Уравнение для скорости каталитической реакции

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Катализ

Содержание:

Катализ (греч. κατάλυσις от καταλύειν «разрушение») — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который, согласно теории промежуточных соединений, многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.

На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.

Катализ

Катализ—процесс увеличения скорости химической реакции при участии катализаторов. Катализаторами могут быть вещества в состоянии атомов, молекул, ионов или поверхности раздела фаз, которые взаимодействуют с исходными химическими соединениями, резко изменяют скорость реакции и выделяются на последующих стадиях в химически неизменном виле. Вещества, которые не ускоряют, а замедляют реакцию (увеличивают E*), называют ингибиторами.

Катализ может быть гомогенным, если реагирующие вещества и катализатор находятся в одной фазе. Примером гомогенного катализа может служить реакция

которая идет при высоких температурах и резко ускоряется в присутствии небольшой примеси паров воды.

Катализ называют гетерогенным, если реагирующие вещества и катализатор находятся в разных фазах и имеют границу раздела, например процессы окисления аммиака на платиновом катализаторе

и разложение пероксида водорода в присутствии твердого оксида марганца (IV)

Для некоторых веществ термодинамически допустимо не одно, а несколько направлений превращения. С помощью специально подобранных катализаторов можно ускорять одни и замедлять другие превращения. Так, одно и то же вещество—этиловый спирт—в присутствии оксидов алюминия или тория разлагается с образованием этилена и воды

а в присутствии серебра и меди разлагается с образованием уксусного альдегида и водорода

Каталитическая активность различных катализаторов может резко изменяться в присутствии некоторых веществ иной химической природы, которые сами не являются катализаторами, но резко увеличивают его каталитическую активность—такие вещества называют промоторами или активаторами. Так, каталитическая активность твердого оксида в отношении реакции окисления в сотни раз увеличивается в присутствии сульфатов щелочных металлов. Вещества, которые, сами не являясь катализаторами, снижают их каталитическую активность, называют каталитическими ядами. Так, для процесса окисления в сернокислотном производстве каталитическим

ядом является ничтожная примесь соединений мышьяка.

Впервые явление катализа было открыто в 1806 г. Н. Клеманом и Ш. Дезормом в камерном процессе получения серной кислоты. Они установили каталитическое действие оксидов азота на скорость окисления В конце XIX в. промышленным методом получения серной кислоты стал контактный способ, основанный на окислении кислородом в присутствии платинового катализатора. В настоящее время вместо дорогостоящих платиновых катализаторов успешно работают оксидные смеси (например, Каталитическим способом проводят промышленный синтез аммиака где в качестве катализатора используют железо, промо-тированное оксидами алюминия и калия. Синтез азотной кислоты осуществляют с помощью каталитического окисления аммиака в присутствии платинового катализатора.

Первым промышленным производством, в котором был использован гетерогенный катализ, явился процесс Дикона (получение хлора)

хорошо идущий в присутствии солей меди.

В промышленном синтезе газообразного водорода используют процессы

И

в первом, из которых катализаторами служат оксилы железа, во втором—различные никелевые катализаторы.

Особенно большие успехи в деле промышленного использования катализа были достигнуты в процессах органического синтеза. Каталитическая гидрогенизация соединений с двойными связами; синтетическое моторное топливо; крекинг нефти; десульфуризация нефтепродуктов; синтез каучука, этанола и метанола, окиси этилена, изопропилового спирта, ацетона, акролеина, дивинила, изопрена, бензола, толуола; получение синтетических волокон и других высокополимерных веществ; каталитическая очистка технологических газов—вот далеко не полный перечень продуктов, которые получают в промышленном масштабе с использованием широкого ассортимента катализаторов.

