела равна нулю, а остальные точки движутся по сферическим поверхностям, центры которых совпадают с этой неподвижной точкой.

Примером сферического движения тела служит движение волчка, имеющего неподвижную точку О1 (рис. 5.19).

Для определения положения тела в каждый момент времени используют две системы отсчёта: неподвижную систему отсчёта O1X1Y1Z1 и подвижную систему отсчёта OXYZ, которая жёстко закреплена на теле. При этом начало отсчёта ПСО совпадает с началом отсчёта НСО.

На рис. 5.19 стрелками показаны положительные направления отсчёта углов Ψ, θ и φ. Рассмотрим подробнее порядок отсчёта этих углов. Плоскость OXY подвижной системы отсчёта OXYZ пересекается с плоскостью O1X1Y1 неподвижной системы отсчёта O1X1Y1Z1 по линии O1L. Эту линию называют осью узлов. Введём единичный вектор р, направленный от точки О1 к точке L оси узлов. Единичные векторы i1, p лежат в горизонтальной плоскости O1X1Y1 и образуют угол Ψ, величина которого зависит от времени. Ψ = f1(t). Положительное направление отсчёта угла Ψ определяют по правилу: смотря навстречу вектору k1, поворот вектора i1 к вектору р должны увидеть происходящим против хода часовой стрелки.

Единичные векторы k1, k образуют плоскость, в которой находится угол θ, который также зависит от времени: θ = f2(t). Положительное направление отсчёта угла θ определяют по правилу: смотря навстречу вектору i, поворот вектора k1 к вектору k должны увидеть происходящим против хода часовой стрелки.

Единичные векторы р, i образуют плоскость, в которой лежит угол φ, величина которого зависти от времени: φ = f3(t). Правило положительного направления отсчёта угла φ: смотря навстречу вектору j, поворот вектора р к вектору i должны увидеть происходящим против хода часовой стрелки.

Углы Ψ, θ, φ называют также эйлеровыми углами:

угол Ψ – угол прецессии;

угол θ – угол нутации;

угол φ – угол собственного вращения.

Так как положение тела, имеющего одну неподвижную точку, определяется тремя эйлеровыми углами, т. е. тремя параметрами, то оно имеет три степени свободы.

Таким образом, сферическое движение тела описывается тремя уравнениями движения:

На твёрдое тело, совершающее сферическое движение, действуют активные силы , реакция опоры и внутренние силы . Следует отметить, что активные силы и реакцию опоры относятся к разряду внешних сил. При этом моменты реакции относительно координатных осей ОХ, OY, OZ системы отсчета OXYZ равны нулю.

Для абсолютно твёрдого тела геометрическая сумма реакций внутренних связей всегда равна нулю ( = 0). Исходя из этого утверждения, дифференциальные уравнения сферического движения твёрдого тела имеют вид:

JОX· ( ·sin(θ)·sin(φ) + ·cos(φ)) +

+ ( ·sin(θ)·cos(φ) – ·sin(φ))·( ·cos(θ) + )·(JОZ – JОY) =

= Σ MОX( ); (1)

JОY· ( ·sin(θ)·cos(φ) – ·sin(φ)) +

+ ( ·cos(θ) + )·( ·sin(θ)·sin(φ) + ·cos(φ)) (JОX – JОZ) =

= Σ MОY( ); (2)

JОZ· ( ·cos(θ) + ) +

+ ( ·sin(θ)·sin(φ) + ·cos(φ))·( ·sin(θ)·cos(φ) – ·sin(φ))×

× (JОY – JОX) = Σ MОZ( ), (3)

где JОX, JОY, JОZ – моменты инерции тела относительно соответствующих координатных осей OX, OY, OZ системы отсчёта OXYZ; – угловая скорость прецессии; – угловая скорость нутации; – угловая скорость собственного вращения; Σ MOX( ), Σ MOY( ),Σ MOZ( ) – суммы моментов активных сил относительно координатных осей OX, OY, OZ системы отсчёта OXYZ.

Дифференциальные уравнения сферического движения твёрдого тела называют динамическими уравнениями Эйлера.

