Уравнение для потенциала металлического электрода

ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ. ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ.

Пример 1. Вычислить электродный потенциал цинка, опущенного в раствор его соли с концентрацией ионов 0,001 моль/л.

Решение. Для количественной характеристики активности металлов используется разность потенциалов в гальваническом элементе, образованном электродом, содержащим металл, и стандартным водородным электродом, потенциал которого принят равным нулю.

Если активность α или концентрация ионов металла в растворе равна 1 моль/л, электродный потенциал металла ( ) называется нормальным (стандартным при ) потенциалом , из величин которых и составлен ряд напряжений металлов. Потенциалам металлов, стоящих в ряду напряжений левее водорода, приписывается знак (-), правее – знак (+). Электродный потенциал металла при любой концентрации его ионов в растворе рассчитывается по формуле Нернста:

где – заряд иона; – число Фарадея, 96487 Кул; T – температура, K; – газовая постоянная, равная 8,314 Дж/кал моль, т.е. при T = 298 .

при ) или

Таким образом, рассчитать требуемый электродный потенциал можно, используя уравнение

Отыскав по таблице значение нормального цинкового потенциала

, подставляем известные величины в уравнение и определяем электродный потенциал цинкового электрода:

Пример 2. Вычислить потенциал серебряного электрода в насыщенном растворе

(ПР = 6 ∙ 10 -13 ), содержащем, кроме того, 0,1 моль/л бромида калия.

Решение. Уравнение Нернста для вычисления требуемого электродного потенциала имеет вид

где

Необходимое для расчёта значение величины концентрации ионов серебра в растворе его соли можно определить, используя величину произведения растворимости бромида серебра и концентрацию ионов брома . Последняя равна 0,1 моль/л так как соль бромида калия полностью диссоциирована на ионы. Следовательно,

Подставляя полученное значение в формулу Нернста, находим величину потенциала серебряного электрода:

Пример 3. Вычислить ЭДС цепи

Написать протекающие электродные процессы (Коэффициенты активности ионов серебра и цинка соответственно равны 0,79 и 0,52; температура опыта 25 ).

Решение. ЭДС ( гальванического элемента определяется разностью потенциалов электродов, составляющих данный элемент:

или .

Зная, что активность является вспомогательной расчётной величиной, которая характеризует отклонение свойств вещества в данной фазе (в рассматриваемом случае жидкости) от свойств его в состоянии, принимаемом за стандартное (идеальные растворы), величины активности ионов входящих в состав данного гальванического элемента, можно определить по формуле, связывающей активность иона с его концентрацией:

где — коэффициент активности; С – коэффициент раствора в моль/л.

Подставив соответствующие величины, получим:

моль/л,

моль/л.

Электродные потенциалы серебра и цинка вычисляем по формуле Нернста:

где — нормальный потенциал металла (из таблиц):

a – активность ионов; n – заряд иона.

Работу гальванического элемента определяют реакции

анодная (А): катодная (К):

и ,

так как известно, что в данной паре металлов цинковый электрод будет заряжен отрицательно и будет анодом в силу его положения в ряду напряжений металлов.

Пример 4. Элемент составлен из нормальных водородного и кислотного электродов. Изменится ли его ЭДС, если давление газов (водорода и кислорода) увеличить в 10 раз?

Решение. Запишем схему элемента и электродные реакции:

Зная, что величины электродных потенциалов для водородного и кислородного электродов соответственно равны

заменяем величины концентрации свободных водорода и кислорода на величины их парциальных давлений и получаем выражения уравнения Нернста для этих электродов в следующем виде в расчёте на 1 :

для водородного электрода

для кислородного электрода

Соответственно ЭДС ( ) данного элемента будет равна

Под величиной подразумевается величины

При

При

Следовательно, увеличение давления кислорода и водорода в 10 раз приводит к увеличению на величину, равную

Пример 5. Найти потенциал водородного электрода при (нейтральный раствор: ).

Решение. При Р = 1 атм., электродный потенциал водородного электрода равен

где

Пример 6. Напишите общую химическую реакцию, определяющую работу гальванического элемента

его электродные реакции и определите его ЭДС.

Решение. Известно (из таблиц), что (электрод 1) и

(электрод 2). Определяем, что электрод 1 отрицателен относительно электрода 2. Следовательно, на электроде 1 будет протекать реакция окисления до , на электроде 2 – восстановления :

1

5

Зная, что электродный потенциал окислительно- восстановительного электрода вычисляется по уравнению Нернста

или для Т = 298 К

Для данных электродов эти уравнения имеют вид

Пример 7. Какие процессы происходят на электродах гальванического элемента
, если ? В каком направлении перемещаются электроны во внешней цепи?

Решение. Известно, что гальванические элементы, работа которых обусловлена лишь различием концентрации электролита в разных зонах раствора при одинаковом составе электродов, носят название концентрационных. Более отрицательным электродом в этом случае считается тот, который опущен в раствор с меньшей концентрацией.

Следовательно, в предлагаемом элементе серебряный электрод, погруженный в менее концентрированный раствор, будет заряжен более отрицательно, т.е. он будет анодом. Электродная реакция .

На электроде, заряженном менее отрицательно, который будет являться катодом, идёт реакция восстановления ионов серебра:

При этом электроны будут перемещаться от анода к катоду, а ток, получаемый в результате работы этого элемента, пойдёт в противоположном направлении.

Пример 1. Что такое электролиз? Какие законы электролиза Вы знаете? Какие количественные законы электролиза Вы знаете?

Решение. Электролизом называется окислительно- восстановительный процесс, происходящий в растворе или расплаве электролита при пропускании через него электрического тока.

Электрод, соединенный с отрицательным полюсом источника тока, называется катодом (-); электрод, соединенный с положительным источником тока, называется анодом (+).

