Уравнение для определения токов в неравновесной мостовой схеме

Мостовые схемы

Мостовые схемы широко используются в приборах для изме­рения параметров электрических цепей (R, С, М, L, f ) и разнообраз­ных неэлектрических величин, преобразуемых в параметры R, С, М, L, f.

Условием равновесия моста, т. е. равенства нулю тока гальвано­ метра IГ, является равенство

Откуда измеряемое сопротивление

Мостовые схемы работают как в неравновесном, так и в равно­весном режимах. В первом случае мост уравновешивается при на­чальном значении сопротивления R1 = Rх0 при изменении Rx, т. е. при Rx Rx0 мост выходит из равновесия и в измерителе появляет­ся ток IГ. Шкала измерителя градуируется непосредственно в еди­ницах Rx. При этом ток IГ зависит не только от соотношения сопро­тивлений плеч моста, но и от значений питающего напряжения U или тока I.

Поэтому при колебаниях питающего напряжения U воз­никает дополнительная погрешность.
При работе в равновесном режиме мост уравновешивается при любом значении Rx путем изменения сопротивления любого из остальных плеч. В настоящее время широко применяются автома­тические мосты, в которых процесс уравновешивания осуществля­ется устройством, следящим за возникновением неравновесия.

Чаще всего мостовые цепи на переменном токе применяются в равновесном режиме.
На рис. 6.3, б представлена мостовая цепь переменного тока. На схеме а и b — точки моста; с и d — диагональ моста; Г — измери­тель. Предположим, что все четыре плеча моста содержат как актив­ные, так и реактивные сопротивления. Условие равновесия моста в этом случае будет выражаться равенством

Равновесные и неравновесные мостовые схемы

Под балансными (равновесными) мостовыми схемами понимают такие схемы, которые работают в равновесном режиме. При изменении величины сопротивления в одном из плеч регулировкой сопротивлений в других плечах моста добиваются отсутствия тока через гальванометр, а отсчет производят на регулируемом элементе.

Равновесные мосты выполняются как с ручным, так и с автоматическим уравновешиванием. Те и другие обладают рядом свойств, присущих только балансным мостам.

1. Равновесные мосты обладают малой погрешностью (до 0,01% и даже 0,001%).

Это объясняется тем, что индикатор работает в нулевом режиме, и его погрешность не входит в погрешность измерения. Остальные же элементы моста могут быть выполнены с достаточной точностью.

2. Равновесие балансных мостов не будет нарушено при колебаниях величины и частоты питающего напряжения. Влияние изменения частоты источника питания может быть лишь в том случае, если при этом изменяются составляющие сопротивлений измерительной цепи и фазовые соотношения в ней, т. е. при неоднородности плеч моста.

3. Применение равновесных мостов дает возможность увеличить чувствительность схемы за счет применения ламповых усилителей, которые в этих цепях практически не вносят погрешности, обусловленной непостоянством коэффициента усиления.

4. При использовании равновесных мостов при необходимости может быть получена достаточно линейная шкала, применением специальных устройств, например, изготовлением плеча уравновешивания в виде нелинейного потенциометра.

5. Равновесные мосты, благодаря наличию в них уравновешивающих устройств, являются сложными приборами.

3. Равновесные мосты имеют малое быстродействие за счет инерционности преобразователя и уравновешивающего устройства.

При некоторых технических измерениях не требуется той высокой точности, которую могут обеспечить только равновесные мосты. В то же время их сложность, необходимость в балансировке и относительно малое быстродействие измерений являются достаточно существенными недостатками последних.

Большинство современных измерений неэлектрических величин электрическими методами не требует допустимой погрешности, меньшей 0,5-1,0%, так как часто погрешности самих преобразователей довольно велики. Но зато требуются более простые устройства с достаточно быстрым отсчетом измеряемой величины непосредственно по шкале измерительного устройства.