Целью решения дифференциальных уравнений сферического движения твёрдого тела является получение зависимостей:

Интегрирование динамических уравнений Эйлера связано с большими трудностями, поэтому выполнение студентами курсовых заданий на эту тему не предусмотрено.

5.4.5. Динамика общего случая движения твёрдого тела

В теоретической механике движение свободного тела в пространстве рассматривают как сложное, состоящее из поступательного движения со скоростью некоторой точки тела, принятой за полюс, и сферического движения вокруг этого полюса. Как правило, за полюс принимают центр С масс твёрдого тела (рис. 5.20).

Примем центр С масс за полюс и поместим в него начала двух подвижных систем отсчёта СXYZ, O2X2Y2Z2. Координатные оси CX, CY, CZ направляют по главным центральным осям инерции тела. При этом система отсчёта OXYZ неподвижно закреплена на теле, а система отсчёта O2X2Y2Z2 совершает поступательное движение таким образом, что её координатные оси параллельны координатным осям неподвижной системы отсчёта O1X1Y1Z1.

Плоскости OXY, O2X2Y2 подвижных систем отсчёта пересекаются по линии OL. Введением единичного вектора р эту линию преобразуют в ось узлов.

На рис. 5.20 показаны углы Ψ, φ, θ, величины которых зависят от времени. Эти углы называют эйлеровыми углами.

Таким образом, свободное движение тела определяется шестью уравнениями движения свободного твёрдого тела.

где X, Y, Z – координаты центра масс тела в неподвижной системе отсчёта O1X1Y1Z1.

Свободное движение твёрдого тела осуществляется под действием активных сил и реакций внутренних связей. Известно,, что для абсолютно твёрдого тела геометрическая сумма реакций внутренних связей равна нулю ( = 0). Исходя из этого утверждения, дифференциальные уравнения поступательной части свободного движения твёрдого тела имеют вид:

= Σ ; (1)

= Σ ; (2)

= Σ , (3)

где m – масса тела; , , – проекции ускорения центра С масс тела на координатные оси системы отсчёта O1X1Y1Z1; Σ , Σ , Σ – суммы проекций активных сил на координатные оси O1X1, O1Y1, O1Z1.

Сферическая часть движения твёрдого тела относительно центра масс описывается тремя дифференциальными уравнениями:

JCX· ( ·sin(θ)·sin(φ) + ·cos(φ)) +

+ ( ·sin(θ)·cos(φ) – ·sin(φ))·( ·cos(θ) + )·(JCZ – JCY) =

= Σ MCX( ); (4)

JCY· ( ·sin(θ)·cos(φ) – ·sin(φ)) +

+ ( ·cos(θ) + )·( ·sin(θ)·sin(φ) + ·cos(φ)) (JCX – JCZ) =

= Σ MCY( ); (5)

JCZ· ( ·cos(θ) + ) +

+ ( ·sin(θ)·sin(φ) + ·cos(φ))·( ·sin(θ)·cos(φ) – ·sin(φ))×

×(JCY – JCX) = Σ MCZ( ), (6)

где JCX, JCY, JCZ – моменты инерции тела относительно главных центральных осей инерции; – угловая скорость прецессии; – угловая скорость нутации; – угловая скорость собственного вращения; Σ MCX( ),Σ MCY( ),Σ MCZ( ) – суммы моментов активных сил относительно главных центральных осей.

Интегрирование дифференциальных уравнений (1) – (6) представляет большие трудности, поэтому для студентов заочной и дистанционной форм обучения выполнение курсовых заданий на свободное движение тела не предусмотрено.

Вопросы и задания для самоконтроля

1. Записать дифференциальные уравнения поступательного движения твёрдого тела в пространстве.

2. Записать дифференциальное уравнение вращательного движения твёрдого тела относительно вертикальной оси.

3. Записать дифференциальные уравнения плоскопараллельного движения твёрдого тела в системе отсчёта OXY.


источники:

http://www.kgau.ru/distance/2013/et4/001/01_05.htm

http://helpiks.org/3-65413.html