Схему электролиза в общем виде можно представить следующим образом:

катионы движутся к катоду (т.е. отрицательно заряженному электроду), где происходит процесс восстановления молекул или положительно заряженного ионаанионы движутся к аноду (т.е. положительно заряженному электроду), где происходит процесс окисления молекул или отрицательно заряженного иона

Для проведения электролиза могут использоваться растворимые или нерастворимые аноды. Последние сами не участвуют в окислительно- восстановительной реакции, а являются только передатчиками электронов. В качестве нерастворимых анодов используют платину и другие благородные металлы, графит. Растворимые металлические аноды при проведении электролиза разрушаются.

Основные законы электролиза установил М. Фарадей.

1-й закон. Количество вещества, образующегося при электролизе, прямо пропорционально количеству прошедшего электричества:

где m – количество вещества в граммах, Q – Количество электричества в кулонах Q = Jt , где

J – сила тока, А; t – время, с; К – коэффициент пропорциональности.

2-й закон. При пропускании равного количества электричества в результате электролиза выделяются количества веществ m, пропорциональные их химическим эквивалентам Э. Для выделения 1 г – экв. требуется количество электричества, равное числу Фарадея F = 96487 кулонов, т.е.

Математически, обобщив законы Фарадея, получим:

Пример 2. Какие процессы протекают при электролизе расплавов солей и гидроксида калия?

Решение. Установим, на какие ионы диссоциируют перечисленные соединения:

Представим протекание процесса электролиза каждого из веществ.

При пропускании через расплав электрического тока, положительно заряженные ионы натрия перемещяются к отрицательно заряженному электроду, где они восстанавливаются до

электронейтрального натрия: (К): .

Отрицательно же заряженные ионы хлора притягиваются к положительно заряженному электроду А, где они разряжаются до свободного хлора, отдавая свой электрон: (А):

.

Аналогично разобранному примеру можно представить схемы электролиза :

(-) катод(+) анод

(-) катод(+) анод

Пример 3. Как влияет положение металла в ряду напряжений и состав кислотного остатка на процессы электролиза растворов солей?

Решение. В растворах солей металлов, кроме ионов металла и ионов кислотного остатка, присутствуют и , т.е. ионы, образующиеся при диссоциации воды, поэтому электролиз растворов имеет некоторое отличие от процессов электролиза расплавов для тех же соединений.

Наличие кислородсодержащих анионов приводит к окислению группы в связи с тем, что для окисления последних требуется меньший положительный потенциал, чем, например, для окисления аниона серной кислоты до образования аниона надсерной кислоты:

который требует значительного большего сдвига потенциала в положительную сторону. Поэтому в обычных условиях окисления кислородсодержащих кислотных остатков, таких как , , , и др. не наблюдаются.

Бескислородные же анионы окисляются легче до свободного состояния, чем группы, так как для их окисления требуется менее положительный потенциал. Таким образом, при электролизе солей, содержащих галоген, на аноде происходит окисление галогенов до ионов и выделение в свободном состоянии соответствующих галогенов.

А: 2 или

Поведение металла при электролизе четко определено его положением в ряду напряжений. Чем левее расположен он в ряду, тем больший сдвиг потенциала в отрицательную сторону необходим для его восстановления до свободного состояния. Поэтому легче всего восстанавливаются ионы металлов, характеризующиеся наиболее электроположительной величиной потенциала (т.е. расположенные в крайней правой части ряда (после водорода): ). Электролиз же водных растворов соединений, включающих в себя ионы активных металлов, таких как (т.е. расположенных в крайней левой части ряжа), требует значительного большего сдвига потенциала для их восстановления, чем молекулы воды, поэтому в данном случае легче проходит реакция восстановления молекул воды. Следовательно, протекание тока через растворы этих солей не приводит к выделению металла на катоде; при этом образуется водород из воды.

При электролизе же металлов, расположенных в средней части ряда (от алюминия до водорода), имеющих потенциал разложения, сравнимый с величиной потенциала разложения воды, протекает реакция как восстановления самого металла, так и молекул воды, т.е. с выделением в чистом виде металла и газообразного водорода.

Обобщив все вышеперечисленное, можно сделать вывод, что при проведении электролиза будут восстанавливаться положительные ионы, требующие наименьшего сдвига потенциала в отрицательную сторону, т.е. вероятность выделения металла в чистом виде уменьшается при переходе в ряду напряжений справа налево (от Au к Na). Что качается смеси анионов, то в этом случае необходимо учитывать наличие кислорода в кислотном остатке и способность бескислородных ионов к окислению.

Практически установлено, что вероятность их выделения в чистом виде уменьшается по следующему ряду:

В качестве примеров можно привести схемы электролиза нескольких характерных солей (аноды инертные):

а) электролиз раствора

(диссоциация)

(+) на аноде(-) на катоде
2

(в прикатодном пространстве)

б) электролиз

диссоциация:

катод (-)анод (+)

в) электролиз раствора

диссоциация:

катод (-)анод (+)

(Потенциал разложения значительно ниже потенциала разложения воды, поэтому разложением последней можно пренебречь).

Анод растворимый (например, никелевый)

а) электролиз раствора

диссоциация:

катод (-)анод (+)

При использовании растворимых анодов в окислительно- восстановительную реакцию вступает металл анода и происходит его окисление (т.е. он растворяется). Это вызвано тем, что металл выбранного растворимого анода имеет потенциал окисления значительно ниже, чем требуется для окисления аниона и даже ниже потенциала разложения воды.

3.3. КОРРОЗИЯ МЕТАЛЛОВ.

Пример 1. а) Объясните, почему луженое железное изделие (например кастрюля) при нарушении защитного слоя корродирует быстрее, чем оцинкованное железное изделие (например ведро)?

