Уравнение динамики вращательного движения маятника

Динамика вращательного движения (на установке маятник Обербека)

Лабораторная работа М-8

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ (на установке Маятник ОБЕРБЕКА)

Экспериментальное исследование динамики вращательного движения твёрдого тела на установке «Маятник Обербека»; экспериментальное определение момента инерции и момента силы трения.

2. ПОДГОТОВКА К РАБОТЕ

Изучите теоретический материал по учебникам [1], [2]: понятия абсолютно твёрдого тела (АТТ), момента силы, момента инерции; теорему Штейнера; закон вращательного движения АТТ. Ознакомьтесь с устройством лабораторного стенда, с методом косвенного измерения момента инерции и момента силы трения. Подготовьте ответы на вопросы для допуска.

3. КРАТКАЯ ТЕОРИЯ

Абсолютно твердое тело (АТТ) – это тело, деформациями которого можно пренебречь в условиях данной задачи.

Момент силы величина, характеризующая внешнее воздействие на тело и определяющая изменение его вращательного движения. Относительно неподвижной точки О (рис.1) момент силы равен векторному произведению:

, (1)

где радиус-вектор, проведённый из точки вращения О в точку приложения силы, — угол между векторами и .

Момент силы относительно оси вращения z (рис.1) – это проекция вектора на эту ось.

Инерционность (инертные свойства) АТТ по отношению к вращающему воздействию момента характеризуется моментом инерции относительно оси вращения z . Величина равна сумме:

, (2)

где mi ­ — элементарные массы, на которые можно условно разбить АТТ, — их кратчайшие расстояния от оси z.

В случае тонкого стержня длиной и массой , вращающегося вокруг оси, проходящей через его центр масс, перпендикулярно стержню:

. (3)

При переносе оси вращения на расстояние d параллельно оси, проходящей через центр масс, величина рассчитывается по теореме Штейнера:

, (4)

где m — полная масса АТТ.

Для АТТ с неподвижной осью вращения z выполняется уравнение динамики вращательного движения:

, (5)

где — сумма моментов внешних сил относительно оси z, — момент инерции относительно этой же оси, — угловая скорость, — угловое ускорение.

4. ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

Устройство маховика Обербека (МО) показано на рис. 2. Вращающееся на горизонтальной оси тело выполнено в виде крестовины 1 с четырьмя стержнями, на которые надеты грузы 2. Положение грузов можно изменять. Такая конструкция позволяет регулировать величину момента инерции тела без изменения его полной массы. Крестовина с грузами приводится во вращение дополнительным грузом 3, массу которого можно изменять. Груз 3 закреплён на нити 4, наматываемой на шкив 5 и перекинутой через блок 6. Расстояние, проходимое по вертикали грузом 3, отсчитывается по шкале на вертикальной штанге 8. Для отсчёта верхней координаты груза 3 служит фиксатор 7. Время движения груза 3 измеряется электронным секундомером, снабжённым фотодатчиком 9. На оси вращения крестовины имеется электромагнитный тормоз, который автоматически останавливает движение МО в момент пересечения луча фотодатчика 9 грузом 3.

Покажем, каким образом на основе прямых измерений пути h и времени t движения груза 3 можно косвенно определить динамические параметры вращения МО.

Будем считать, что вращающиеся элементы МО представляют собой абсолютно твёрдые тела (закон (5) выполняется), действующие силы постоянны (движение равноускоренное), нить 4 — невесома и нерастяжима, а масса блока 6 – пренебрежимо мала.

В соответствии со схемой МО, представленной на рис. 3, уравнение вращательного движения крестовины имеет вид:

, (6)

— (7)

момент силы натяжения нити T0, — момент силы трения, r радиус шкива 5 (направления векторов и показаны на рис. 3). В силу невесомости нити и блока 6 (рис. 2) модули сил натяжения нитей равны между собой: Т0= Т’= Т.