Этим требованиям удовлетворяют неравновесные мосты. Принцип действия таких мостов заключается в том, что при выходе моста из состояния равновесия из-за изменения сопротивления в одном из плеч в указательной диагонали появляется ток, связанный функционально с приращением сопротивления изменившегося плеча и измеряемый соответствующим прибором.

Точность измерения с помощью неравновесных мостов в основном определяется точностью измерительного прибора, по которому непосредственно производится отсчет, и точностью преобразователя, так как плечи моста выполняются, как правило, с очень малой погрешностью. Кроме того, точность неравновесных мостов зависит от изменения внешних факторов (изменения температуры окружающей среды, изменения величины и частоты питающего напряжения и т. д.).

Однако, путем определенного включения преобразователей, применения логометрического измерителя, стабилизации напряжения и частоты источника питания и других мер, о чем будет сказано ниже, удается избавиться частично или полностью от этих погрешностей. Однако, выбирая меры для уменьшения дополнительных погрешностей, следует подходить к этому критически. Например, если в качестве измерителя используется прибор класса 1,5 (т.е. с основной приведенной погрешностью, равной ± 1,5%), то нет смысла стабилизировать напряжение источника питания с точностью до десятых долей процента и нет смысла добиваться стабильности коэффициентов усиления усилителей с точностью более чем 1-1,5%, а значит применять высокостабильные и дорогостоящие элементы схемы и т. д..

Кроме невысокой точности, недостатком неравновесных мостов является трудность получения линейной шкалы: ток указателя мостовой схемы нелинейно связан с изменением сопротивлений плеч моста и компенсировать эту нелинейность нелинейностью датчика не представляется возможным.

Уравнение для определения токов в неравновесной мостовой схеме

Приборы сравнения предназначены для непосредственного сравнения измеряемой величины с величиной, значение которой известно (с мерой). Приборы сравнения могут работать в двух режимах: в равновесном режиме и в неравновесном режиме. Структурные схемы приборов сравнения приведены на рисунке.

При работе в равновесном режиме (рис. а.) измеряемая величина Х полностью компенсируется воздействием меры. Значение меры или ее части, необходимой для компенсации величины Х, в процессе измерения определяется по отсчетному устройству.

В неравновесном режиме разность показаний между мерой и измеряемой величиной измеряется в отсчетном устройстве, шкала которого градуирована в единицах измеряемой величины.

В данном курсе будут рассмотрены мосты постоянного и переменного тока и компенсаторы.

Мосты постоянного тока.

Одинарные мосты постоянного тока предназначены для измерения сопротивлений величиной от 10 Ом и более. Схема одинарного моста приведена на рисунке:

Диагональ, обозначенная на рисунке bd- называется диагональю питания. В нее включен источник питания (батарея) G. Диагональ ас называется измерительной диагональю. В нее включен указатель равновесия (гальванометр) Р.

Выведем условия равновесия моста.

В равновесном режиме Iур=0. Это условие выполняется когда:

Из первого закона Кирхгофа, с учетом того, что и следует:

I4=I1 и I3=I2. Принимая во внимание все вышесказанное можно записать:

или . Выражение — является условием равновесия моста.

Чувствительность моста по току и по напряжению определяются как:

— чувствительность моста по току. — чувствительность моста по напряжению.

yp и Uyp— изменение силы тока и напряжения в измерительной диагонали.

R/R- отношение изменения сопротивления плеча моста к полному сопротивлению этого плеча.

В частном случае, при R1=R2=R3=R4, чувствительность моста может быть записана как:

и .

R10 — сопротивление R1 при равновесии.

, , . Rур — сопротивление указателя равновесия.

В качестве практического примера приведены параметры моста Р-369.

Диапазон измеряемых сопротивлений:

Класс точности в диапазоне до 10 -3 Ом- 1 и при измерении сопротивлений от1 до 10 3 Ом класс точности- 0.005.

Двойные мосты постоянного тока.

Для точных измерений сопротивлений малой величины применяют двойные мосты. Схема двойного моста представлена на рисунке:

В процессе измерения измеряемое сопротивление Rx сравнивается с образцовым сопротивлением R0.