Решение. Как луженое, так и оцинкованное изделие подвергают электрохимической коррозии. Природу протекающих процессов можно объяснить, используя величины окислительно- восстановительных (электродных) потенциалов металлов, находящихся в контакте друг с другом и электролитом. Известно, что

Про контакте железа с оловом и нарушении целостности луженого покрытия в среде электролита возникают коррозионные микрогальванопары, работа которых определяет разрешение основного металла – железа. Связано это с тем, что железо обладает более электроотрицательным электродным потенциалом по сравнению с оловом. Таким образом, в паре Fe – Sn олово, как менее электроотрицательный металл, будет катодом, т.е. только переносчиком электронов, которые возникают при окислении основного металла железа, являющегося в данном случае анодом (А)

На катоде в зависимости от условий при этом может протекать один из процессов:

— восстановление водорода молекул воды при полном погружении металлических изделий в воду; — восстановление растворённого кислорода в нейтральный или щёлочной среде; – восстановление ионов водорода в кислой среде; – восстановление растворённого кислорода в кислой среде.

Нарушение же циклового покрытия при контакте его с железом не приводит к разрушению основного металла (железа), так как в этом случае будет разрушаться цинковое покрытие (электродный потенциал цинка более электроотрицателен по сравнению с электродным потенциалом железа), т.е. цинк будет анодом , а катодом – железо. Катодные реакции, как и в случае контакта железа с оловом, будут зависеть от рН среды. Для нейтрального раствора, например, на катоде пойдёт реакция восстановления молекул воды:

Пример 2. Почему железо, частично покрытое хромом, корродирует, хотя хром имеет более отрицательный стандартный потенциал, чем железо? Стандартные потенциалы хрома и железа соответственно равны -0,74 и -0,44 В.

Решение. По месту, занимаемому хромом в ряду напряжений, следовательно бы ожидать, что хром в паре с железом будет работать как анодного покрытие, т.е. разрушаться, предотвращая коррозию железа. Однако этого не происходит из-за присутствия на поверхности хрома прочной оксидной пленки, которая в корне меняет взаимоотношения металлов.

Можно предположить, что образование адсорбционной плёнки, пассивирующей металл, приводит как бы к созданию на поверхности хрома кислородного электрода, потенциал которого, как известно равен +0,401 В, т.е. пассивное состояние поверхности хрома выражается в значительном смещении электродного потенциала металла в положительную сторону, по сравнению с величиной потенциала железа, что и не позволяет хрому быть анодным покрытием железа.

Пример 3. Как влияет среды на коррозию металлов?

Решение. Течение коррозийных процессов всегда зависит от концепции ионов Н + , способствует разрядке их на катоде, и этим облегчается катодная деполяризация и растворение металла с анодных участков. Например, это способствует усилению коррозии черных металлов. При значительном повышении концентрации Н + процесс может перейти в обычное растворение металла в кислоте. Коррозия значительно усиливается с понижением , т.е. с увеличением концентрации ионов водорода. Коррозия металлов, образующих амфотерный гидрооксид, например, , и других, усиливается как с понижением, так и с повышением среды.

1. При 25 потенциал электрода равен 0,2712 В. Вычислите нормальный потенциал медного электрода.

2. Рассчитать электродный потенциал цинка, погружённого в раствор, содержащий ионы в активной концентрации 0,1 моль/л.

3. Найти потенциал водородного электрода при , при .

4. Найти потенциал водородного электрода в щелочной среде при .

5. Как должна быть составлена гальваническая цепь для того, чтобы осуществлять электрохимическим путём следующие реакции:

а)

б)

в)

г)

д) .

Для каждого случая указать:

а) электрод- восстановитель и электрод- окислитель,

б) знаки полюсов,

в) направление перемещения электронов во внешней цепи.

6. Составить схемы двух гальванических элементов, в одном из которых никель – отрицательный электрод, в другом – положительный.

7. Какие реакции протекают у электродов в гальванических элементах, образованных:

а) железом и оловом, погруженными в растворы своих солей,

б) оловом и медью, погружёнными в растворы своих солей?

8. Рассчитайте ЭДС газового элемента при нормальных условиях и напишите электродные реакции. .

9. Найдите величину электродного потенциала для электрода, составленного из платиновой пластинки, опушенной в раствор смеси солей ( и ( , .

10. Чему равен нормальный электродный потенциал серебра, если потенциал электрода равен +0,55 В?

11. Вычислить потенциал свинцового электрода в насыщенном растворе , если [ ] = 1 моль/л, а

12. ЭДС элемента, состоящего из медного и свинцового электродов, погруженных в 1 М растворы солей этих металлов, равна 0,47 В. Изменится ли ЭДС, если взять 0,001 М растворы? Ответ обосновать.

13. Нормальные потенциалы олова и свинца равны – 0,14 В и -0,13 В. Покажет ли амперметр ток в гальваническом элементе, образованном из полуэлементов

?

14. Объясните классификацию электродов на электроды 1 и 2 рода. Приведите примеры таких электродов.

15. Зная, что потенциал электрода, отвечающего реакции , равен +0,222 В и пользуясь значением нормального электродного потенциала серебра ( ), определить произведение растворимости хлористого серебра.

16. Напишите электродные и суммарную реакцию, протекающие в гальваническом элементе, составленном из нормального водородного электрода и цинкового электрода. Укажите, какой заряд будет принадлежать цинковому электроду.

17. В каком направлении пойдет ток в гальваническом элементе, состоящем из водородных электродов, находящихся в растворах с . Какова ЭДС этого элемента?

18. Какие процессы происходят на электродах гальванического элемента:

?

В каком направлении перемещаются электроны во внешней цепи?

19. На основании ряда напряжений металлов составьте гальванический элемент с наибольшей ЭДС и наименьшей его стоимостью. Ответ мотивируйте.

20. Имеются концентрационные цепи:

а) ;

б)

в)

г)

Для каждой из этих цепей:

а) вычислить электродные потенциалы;

б) указать электрод- восстановитель и электрод- окислитель;

в) отметить знаки полюсов и направление перемещения электронов;

г) написать электронно- ионные уравнения восстановления и окисления;

д) вычислить ЭДС.

21. Какие процессы происходят при электролизе расплавов ?