Каталитические реакции бывают одностадийными (слитными) и многостадийными, проходящими через последовательные стадии, из которых одна является лимитирующей, т. е. стадией с наименьшей скоростью. Рассмотрим слитный механизм каталитического процесса на примере бимолекулярной реакции

где X — катализатор; (А— X)* — активированный комплекс. Скорость этой реакции v — где Сх—концентрация катализатора. Этот же процесс можно записать, опустив переходное состояние (А — X)*,


Константа скорости такой каталитической реакции может быть существенно больше константы той же реакции в отсутствие катализатора из-за уменьшения энергии активации.

В случае двустадийной реакции


Если то осуществляется первая стадия в режиме, похожем на равновесный (двусторонняя реакция). Поэтому ее можно охарактеризовать константой равновесия

Скорость второй односторонней стадии равна

(16.2)

Объединив выражения (16.1) и (16.2), получаем

Вещество АХ, которое иногда называют промежуточным веществом Аррениуса, реально существует, его можно экспериментально определить методами спектрального анализа, ЭПР и др. Обычно концентрация этого вещества мала (в этом случае мало значение константы что и делает вторую стадию замедленной, лимитирующей. Подобная форма записи многостадийной реакции является достаточно общей, она обязательно включает произведение такого числа констант, которое равно числу стадий. Рассмотрим наиболее характерные особенности гомогенно- и гетерогенно-каталитических реакций.

Гомогенно-каталитические процесс

Гомогенно-каталитические процессы в газовой фазе встречаются редко, так как газообразные катализаторы почти неизвестны. Примером может служить процесс пиролиза ацетальдегида, катализируемый парообразным иодом,

В этом процессе катализатор снижает энергию активации с 198 до 134 кДж/моль.

Гомогенный катализ наиболее распространен в растворах. В связи с большим числом конкретных примеров гомогенно-каталитические реакции этого типа принято делить на кислотно-основные и окислительно-восстановительные с участием комплексных соединений. К кислотноосновному катализу относят процессы изомеризации, гидратации и дегидратации, гидролиза, этерификации, алкилирования, деполяризации. В зависимости от типа основания или кислоты эти реакции условно делят на четыре группы:

1) специфический кислотный катализ ионами

2) специфический основной катализ ионами ОН-;

3) общий кислотный катализ (любыми кислотами);

4) общий основной катализ (любыми основаниями).

Если процесс, катализируемый кислотой или основанием, идет в растворе, то общая скорость реакции будет равна сумме скоростей реакций, катализируемых соответствующими катализаторами, а именно:

где

(здесь —константа скорости некаталитической реакции; остальные —константы скоростей реакций, катализируемых соответственно ионами водорода, гидроксила и другими кислотами и основаниями). Для специфического кислотного катализа уравнение (16.3) записывают так: ДЛЯ основного— Примером специфического кислотного катализа может служить реакция гидролиза сложного эфира:

первая стадия

вторая стадия (промежуточная)


Первая стадия — быстрая, почти мгновенная, идет до равновесия
(16.4)
вторая стадия — медленная, лимитирующая, для нее

(16.5)

подставив (16.4) в (16.5), получим

третья стадия, процесс распада активированного комплекса, приводит к образованию продуктов реакции.

Перейдем к рассмотрению гомогенного катализа комплексными соединениями переходных металлов. При таком катализе в присутствии комплексных катализаторов (чаще всего катионов переходных металлов) осуществляют реакции восстановления и окисления, гидрирования и гидратации, полимеризации и изомеризации. Примером может служить метод промышленного окисления этилена до ацетальдегида в водной среде в присутствии палладиевого катализатора

Окисление образующегося металлического палладия осуществляется ионом

и, наконец, Си4- окисляется кислородом воздуха до

Этот процесс в промышленных условиях идет сначала без доступа воздуха, образовавшийся ацетальдегид отгоняют, после чего ведут продувку воздуха. Если в этом процессе заменить хлор на бром, скорость реакции возрастет в 17 раз; если вести процесс в уксуснокислой среде, из эгилена образуется винилацетат. Приведенный пример показывает, что, воздействуя на катализатор, можно изменить не только скорость, но и химическую схему каталитической реакции.