Для груза 3 массой m:

(8)

. (9)

Из кинематических соображений ускорение груза 3 равно:

. (10)

Поскольку нить нерастяжима, ускорения a и β связаны соотношением:

. (11)

Принимая грузы 2 с массами за материальные точки, полный момент инерции МО можно приближённо рассчитывать по формуле:

, (12)

где -расстояние грузов 2 до оси , -момент инерции всех остальных вращающихся элементов МО.

Сделаем выводы из полученных соотношений.

Из формулы (6) следует, что экспериментальный график должен быть прямой линией типас угловым коэффициентом:

, (13)

при этом отрезок, отсекаемый на оси ординат, равен

. (14)

График зависимости в соответствии с формулой (12) будет также прямой линией ,

где ; . (15)

5. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

5.1. Подготовка установки к работе (выполняет лаборант)

5.1.1. С помощью винтов на нижней платформе стенда отрегулировать вертикальное положение штанги 8. При этом груз 3 при опускании на нити должен проходить по центру отверстия фотодатчика 9, не задевая его стенок.

5.1.2. Включить секундомер в сеть 220 В. При этом кнопка на задней панели секундомера должна находиться в выключенном состоянии (шкала времени не освещена).

5.2. Измерение зависимости времени движения груза от его массы

5.2.1. Перемещая фиксатор 7 по шкале 8 и грузы 2 по стержням крестовины, установить величины и , указанные в первой и второй строках табл. 1 для вашей бригады. Величина , где — координата луча фотодатчика; — координата верхней кромки фиксатора; величина отсчитывается по сантиметровым делениям на стержнях, с добавлением расстояния 2 см от закрепляемого конца стержня до оси крестовины.

5.2.2. С использованием наборных грузов произвести трёхкратные измерения времени движения груза 3 в зависимости от величин его массы , указанных в табл. 1. Измерения проводятся в следующем порядке:

а) при выключенном секундомере вручную намотать нить на шкив 5 до совмещения нижней поверхности груза 3 с верхней кромкой фиксатора 7;

б) поддерживая крестовину, включить секундомер нажатием кнопки на его задней панели (при этом срабатывает электромагнитный тормоз на оси крестовины, и на шкале секундомера появляются нулевые показания);

в) кратковременным нажатием кнопки «Пуск» на передней панели секундомера привести МО в движение;

г) сразу после автоматической остановки движения МО записать показание со шкалы секундомера и выключить его кнопкой на его задней панели.

5.2.3. Полученные результаты записать в табл. 2.

5.3. Измерение зависимости времени движения груза от положения грузов на стержнях крестовины

5.3.1. Не изменяя величины , установить массу груза 3, указанную в третьей строке табл. 1 для вашей бригады.

5.3.2. В порядке, описанном в пункте 5.2.2., произвести однократные измерения времени при различных расстояниях грузов 2 от оси крестовины. Рекомендуемые величины указаны в табл. 3. Результаты записать в табл. 3.

6. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

И ОФОРМЛЕНИЕ ОТЧЁТА

6.1. Обработка результатов измерений пункта 5.2

6.1.1. По данным табл. 2 рассчитать средние значения и занести результаты в табл. 2.

6.1.2. Подставляя величины в формулы (10) и (11), рассчитать и записать в табл. 2 значения ускорений и . Радиус шкива r записан на установке.

6.1.3. По формуле (7) с учетом (9) определить величины моментов и записать их в табл. 2.

6.1.4. По данным табл. 2 построить график зависимости . Обработайте зависимость по методу наименьших квадратов (МНК). Для этого надо открыть папку «Обработка результатов ЛР» на рабочем столе компьютера и файл «Расчёт МНК». Результаты расчёта опытных величин и (см. формулы (13) и (14)) и соответствующие погрешности записать в табл. 2.

6.2. Обработка результатов измерений пункта 5.3

6.2.1. С использованием формул (6)-(11) можно получить формулу для расчета момента инерции (проверьте вывод самостоятельно):

(16)

По данным ti из табл. 3 по формуле (16) рассчитать значения . Занести результаты в табл. 3.