22. Разобрать процессы, протекающие у электродов при электролизе водных растворов:

23. Раствор содержит ионы в одинаковой концентрации. В какой последовательности эти ионы будут выделяться при электролизе?

24. Одинаковые ли будут продукты электролиза растворов солей:

а) и

б) и

в) и

г) и ?

Ответ обосноваться соответствующими электронно- ионными уравнениями.

25. Изменится ли количественное содержание ионов каждой из указанных солей в растворе при электролизе водных растворов:

а) и

б) и

в) и ?

Ответ обосноваться соответствующими электронно- ионными уравнениями.

26. Почему литий нельзя получить электролизом водного раствора его солей? Составьте схему электролиза водного раствора сульфата лития.

27. Электролизом таких соединений и при каких условиях можно получить металлы ?

28. Электролиз раствора производится с никелевым анодом, содержащим примеси серебра и цинка. Какой из этих металлов выделится на катоде? Что произойдёт с остальными металлами?

29. Железная и цинковая пластинки погружены в сосуд с раствором серной кислоты так, что они не качаются одна другой. Какие процессы будут протекать на поверхности пластинок, если:

1) пластинки не соединены друг с другом;

2) пластинки соединены;

3) пластинки соединены с полюсами источника тока,

а) цинк будет катодом,

б) цинк будет атодом?

Ответ подтвердить электрохимическими уравнениями.

30. Вычислить количество серебра, выделенного при пропускании через раствор тока 5 А в течение 10 мин.

31. Вычислить время, необходимое для полного выделения хлора, содержащегося в 1 л 1 Н раствора при электролизе тока 10 А.

32. Раствор, содержащий 159,54 г соли , подвергается электролизу током 10 А в течении 2,68 ч. Какое количество меди осталось в растворе?

33. Сколько времени требуется для выделения 1 г-экв при электролизе расплава током в 5 А?

34. Сколько электричества надо пропустить через раствор , что бы получить 1 кг ?

35. Вычислить г-экв , если при пропускании через раствор соли цинка тока 4 А в течении 1470 с на катоде выделилось 2 г (выход по току 100%).

36. Раствор, содержащий 129,7 г соли , подвергался электролизу током 5 А в течении 5,36 ч. Сколько хлористого никеля осталось в растворе и какой объём хлора выделится? (Выход по току считать равным 100%).

37. При электролизе током 1 А масса катода увеличилась на 10 г. Какое количество электричества и в течение какого времени пропущено? (Выход по току считать равным 100%).

38. Ток одной и той же силы проходит через растворы нитрата серебра и сульфата . В результате электролиза выделилось 0,64 г меди. Найти количество серебра, выделенного из раствора за тот же промежуток времени.

39. В двух отдельных электролизерах проводится электролиз водного раствора . В одном из этих анодное и катодное пространства разделены диафрагмой, а в другом диафрагмы нет, и содержимое электролизера непрерывно перемешивается. Указать для каждого случая конечные продукты электролиза, приведя соответствующие уравнения реакций.

40. При электролизе раствора с медными электродами масса катода увеличилась на 5 г. Какое количество электричества пропущено?

41. Вычислить объём водорода, выделенного при пропускании тока в 5 А в течении 1 ч. через раствор (при вычислениях считать, что образуется только в результате восстановления тонов водорода кислоты).

42. Объясните различия между химической и электрохимической коррозией.

43. Почему технический цинк взаимодействует с кислотой более интенсивно, чем химически чистый цинк?

44. В железном изделии имеются детали, изготовленные из меди. Как это отразится на коррозии железа?

45. Объясните, почему цинковое покрытие в стальных трубах, по которым течет горячая вода, интенсивно корродирует?

46. Какое покрытие называется анодным? Приведите пример катодного покрытия железа и составьте электронные уравнения процессов, происходящих при коррозии, когда нарушена целостность покрытия.

47. Какое покрытие называется катодным? Приведите пример катодного покрытия железа и составьте уравнения процессов, происходящих при коррозии, когда нарушена целостность покрытия.

48. Железные цистерны применяются для перевозки концентрированной серной кислоты и хорошо выдерживают транспортировку. Если цистерну, освобождённую от кислоты, оставить открытой, она быстро корродирует. Объясните причину этого явления.

49. Почему при контактированнии железных изделий с алюминиевыми железные изделия подвергаются более интенсивной коррозии, хотя алюминий имеет меньшую величину стандартного потенциала?

50. Составьте уравнение процессов, происходящих при коррозии цинка, погруженного в раствор: а) с кислотой и б) щелочной средой.

51. В чём заключается сущность протекторной защиты металлов от коррозии? Приведите пример и составьте электронные уравнения.

52. Никелевая пластинка опущена в раствор:

а) соли трехвалентного железа,

В каком случае процесс коррозии протекает интенсивнее?

Составьте соответствующие электронные уравнения.

53. Железные пластинки опущены:

а) в дистиллированную воду;

б) в раствор хлористого атрия.

В каком случае процесс коррозии протекает интенсивнее?

54. Под землёй уложены рядом стальные объекты, имеющие различный потенциал (относительно нормального водородного электрода): телефонный кабель в стальной оболочке (+0,05 В), водопровод (-0,15 В), теплоцентраль (0,05 В), газопровод (-0,15 В). Какой из объектов наиболее подвержен коррозии? Что следует сделать для ее замедления?

55. Можно ли поверхность нержавеющей стали обрабатывать песком, содержащим загрязнения в виде хлоридов?

56. Почему отмывка автомобиля от солей и грязи предотвращает его коррозию?

57. Рассчитайте скорость коррозии стального листа размером 1,5х2 м, если убыль его массы составила за 300 дней 6 кг.

58. Объясните связь между защитой окружающей среды и защитой от коррозии.

59. Какие химические реакции происходят при коррозии алюминия в растворе соды?