Уравнения, поясняющие процесс измерения приведены ниже.

По второму закону Кирхгофа можно записать:

Тогда уравнения можно переписать как:

В результате сопротивление неизвестного резистора можно выразить следующим образом:

;

Двойные мосты позволяют измерять сопротивления в диапазоне

Класс точности прибора составляет 0.02 в диапазоне измерений и 2 в конце диапазона измерений.

Для питания моста используют источники тока или напряжения.

Мосты переменного тока.

Мосты переменного тока применяются для измерения, как активных, так и реактивных сопротивлений (емкостных и индуктивных).

Схема моста переменного тока приведена на рисунке.

Уравнения, поясняющие принцип действия моста, записываются по аналогии с уравнениями, приведенными для одинарного моста постоянного тока, и имеют вид:

Из первого закона Кирхгофа, с учетом того, что и следует:

I4=I1 и I3=I2. Принимая во внимание все вышесказанное можно записать:

или . Выражение — является условием равновесия моста.

При работе на переменном напряжении эти уравнения должны быть записаны в показательной форме:

или .

Из этих уравнений следуют условия равновесия моста:

Данная система уравнений показывает, что мост переменного тока может быть уравновешен только при определенном характере нагрузки и схеме включения сопротивлений в ветвях.

Рассмотрим работу автоматических мостов.

Автоматический мост выполнен на базе реверсивного двигателя, охваченного отрицательной обратной связью по току в измерительной диагонали.

Упрощенная схема такого моста приведена на рисунке.

Прибор работает следующим образом. К питающей диагонали ав подключен источник питания. В измерительную диагональ введены переменный резистор R и усилитель тока УТ. К выходу усилителя подключен реверсивный двигатель РД. Вал двигателя, с одной стороны управляет перемещением движка резистора R, а с другой стороны соединен со шкалой прибора. Усилитель тока подключен таким образом, чтобы при вращении двигателя сопротивления R’ и R’’ изменяясь уменьшали ток в измерительной диагонали бг. Если ток в диагонали бг будет равен нулю, управляющий сигнал на выходе усилителя исчезнет и двигатель остановится. Это состояние будет зафиксировано на шкале, которая проградуирована в единицах измеряемой величины. Если сопротивление в одном из плеч моста изменить — мост будет разбалансирован, в измерительной диагонали появится ток и процесс компенсации повторится.

Компенсаторами называются приборы сравнения, в основу которых положен принцип компенсации Э.Д.С.

Применяются компенсаторы для измерения напряжений и Э.Д.С. с высокой точностью.

Схема компенсатора приведена на рисунке.

На приведенной схеме приняты следующие обозначения::

Gp- источник рабочего тока.

Gn- нормальный элемент.

Gx- источник измеряемого напряжения.

R- регулируемый резистор.

Ro образцовый резистор.

Rk- компенсационный резистор.

P- магнитоэлектрический гальванометр.

Если ключ К находится в положении 1, выполняется равенство:

.

Если ключ находится в положении 2, выполняется равенство:

.

Таким образом, можно сравнить напряжение неизвестного источника Gx c напряжением нормального элемента Gn. Это можно пояснить соотношением:

. Следовательно: .

По приведенной схеме работает, например, компенсатор Р 355. Он имеет класс точности в пределах измерения напряжения

Для увеличения скорости измерений применяют автоматические компенсаторы. Одна из схем такого компенсатора показана на рисунке.

Схема работает следующим образом: В основе прибора лежит усилитель постоянного тока, охваченный обратной связью.

Если обозначить коэффициент усиления УПТ как s, можно записать:

и . Отсюда можно вывести прямую зависимость между током, протекающим по микроамперметру и измеряемым напряжением.

.

Такие компенсаторы применяют для измерения малых напряжений, например на выходе


источники:

http://helpiks.org/7-54194.html

http://library.ispu.ru:8001/metrolog/lecture10.htm