6.2.2. Обработайте полученную зависимость Iz(R2) по методу наименьших квадратов. Для этого необходимо открыть папку «Обработка результатов ЛР», расположенную на рабочем столе лабораторного компьютера, и открыть файл «Расчет y=Аx+В МНК. xls». Результаты расчёта опытных величин и (см. формулы (15)) с соответствующими погрешностями записать в табл.3.

6.2.3. Проведите сравнение значений , полученных в пунктах 6.1.4 и 6.2.2 при одинаковых значениях . Сравнить полученное значение с величиной, указанной на поверхностях грузов 2.

6.2.4. По известным значениям массы и длины стержней крестовины с помощью теоремы Штейнера рассчитайте их момент инерции. Оцените их вклад в величину , полученную в п. 6.2.2.

6.2.5. Сделайте выводы по полученным экспериментальным результатам.

7. ВОПРОСЫ ДЛЯ ДОПУСКА К ЛАБОРАТОРНОЙ РАБОТЕ

7.1. Дайте определения момента силы и момента инерции. Каким образом в установке можно регулировать и измерять эти величины?

7.2. Каким образом можно рассчитать момент инерции твёрдого тела при параллельном переносе оси вращения от центра масс на некоторое расстояние ? Как рассчитать момент инерции четырёх стержней крестовины со снятыми грузами при их известных массах и длинах?

7.3. Сформулируйте закон динамики вращательного движения абсолютно твёрдого тела? При каких условиях тело будет вращаться равноускоренно? Каковы направления векторов моментов вращающих сил в установке? Как определить моменты этих сил относительно оси вращения?

7.4. Какие приближения использованы в формуле (12) для расчёта момента инерции? При каком предположении можно считать движение равноускоренным?

7.5. Каким образом можно изменять момент инерции крестовины? Какой вращающий момент создает сила натяжения нити?

7.6. Каким образом зависит время опускания груза 3 от начальной высоты , его массы , расстояний грузов на крестовине от её оси, от момента силы трения?

7.7. Каково соотношение между ускорениями и ? Какие свойства нити 4 (рис. 2) необходимы для выполнения этого соотношения?

7.8. Как на основе формул (7) и (9) можно приближённо рассчитать момент силы натяжения нити, вращающей МО, если ускорение груза 3 будет намного меньше ускорения свободного падения?

Изучение основного закона динамики вращательного движения на маятнике Обербека

Экспериментальная проверка основного закона динамики вращательного движения твердого тела.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

Набор грузов с известными массами.

Метровая линейка или рулетка.

ВЫВОД РАСЧЕТНОЙ ФОРМУЛЫ

Маятник Обербека представляет собой систему, состоящую из шкива и ступицы со спицами (рис. 1). Система может вращаться относительно неподвижной оси, проходящей через центр симметрии системы. На каждую из спиц насажены равные по массе грузы m, передвигая которые можно менять момент инерции системы. Грузы закрепляются на спицах винтами, масса которых входит в массу грузов. К шкиву крепится упругая нить, к свободному концу которой крепится груз массой m0. Натяжение нити создает момент силы, приводящий маятник во вращение.

Основной закон динамики вращательного движения твердого тела имеет вид:

,

где M – алгебраическая сумма моментов сил, действующих на тело, относительно оси вращения; I – момент инерции тела относительно оси вращения; – угловое ускорение.

Для маятника Обербека основной закон динамики вращательного движения принимает вид:

, (1)

где Т – сила натяжения нити, – момент силы трения системы, I0 – момент инерции маятника Обербека без грузов, n – число грузов массой m, – расстояние от центра груза m до оси вращения (рис. 2), r – радиус шкива, равный для всех установок 5,9 см.

Экспериментальная проверка основного закона динамики вращательного движения на маятнике Обербека заключается в независимом определении левой и правой части соотношения (1) и их сравнении.

Из второго закона Ньютона для груза m0 выразим силу натяжения нити

, (2)

где – ускорение поступательного движения груза, g –ускорение свободного падения.

Для экспериментального определения силы натяжения нити необходимо знать массу груза и найти ускорение груза .

Масса груза известна. При необходимости массу можно определить с помощью технических весов.