60. Объясните причину коррозии алюминиевых деталей, обрызганных во время ремонта раствором гидроокиси кальция

61. Чем можно объяснить, что активный металл- алюминий хорошо сопротивляется атмосферной коррозии? Назвать вещество, активирующее коррозию алюминия. Объяснить, в чём заключается активирующее действие.

62. Если хорошо вычищенную наждачной бумагой алюминиевую пластину смочить раствором и оставить на воздухе, то она быстро покроется рыхлыми хлопьями . Объяснить это явление. В чём заключается активирование коррозии алюминия солями ртути?

63. Какие способы нанесения металлических покрытий применяются в промышленности?

64. Что такое оксидирование? Привести примеры химического и электрохимического оксидирования алюминия, железа.

65. Какие вещества называются ингибиторами? Какие вы знаете ингибиторы? Механизм действия ингибиторов. Где и когда применяются ингибиторы?

66. Какое из соотношений площадей поверхности катода и анода (например, медного и стального листов) наиболее благоприятно с точки зрения коррозионности: 1:1, 1:10, 10:1?

67. Почему для достижения полной защиты изделия необходимо придерживать определённой минимальной толщины лакокрасочных покрытий?

68. Перечислить требования, предъявляемые к гальваническим покрытиям.

1) -3716 Дж, -4955 Дж; 2) -4955 Дж, -2477 Дж, 2477 Дж, 4955 Дж; 3) -47,78 кДж/моль;

4) -819,67 кДж/моль; 5) 6427 Дж, -12854 Дж; 6) 431,5 кДж/моль; 7) -1579 кДж; 8) 52,2 кДж/моль; 9) -120,4 кДж/моль; 10) -236,8 кДж/моль; 11) 66,08 кДж/моль; 12) -2196,53 кДж/моль; 13) 2453 кДж, 2466 кДж; 14) 2398,1 кДж; 15) 39,4 кДж; 16) -100,5 кДж/моль; 17) 60 кДж; 18) 24,3 кДж/моль; 19) а) 96,8 кДж, б) 490,1 кДж; в) -27,7 кДж; 20) -1113 кДж/моль; 21) а) -443,2 кДж, б) -365,6 кДж; 22) а) -69,2 кДж, б) -2803 кДж; 23) 6С + 3Н2 = С6Н6 (ж); 24) 12,38 кДж; 25) 8,24 кДж; 26) 11395 кДж; 27) 6618,6 кДж; 28) 12254,7 кДж; 29) -798,101 кДж; 30) -897,74; 31)-573,28 кДж; 32) -198,39 кДж; 33) -186,86 кДж; 34) 131,1 кДж, 2926,33 кДж; 35) 23 кДж; 36) 0,083 г; 37) 119,8 кДж; 38) Тепловой эффект уменьшается; 39) 1032,6 Дж/к; 40) 61,1 Дж/кг К; 41) 159,1 Дж/моль к; 42) 154 Дж/моль К;

43) -423,82, 56,71, -5,17 Дж/К; 44) 590,94 кДж/моль. Прямая реакция невозможна; 45)

а) -505,62 кДж/моль, б) -7,51 кДж/моль, в) -4,4 кДж/моль, б и в при стандартных условиях протекает слабо; 48) б) и в); 49) 129,1 кДж, 50,7 кДж, -114,0 кДж, около 1080 К; 50) а) 47,1 кДж, б) 107,2 кДж, в) -13,0 кДж; 51) в) и г) при низкой темпер атуре; 55) 22,03 Дж/моль К; 56) 1601,7 кДж; 57) 36,5 кДж, 4,16 10 -7 ; 58) 2,5 10 -2 ; 59) 885 К; 60) а) 1,1 10 5 , 0,91, б) 1,5

10 -22 , 1,4, в) 2,7 10 5 , 1,1 10 -6 ; 61) б); 63) а); 64) б); 65) а); 70) 985,7 К; 71) 8,02 10 -3 ; 72) 29,2 кДж, 504,7 К; 73) 1,73; 74) 3,8 10 -8 ; 75) 1,6 10 3 , -28478,6 Дж.

1) 5,26 г; 2) 160 г соли и 1440 г воды; 3) 34,78 г; 4) 26,25 г; 5) 1 М; 6) 0,75 г; 7) 1,26 г; 8) 0,5 л; 9) 2,65 г; 10) 3,8 л; 11) 250 мл; 12) 10 г; 13) 0,3 Н, 24 мл; 14) 9,74 г; 15) 244,7 г; 16) 4,762 моль/1000 г Н2О; 19) 2,61 Н, 0,15 г/мл; 20) 5,37 Н, 0,2 г/мл; 21) 0,05 Н; 22) 1,3 Н; 23) 1,62 ° ; 24) 0,26 ° ; 25) 102 ° ; 26) 18,4 г; 27) 1250 г; 28) 4,5 г; 29) 180; 30) 34; 31) 82; 32) 92; 33) -10,1 ° ; 34) 5,2; 35) 178; 36) 500 г; 37) 20 г; 38) -10 ° ; 39) 0,0348 ° ; 40) 0,93 ° ; 41) 0,78; 42) 0,75; 43) 2,5; 44) 102,064 ° ; 45) -0,0279 градусов; 46) 2,96; 47) 3; 48) 1,8 10 -5 ; 49) 10%; 50) 0,018%; 51) 3 10 -7 ; 52) 0,95%; 53) 0,43%; 54) 1,7 10 -3 , 1,7 10 -4 г-ион/л; 55) 9,5 10 -3 ,9,5 10 -4 г-ион/л; 56) 0,072 г-ион/л, 0,144 г-ион/л; 57) 1,9 10 -4 ; 58) 0,6 г-ион/л, 0,3 г-ион/л; 59)0,999 10 -7 г-ион/л; 60)0,5 г-ион/л; 61) 1 10 -4 г-ион/л; 62) = 2; 63) 10 -9 г-ион/л; 64) 4,24 10 -4 г-ион/л; 64)