Остановимся на характеристике гомогенно-каталитического ферментативного катализа, который осуществляется при использовании биологических катализаторов—ферментов, представляющих собой природные белки, входящие в состав тканей. Ферментативный катализ является основой управления сложных жизненных процессов в растениях и животных организмах. Так, фотосинтез, брожение, дыхание, пищеварение, синтез белков, сокращение мышц являются каталитическими процессами, использующими в качестве катализаторов различные ферменты.

Среди других видов каталитических реакций ферментативный катализ является самым высокоорганизованным, поскольку ферменты отличаются высокой избирательностью, специфичностью и каталитической активностью. Ферменты—это высокомолекулярные белки, состоящие из различных аминокислот, связанных пептидными связями. Нативная конформация молекулы фермента образует активный каталитический центр, содержащий полярные

, а также гидрофобные группы, способные ориентировать молекулы реагирующих веществ в определенном положении по отношению к активному центру. В состав активного центра многих ферментов входят ионы металлов, причем при удалении иона металла из металлофермента последний теряет каталитические свойства. Каталитическая активность ферментов имеет максимум на шкале pH, в сильнокислых и сильнощелочных средах она, как правило, не проявляется. Каталитическая активность ферментов наиболее оптимальна при температуре от 20 до 40° С, при 60—70° С происходит их денатурация. Активные центры имеют строго определенную структуру, что позволяет ферменту присоединять только молекулы определенного строения. Так, например, фермент уреаза гидролизует карбамид раз быстрее, чем ион водорода, и не оказывает влияния на реакции гидролиза других родственных карбамиду соединений. В настоящее время известно около тысячи ферментов, одни из которых катализируют только окислительно-восстановительные процессы, другие—реакции с переносом групп, третьи — реакции гидролиза и т. д.

Гетерогенно-каталитические процессы занимают особое место в кинетике, они протекают на границе раздела фаз твердое тело — газ, твердое тело—жидкость. Эти процессы широко используют в промышленной практике. В табл. 16.1 приведены примеры таких каталитических процессов и катализаторов.

Преимущество гетерогенно-каталитических процессов перед гомогенным катализом объясняется большим удоб-

ством гетерогенных катализаторов, легкостью их отделения от реагирующих веществ. Важнейшая характеристика гетерогенного катализатора—величина его активной поверхности. Часто катализаторы получают нанесением активной формы на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве таких носителей применяют активированный уголь, силикагель, оксид хрома(Ш) и др. Многие катализаторы получают осаждением из растворов в виде гидроксидов ZnO и др.) с последующей термической обработкой. Повышение температуры обычно приводит к увеличению скорости гетерогенно-каталитического процесса. Гетерогенный катализ более сложен в плане теоретического описания, чем гомогенный. Если в гомогенном катализе катализатор находится в молекулярном состоянии, которое можно строго описать термодинамически, то в гетерогенном катализе, как правило, неясно, что принимать за молекулярную единицу катализатора и как охарактеризовать состояние молекул, находящихся на границе с твердой фазой катализатора. Поэтому для физико-химического описания различных стадий гетерогенно-каталитического процесса часто прибегают к условным понятиям и приближенным моделям.

Большая роль в гетерогенном катализе принадлежит процессам адсорбции —физической адсорбции и хемосорбции. Физическая адсорбция является результатом межмолекулярного взаимодействия между частицами (атомами, ионами, молекулами) поверхностного слоя твердой фазы и молекулами газовой фазы или раствором. Хемосорбция (химическая сорбция) завершается химическим взаимодействием адсорбированного вещества с поверхностью твердой фазы. Адсорбирующее твердое вещество называют адсорбентом; вещество, которое адсорбируется,—адсорбтивом. Адсорбция—экзоэргический процесс, сопровождающийся ростом концентрации упорядоченности адсорбтива на поверхности адсорбента. В табл. 16.2 приведены значения тепловых эффектов хемосорбции. Величину адсорбции (Г), т. е. концентрацию веществ на адсорбирующей поверхности, измеряют в молях на м2.