Ускорение груза можно определить из эксперимента. Замотаем нить, на конце которой закреплен груз , на шкив маятника. Предоставим возможность грузу из состояния покоя пройти расстояние h за время t. Ускорение груза

Момент силы трения определим, оценив работу сил трения. Для этого предоставим грузу возможность опускаться с высоты , равной длине нити. Груз , опустившись до конца, затем поднимается на высоту (рис. 3). Убыль потенциальной энергии груза равна работе сил трения

. (3)

В экспериментальной установке силы трения действуют внутри системы, и момент силы трения можно считать постоянным. Работу сил трения можно вычислить по закону

, (4)

, (5)

где – угол поворота маятника, – число оборотов.

Из (3), (4) с учетом соотношения (5), получим

, (6)

. (7)

Зная длину нити и , можно определить коэффициент , а затем момент силы трения .

В правую часть (1) входят неизвестные величины и . Длину можно измерить экспериментально. При отсутствии проскальзывания нити по шкиву тангенциальное ускорение точек на поверхности шкива совпадает с ускорением поступательного движения груза , а угловое ускорение равно

. (8)

Соотношение (1) с учетом (2), (6) и (8) принимает вид

(9)

Это уравнение проверим экспериментально.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Запишите значение момента инерции I0, число спиц n, массу груза m, радиус шкива r в таблицу (см. образец, табл.1).

2. Измерьте длину нити h с помощью рулетки или метровой линейки.

3. Грузы на спицах маятника установите в крайние положения и измерьте длину – расстояние от центра грузов m до оси вращения.

4. Подберите груз m0 не менее 100 г.

5. Закрутите полностью нить на шкив маятника и отпустите груз без толчка, одновременно включив секундомер.

6. В крайнем нижнем положении груза m0 фиксируйте время падения и дайте возможность закрутиться нити. В максимальной точке подъема груза m0 остановите маятник и измерьте расстояние h. Чтобы убедиться в правильности фиксации времени падения, опыт проведите 5 раз.

7. Сдвиньте грузы m на спицах ближе к оси вращения и измерьте расстояние . Повторите опыт по измерению времени падения t и h для груза m0.

8. Подберите груз m0 меньше 100 г и проведите опыты как в предыдущих пунктах 5–7.

9. По результатам опытов вычислите ускорение груза, коэффициент , левую и правую части (9) для каждого из четырех проведенных опытов.

10. Результаты измерений и расчета занесите в таблицу (см. образец, табл.1).

11. Сравните результаты всех полученных четырех опытов. Установите, в каком опыте получается наименьшее расхождение между левой и правой частями (9). Попытайтесь проанализировать причины разных расхождений во всех опытах.

h, м , мm0, кгt, с , ма, м/с 2 Левая часть (кг·м 2 /с 2 )Правая часть (кг·м 2 /с 2 )
n=g=9,8 м/с 2m0=0,255 кгr=0,059 мI0= кг·м 2

1. Сформулируйте основную идею работы. Какие физические законы применяются для решения задач работы?

2. Выведите рабочую формулу для проверки основного закона динамики вращательного движения твердого тела.

3. Как при помощи маятника Обербека изменить момент инерции системы? момент внешней силы?

4. Запишите и сформулируйте основной закон динамики вращательного движения твердого тела относительно закрепленной оси. Сопоставьте его со вторым законом Ньютона, проведите аналогию.

5. Опишите экспериментальную установку. Из каких основных частей она состоит?

6. Как можно оценить момент сил трения, действующих в системе?

7. Что называется моментом инерции тела относительно оси и каков его физический смысл?

8. Запишите и сформулируйте теорему Штейнера.

9. Что называется моментом силы относительно оси? Как он направлен?

10. Какие предположения сделаны в данной работе относительно физических свойств нити? Обоснуйте их.

11. Какие величины используют для описания вращательного движения?

12. Чему равен момент импульса тела относительно оси?

13. Проведите аналогию между величинами и формулами для поступательного и вращательного движения твердого тела.

14. Могут ли единицы измерения различных физических величин иметь одинаковую размерность?