= 10,63; 65) = 6; 66) 0,08 г; 67) 0,2 г/л; 68) 1 10 -4 ; 69) 4,76 10 -3 ; 70) 6,02 10 -7 ионов; 71) 0,001 Н; 72) = 11,63; 73) 1,44 10 -16 ; 74) 2,25 10 -10 ; 75) 7,7 10 -13 ; 76) 3,8 10 -8 ; 77) 3,6 10 -11 ; 78) 0,333 10 -14 ; 79) 1,2 10 -2 моль/л; 80) 1,6 10 -9 ; 81) 1,31 10 -5 моль/л; 82) 1,5 10 -4 г-ион/л; 83) 6,5 10 -5 г; 84) б) 7,9 10-9 ; 85) 117 л; 86) 5 10 16 л; 87) 4,5 10 -2 г; 88) Осадок выпадает; 89) Осадок выпадает; 90) Нет; 91) Осадок выпадает; 92) Осадок выпадает; 93) в 2750 раз; 94) Нет; 95) 2,408 см; 96) 8,41 10-2 Ом -1 см -1 ; 97) 10,2 В; 98) 0,216 Ом -1 см -1 , 10,85 А; 99) 1,07 10 -2 Ом -1 см -1 , 106,8 Ом -1 см 2 г-эвк -1 ; 100) 127,3 Ом -1 см 2 г-экв -1 ; 101) 1,98 10 -2 см; 102) 0,5 см-1 , 4 10 -6 Ом -1 см -1 ; 103) 0,337 Ом -1 см -1 ; 104) 127,6 Ом -1 см 2 г-экв -1 , 0,88; 105) 390,7 Ом -1 см 2 г-экв -1 ; 106) Ом -1 см 2 г-эвк -1 , Ом -1 см 2 г-эвк -1 , 71,4 Ом -1 см 2 г-экв -1 , 76,3 Ом -1 см 2 г-экв -1 ; 107) 0,17, 0,60, 0,51, 0,49, 0,51; 108) 1,9 10 -3 Ом -1 см -1 ; 109) 404,4 Ом -1 см 2 г-эвк -1 ; 110) 30,5 Ом -1 см 2 г-эвк -1 , 0,29; 111) 258 Ом -1 см 2 г-эвк -1 ; 112) 0,23 см -1 , 14,15 Ом -1 см 2 г-эвк -1 , 28,3 Ом -1 см 2 моль -1 ; 113) 0,126, 1,210 -4 г-экв/л , 350 Ом -1 см 2 г-эвк; 114) 1,9 10 -5 ; 115) 338,5 Ом -1 см 2 г-эвк -1 ; 116) -9 ; 5,3

10 -15 ; 117) 0,97; 118) 0,28, 1,5 10 -3 ; 119) 1,86 10 -3 г/л, 1,3 10 -5 моль/л, 1,7 10 -10 ; 120) 1,56 10 -3 г-экв/л, 0,443 г/л; 121) 2,14 г-экв/л, 1,07 моль/л, 2,5 г/л; 122) 1,86 г/л, 3,48 10 -6 ; 123) -0,02 .

2) -0788 В; 3) -0,18 В, 0,71 В; 4) -0,77 В; 9) 1,53 В; 13) 0; 15) 1,78 10 -10 ; 17) = 2(+) = 13(-); = 0,693 B; 20) = a), б), в) 59 мВ; г) 177 мВ; 30) 3,36 г; 31) 161 мин; 32) 31,77 г; 33) 5,36 ч; 34) 670 а-ч; 35) 32,7; 36) = 64,85 г; = -11,2 л; 37) 55900 Кл, 15,5 ч; 38) 2,17 г; 40) 15200 Кл; 41) 2,09 л; 57) 0,27 г/м 2 ч.

Значение энергии связи

Тип связи
H – H H – C C = C Cl – Cl H – Cl C – C O – O H – O C = O C = C H – O C – O C = O C = O— 430,0 — 358,2 — 536,0 — 243,0 — 431,5 — 262,8 — 490,4 — 460,0 — 702,9 — 425,0 — 418,4 — 374,0 — 660,0 — 652,7

Энергия фазовых переходов

кДж/моль
33,8 44,0 41,68

Стандартные энтальпии образования энтропии и энергии Гиббса некоторых веществ при 298 К

Дата добавления: 2017-08-01 ; просмотров: 8109 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнение для потенциала металлического электрода

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

3.5 ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ

3.5.4 Классификация электродов

По типу электродной реакции все электроды можно разделить на две группы (в отдельную группу выделяются окислительно-восстановительные электроды, которые будут рассмотрены особо в разделе 3.5.5).

Электроды первого рода

К электродам первого рода относятся электроды, состоящие из металлической пластинки, погруженной в раствор соли того же металла. При обратимой работе элемента, в который включен электрод, на металлической пластинке идет процесс перехода катионов из металла в раствор либо из раствора в металл. Т.о., электроды первого рода обратимы по катиону и их потенциал связан уравнением Нернста (III.40) с концентрацией катиона (к электродам первого рода относят также и водородный электрод).

(III.40)

Электроды второго рода

Электродами второго рода являются электроды, в которых металл покрыт малорастворимой солью этого металла и находится в растворе, содержащем другую растворимую соль с тем же анионом. Электроды этого типа обратимы относительно аниона и зависимость их электродного потенциала от температуры и концентрации аниона может быть записана в следующем виде:

(III.48)

Для определения электродного потенциала элемента необходимо измерить ЭДС гальванического элемента, составленного из испытуемого электрода и электрода с точно известным потенциалом – электрода сравнения . В качестве примеров рассмотрим водородный, каломельный и хлорсеребряный электроды.

Водородный электрод представляет собой платиновую пластинку, омываемую газообразным водородом, погруженную в раствор, содержащий ионы водорода. Адсорбируемый платиной водород находится в равновесии с газообразным водородом; схематически электрод изображают следующим образом:

Электрохимическое равновесие на электроде можно рассматривать в следующем виде:

Потенциал водородного электрода зависит от активности ионов Н + в растворе и давления водорода; потенциал стандартного водородного электрода (с активностью ионов Н + 1 моль/л и давлением водорода 101.3 кПа) принят равным нулю. Поэтому для электродного потенциала нестандартного водородного электрода можно записать:

(III.49)

Каломельный электрод . Работа с водородным электродом довольно неудобна, поэтому в качестве электрода сравнения часто используется более простой в обращении каломельный электрод, величина электродного потенциала которого относительно стандартного водородного электрода точно известна и зависит только от температуры. Каломельный электрод состоит из ртутного электрода, помещенного в раствор КСl определенной концентрации и насыщенный каломелью Hg2Сl2:

Каломельный электрод обратим относительно анионов хлора и уравнение Нернста для него имеет вид:

(III.50)

Хлорсеребряный электрод . В качестве электрода сравнения используют также другой электрод второго рода – хлорсеребряный, представляющий собой серебряную проволоку, покрытую хлоридом серебра и помещённую в раствор хлорида калия. Хлорсеребряный электрод также обратим относительно анионов хлора:

Величина потенциала хлорсеребряного электрода зависит от активности ионов хлора; данная зависимость имеет следующий вид:

(III.51)

Чаще всего в качестве электрода сравнения используется насыщенный хлорсеребряный электрод, потенциал которого зависит только от температуры. В отличие от каломельного, он устойчив при повышенных температурах и применим как в водных, так и во многих неводных средах.

Электроды, обратимые относительно иона водорода, используются на практике для определения активности этих ионов в растворе (и, следовательно, рН раствора) потенциометрическим методом, основанном на определении потенциала электрода в растворе с неизвестным рН и последующим расчетом рН по уравнению Нернста. В качестве индикаторного электрода может использоваться и водородный электрод, однако работа с ним неудобна и на практике чаще применяются хингидронный и стеклянный электроды.

Хингидронный электрод , относящийся к классу окислительно-восстановительных электродов (см. ниже), представляет собой платиновую проволоку, опущенную в сосуд с исследуемым раствором, в который предварительно помещают избыточное количество хингидрона С6Н4О2·С6Н4(ОН)2 – соединения хинона С6Н4О2 и гидрохинона С6Н4(ОН)2, способных к взаимопревращению в равновесном окислительно-восстановительном процессе, в котором участвуют ионы водорода:

Хингидронный электрод является т.н. окислительно-восстановительным электродом (см. разд. 3.5.5); зависимость его потенциала от активности ионов водорода имеет следующий вид:

(III.52)

Стеклянный электрод , являющийся наиболее распространенным индикаторным электродом, относится к т.н. ионоселективным или мембранным электродам. В основе работы таких электродов лежат ионообменные реакции, протекающие на границах мембран с растворами электролитов; ионоселективные электроды могут быть обратимы как по катиону, так и по аниону.

Принцип действия мембранного электрода заключается в следующем. Мембрана, селективная по отношению к некоторому иону (т.е. способная обмениваться этим ионом с раствором), разделяет два раствора с различной активностью этого иона. Разность потенциалов, устанавливающаяся между двумя сторонами мембраны, измеряется с помощью двух электродов. При соответствующем составе и строении мембраны её потенциал зависит только от активности иона, по отношению к которому мембрана селективна, по обе стороны мембраны.

Наиболее часто употребляется стеклянный электрод в виде трубки, оканчивающейся тонкостенным стеклянным шариком. Шарик заполняется раствором НСl с определенной активностью ионов водорода; в раствор погружен вспомогательный электрод (обычно хлорсеребряный). Потенциал стеклянного электрода с водородной функцией (т.е. обратимого по отношению к иону Н + ) выражается уравнением

(III.53)

Необходимо отметить, что стандартный потенциал ε °ст для каждого электрода имеет свою величину, которая со временем изменяется; поэтому стеклянный электрод перед каждым измерением рН калибруется по стандартным буферным растворам с точно известным рН.

3.5.5 Окислительно-восстановительные электроды

В отличие от описанных электродных процессов в случае окислительно-восстановительных электродов процессы получения и отдачи электронов атомами или ионами происходят не на поверхности электрода, а только в растворе электролита. Если опустить платиновый (или другой инертный) электрод в раствор, содержащий двух- и трехзарядные ионы железа и соединить этот электрод проводником с другим электродом, то возможно либо восстановление ионов Fe 3+ до Fe 2+ за счет электронов, полученных от платины, либо окисление ионов Fe 2+ до Fe 3+ с передачей электронов платине. Сама платина в электродном процессе не участвуют, являясь лишь переносчиком электронов. Такой электрод, состоящий из инертного проводника первого рода, помещенного в раствор электролита, содержащего один элемент в различных степенях окисления, называется окислительно-восстановительным или редокс-электродом . Потенциал окислительно-восстановительного электрода также определяют относительно стандартного водородного электрода:

Pt, H2 / 2H + // Fe 3+ , Fe 2+ / Pt

Зависимость потенциала редокс-электрода ε RO от концентрации (активности) окисленной [Ox] и восстановленной форм [Red] для окислительно-восстановительной реакции, в которой не участвуют никакие другие частицы, кроме окислителя и восстановителя, имеет следующий вид (здесь n – число электронов, участвующих в элементарном акте окислительно-восстановительной реакции):

(III.54)

Из данного выражения следует уравнение для потенциала металлического электрода (III.40), т.к. активность атомов металла (восстановленной формы) в материале электрода равна единице.