15. Как спортсмен, прыгая с трамплина в воду, управляет скоростью своего вращения?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ЛИТЕРАТУРЫ

1. Савельев, И. В. Курс физики. В 3-х т. Т. 1. Механика. Молекулярная физика./ И. В. Савельев.- М.: Наука, 1989.- 352 с.

2. Иродов, И. Е. Механика. Основные законы./ И. Е. Иродов.- М.: Лаборатория Базовых Знаний, 2001.- 256 с.

3. Волков, В. Н. Физика. В 3-х т. Т. 1. Механика. Молекулярная физика./ В. Н. Волков, Г. И. Рыбакова, М. Н. Шипко; Иван. гос. энерг. ун-т.- Иваново, 1993.- 230 с.

Цель работы изучение законов динамики поступательного и вращательного движения на примере маятника Максвелла

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Лабораторная работа №5

Цель работы — изучение законов динамики поступательного и вращательного движения на примере маятника Максвелла.

Приборы и принадлежности: маятник Максвелла FPM-03; комплект сменных колец: кольцо 0301ЧЮ60-01 массой 0,25 кг, кольцо 0301-0080-02 массой 0,35 кг, кольцо 0301-0080-03 массой 0,46 кг.

Краткие сведения из теории

Действие прибора основано на одном из основных законов механи­ки — законе сохранения механической анергии: полная механическая анергия системы, на которую действуют только консервативные силы, постоянна. Маятник Максвелла представляет собой твердое тело, наса­женное на ось. Ось подвешена на двух накручивающихся на нее нитях (рис. 5.1). Под действием силы тяжести маятник совершает колебания в вертикальном направлении и вместе с тем крутильные колебания во­круг своей оси. Пренебрегая силами трения, систему можно считать консервативной. Закрутив нити , мы поднимаем маятник на высоту h, сообщив ему запас потенциальной анергии. При освобождении маятника он начинает движение под действием силы тяжести: поступательное вниз и вращательное вокруг своей оси. При этом потенциальная энер­гия переходит в кинетическую. Опустившись в крайнее нижнее положе­ние, маятник будет по инерции вращаться в том же направлении, нити намотаются на ось и маятник поднимется. Так происходят колебания маятника.

Напишем уравнения движе­ния маятника. При поступательном движении маятника по вто­рому закону Ньютона с учетом действующих ни маятник сил можно написать

,

где m — масса маятника, g -ускорение силы тяжести, a — Рис. 5.1. ускорение поступательного дви-

жения центра масс маятника,

Т- сила натяжения одной нити ,

Проектируя это уравнение, получим

Для вращательного движения маятника запишем основной закон динами­ки вращательного движения для абсолютно твердого тела:

, где J- момент инерции маятника относительно его оси вращения,  — угловое ускорение маятника, М — результирующий момент внешних сил относительно оси вращения.

Поскольку момент силы тяжести относительно оси вращения равен нулю,

, (5.2)

где r — радиус оси. Так как и из (5.1) 2Т = m(g — a), можем написать:

,

а после преобразований

.

Ускорение а может быть получено по измеренному времени движения и проходимому маятником расстоянию h из уравнения равноускоренного движения без начальной скорости:

.

и,

если подставить диаметр оси D, получим основную расчетную формулу

. (5.3)

Описание экспериментальной установки

Общий вид прибора показан на рис. 5.2. Основание 1 снабжено регулируемыми ножками 2, позволяющими произвести выравнивание при­бора. В основании закреплена колонка 3, к которой прикреплен непод­вижный верхний кронштейн 4 и подвижный нижний кронштейн 5. На верх­нем кронштейне находится электромагнит 6, фотоэлектрический датчик №17 и вороток 8 для закрепления и регулирования длины бифилярной подвески маятника .

Нижний кронштейн вместе с прикрепленный в нему фотоэлектрическим датчиком № 29 можно перемещать вдоль колонки и фиксировать в произвольно избранной положении .

Тело маятника 10 — его ролик , закрепленный на оси, на который накладываются сменные кольца, изменяющие момент инерции маятника.