В случае более сложных систем в выражении для окислительно-восстановительного потенциала фигурируют концентрации всех участвующих в реакции соединений, т.е. под окисленной формой следует понимать все соединения в левой части уравнения реакции

а под восстановленной – все соединения в правой части уравнения. Так, для окислительно-восстановительных реакций, протекающих с участием ионов водорода

уравнение Нернста будет записываться следующим образом:

(III.55)

При составлении гальванических элементов с участием редокс-электрода электродная реакции на последнем в зависимости от природы второго электрода может быть либо окислительной, либо восстановительной. Например, если составить гальванический элемент из электрода Pt / Fe 3+ , Fe 2+ и второго электрода, имеющего более положительный электродный потенциал, то при работе элемента редокс-электрод будет являться анодом, т.е. на нем будет протекать процесс окисления:

Если потенциал второго электрода будет меньше, чем потенциал электрода Pt / Fe 3+ , Fe 2+ , то на последнем будет протекать реакция восстановления и он будет являться катодом:

Знание величин электродных потенциалов позволяет определить возможность и направление самопроизвольного протекания любой окислительно-восстановительной реакции при одновременном наличии в растворе двух или более окислительно-восстановительных пар. Восстановленная форма любого элемента или иона будет восстанавливать окисленную форму другого элемента или иона, имеющего более положительный электродный потенциал.

Copyright © С. И. Левченков, 1996 — 2005.

Основные типы электродов и расчет их потенциала

Различают следующие типы электродов

1) Электроды I рода – металлические, представляющие собой металл, погруженный в раствор соли металла: Ме/Ме + z

Реакции, протекающие на электродах, принято записывать так, чтобы в левой части уравнения находились окисленные формы реагирующих веществ, а в правой – восстановленные. В основе работы электрода I рода лежит реакция:

.

Применим уравнение Нернста для расчета потенциала электрода:

.

В электрохимии стандартные состояния выбирают таким образом, что активность нейтральных металлов равна единице: , тогда

.

Потенциал электрода I рода определяется термодинамической активностью ионов данного металла в растворе, поэтому электроды I рода обратимы относительно катиона. К электродам I рода относятся цинковый, медный электроды и т.д.

2) Электроды II рода представляют собой металлическую пластину, покрытую слоем труднорастворимой соли данного металла и погруженную в раствор, содержащий анионы труднорастворимой соли: Ме, MeAn/An — z

В основе работы электрода II рода лежит реакция:

.

Применяя уравнение Нернста с учетом выбранного стандартного состояния, получаем:

Электроды II обратимы относительно аниона. Основными представителями электродов II рода являются хлорсеребряный и каломельный электроды, которые на практике часто применяют в качестве электродов сравнения, в частности при измерении рН растворов.

3) Газовые электроды – электроды, состоящие из инертного металла, контактирующего одновременно с газом и раствором, содержащим ионы газообразного вещества. Типичным представителем газовых электродов является водородный электрод, представляющий собой платиновую пластинку, покрытую слоем электролитической платины для обеспечения достаточной площади поверхности и опущенную в раствор, содержащий ионы водорода, при этом через раствор непрерывно пропускается газ, содержащий молекулярный водород.

В основе работы водородного электрода лежит реакция:

.

Применим уравнение Нернста:

.

Если принять, что активность молекулярного водорода равна парциальному давлению, то

.

Если , то такой электрод является стандартным и его потенциал равен нулю:

4) Амальгамные электроды представляют собой металлическую пластину, покрытую слоем амальгамного металла (т.е. раствора данного металла в ртути) и опущенную в раствор, содержащий ионы данного металла:
Ме, Ме(Hg)/Me + z .

В основе работы амальгамного электрода лежит реакция:

Уравнение для расчета потенциала амальгамного электрода имеет вид:

.

5)Электроды III рода или окислительно-восстановительные электроды, представляют собой пластину из инертного металла, например, платины, погруженную в раствор, содержащий окисленные и восстановленные формы веществ (ионов или молекул). Характерной особенностью таких электродов является то, что процесс окисления-восстановления протекает в растворе без участия вещества самого металлического электрода, который играет роль проводника электрического тока: Pt/Ox, Red.

Например, ферро-ферри электрод: Pt/Fe 3+ , Fe 2+

В основе работы такого электрода лежит реакция:

Уравнение для расчета потенциала электрода имеет вид:

.

Раздел V. химическая кинетика и катализ

Химическая кинетика – наука о скорости протекания химических реакций.

Скорость химической реакции – изменение концентрации одного из реагирующих веществ в единицу времени.

Поскольку в реакциях вещества участвуют в стехиометрических соотношениях, за скорость реакции может быть принята производная от концентрации любого из реагирующих веществ по времени:

,

где сисх – концентрация исходного вещества;

Если в качестве одного из реагирующих веществ выбран продукт реакции, то

Скорость реакции всегда положительна, поэтому для исходных веществ, концентрация которых убывает, производную берут со знаком «–».

Скорость реакции в момент времени t равна тангенсу угла наклона касательной, проведенной к кривой зависимости с = f(t) в точке, соответствующей времени t:

– для исходных веществ

– для продуктов реакции.

Среднюю скорость реакции за промежуток времени ∆τ можно рассчитать:

Вещество кДж/моль Дж/моль кДж/моль
-1672,0
-3439,0
-74,9186,2-50,8
226,8200,8209,2
52,3219,4
-84,8
123,48
20,42267,1161,7
-201,2
-238,71
-110,7197,4-137,4
-394213,6-394,89
-235,46278,7
-277,6
-171,4
-1273
(глюкоза) 39,7-604,2
223,09
-112981,2-1050
-162,042,0-129,9
-264858,79-246
-822,287,4-740,3
-1117,1151,46-1010
130,5
-92,3186,8
-285,870,1-237,3
-241,8188,7-228,6
-187,29-218,88
-135,34227,09-203,07
205,7-33,8
-194,1157,1
191,5
-46,2-1655
t1
a
с
t
b
a
спрод
сисх
∆t
∆С
с1

Изменения концентраций каждого из реагентов связаны друг с другом стехиометрическими соотношениями. Тогда для реакции

(*)

скорость можно выразить

.

Дата добавления: 2016-06-22 ; просмотров: 3121 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://physchem.chimfak.sfedu.ru/Source/PCC/Solutions_6.htm

http://poznayka.org/s21708t1.html