Маятник удерживается в верхнем положении электромагнитом. Его длина определяется по миллиметровой шкале на колонке прибора с погрешностью не более двух миллиметров. Для более точного намерения Длины на нижнем кронштейне имеется красный указатель, помещенный на высоте оптической оси нижнего фотоэлектрического датчика. Для намерения времени падения с относительной погрешностью не более 0,О2% служит электронная схема, состоящая из миллисекундомера FPM-15, двух фотоэлектрических датчиков FK-1 и электромагнита. При прохождении маятника мимо фотоэлектрического датчика последний да­ет в схему миллисекундомера электрический сигнал, фиксирующий мо­мент прохождения маятника. Фотоэлектрический датчик №1 соединен с гнездом ZLI миллисекундомера 12, а фотоэлектрический датчик № 2 — с гнездом ZL2. Лицевая и задняя панели миллисекундомера изображены на рис. 5.3.

На лицевой панели миллисекундомера находятся следующие манипуляционные элементы:

W1 (сеть) — выключатель сети — нажатие клавиши включает на­пряжение питания, при атом загораются цифровые индикаторы (цифра ноль) и лампочки фотоэлектрических датчиков;

W2 (сброс) — установка нуля — нажатия клавиши вызывает сброс схем миллисекундомера;

W3 (пуск) — управление электромагнитом — нажатие клавиши оз­начает освобождение электромагнита и генерирование в схеме миллисекундомера импульса разрешения на измерение.

На задней панели миллисекундомера находятся:

ZL1 — семиконтактное гнездо для подключения фотоэлектрическо­го датчика №1 и электромагнита;

ZL2 — пятиконтактное гнездо для подключения фотоэлектрическо­го датчика № 2;

ZL3 — заземляющий зажим.

Эксплуатация прибора допускается только при условии заземления!

1. Определить момент инерции маятника (для трех разных смен­ных колец).

2. Сравнить полученный результат с теоретическим значением.

Порядок выполнения работы

I. Подготовка прибора к измерениям.

1. Привести прибор к горизонтальному положению ори помощи регулируемых ножек основания.

2. Заземлить прибор.

3. Подключить фотоэлектрические датчики к соответствующим гнездам.

4. Включить сетевой кабель в сеть.

5. Нажать клавишу W1(сеть). Проверить высвечивание нуль-инди­каторов и сигнальных: лампочек фотоэлектрических датчиков.

II. Последовательность измерений при помощи маятника Максвелла.

1. Зафиксировать нижний кронштейн в крайней нижней положении.

2. Наложить кольцо на ролик, прижимая его до упора.

3. Намотать на ось нить подвески и фиксировать ее.

4. Проверить, совладает ли нижняя грань кольца с нулем шкалы на колонке. Если нет, отвинтить верхний кронштейн и отрегулировать его высоту. Привинтить верхний кронштейн.

5. Нажать клавишу «пуск» миллисекундомера.

6. Деблокировать гайку воротка для регулирования длины подвес­ки. Установить длину нити так, чтобы край стального кольца после опускания маятника находился примерно на 2 мм ниже оптической оси нижнего фотоэлектрического датчика. Одновременно произвести коррек­тировку установки маятника так, чтобы его ось была параллельной ос­нованию прибора. Блокировать вороток.

7. Отжать клавишу «пуск» миллисекундомера.

8. Намотать на ось маятника нить подвески, обращая внимание на то, чтобы она наматывалась равномерно, один виток за другим.

9. Фиксировать маятник при помощи электромагнита, обращая вни­мание на то, чтобы нить в этом положении не была слишком скручена.

10. Повернуть маятник в направлении его движения на угол около 5.

11. Нажать клавишу «Сброс».

12. Нажать клавишу «пуск».

13. Измерить время падения маятника в секундах по миллисекундомеру.

14. Произвести определение времени пять раз.

15. Определить длину маятника в метрах по шкале на вертикальной колонке прибора.


источники:

http://lektsii.org/9-16570.html

http://gigabaza.ru/doc/34500.html