Гетерогенно-каталитические процессы идут через несколько стадий: например, процесс

(16.6)

протекающий на железо-оксидных катализаторах, можно разделить на следующие стадии: подход молекул СО и

к поверхности катализатора; проникновение их в поры катализатора; физическая адсорбция и хемосорбция молекул СО и ; химическое взаимодействие молекул СО и адсорбированных на поверхности катализатора; десорбция молекул и их отход от поверхности катализатора. Для описания скорости реакции (16.6) используют уравнение

(16.7)
где — константа скорости гетерогенно-каталитической

реакции, которая пропорциональна — константа адсорбции, Е* — энергия активации процесса).

Первичной стадией гетерогенно-каталитического процесса является процесс адсорбции (т. е. увеличение концентрации реагирующих веществ), однако главная сущность каталитического влияния заключена в химическом взаимодействии реагирующих молекул с поверхностью катализатора по схеме

Гетерогенный катализ—сложное явление, требующее глубокого теоретического анализа. Наиболее распространенные варианты теории были развиты в работах академика А. А. Баландина (мультиплетная теория катализа) и Н. И. Кобозева (теория активных ансамблей).

Услуги по химии:

Лекции по химии:

Лекции по неорганической химии:

Лекции по органической химии:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Урок №4. Скорость химических реакций. Первоначальные представления о катализе

Вы знакомы с понятием «скорость» из курса физики. В общем виде скорость — это величина, показывающая как изменяется какая либо характеристика за единицу времени.

Скорость химической реакции — это величина, показывающая как изменяются концентрации исходных веществ или продуктов реакции за единицу времени.

Для оценки скорости необходимо изменение концентрации одного из веществ.

Гомогенные системы (однородные) – газ/газ, жидкость/жидкость – реакции идут во всём объёме.

Гетерогенные (неоднородные) системы – твёрдое/жидкость, газ/твёрдое, жидкость/газ – реакции идут на поверхности раздела фаз.

С корость химической реакции в гомогенной системе

Скорость химической реакции в гетерогенной системе

Таким образом, скорость химической реакции показывает изменение количества вещества в единицу времени, в единице объёма или на единице поверхности раздела фаз. Наибольший интерес представляют реакции, протекающие в однородной (гомогенной) среде.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ

Закон действующих масс: Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

При повышении концентрации хотя бы одного из реагирующих веществ скорость химической реакции возрастает в соответствии с кинетическим уравнением.

aA + bB = cC + dD

, где A, B, C, D – газы, жидкости

Кинетическое уравнение примет вид:

υ=k‧C a (A) ‧C b (B)

, где k – коэффициент скорости реакции

Зависимость скорости реакции от температуры определяется правилом Вант — Гоффа : при повышении температуры на каждые 10°С скорость реакции увеличивается в 2-4 раза.

Причиной повышения скорости является увеличение числа столкновений реагирующих частиц за счёт увеличения частиц в единице объёма.

Химические реакции, протекающие в гомогенных системах (смеси газов, жидкие растворы), осуществляется за счет соударения частиц. Однако, не всякое столкновение частиц реагентов ведет к образованию продуктов. Только частицы, обладающие повышенной энергией — активные частицы, способны осуществить акт химической реакции. С повышением температуры увеличивается кинетическая энергия частиц и число активных частиц возрастает, следовательно, химические реакции при высоких температурах протекают быстрее, чем при низких температурах.

Правило Вант — Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции.

КАТАЛИЗАТОРЫ И ИНГИБИТОРЫ

Катализаторы — это вещества, которые повышают скорость химической реакции. Они вступают во взаимодействие с реагентами с образованием промежуточного химического соединения и освобождаются в конце реакции.

Влияние, оказываемое катализаторами на химические реакции, называется катализом . По агрегатному состоянию, в котором находятся катализатор и реагирующие вещества, следует различать:

гомогенный катализ (катализатор образует с реагирующими веществами гомогенную систему, например, газовую смесь);

гетерогенный катализ (катализатор и реагирующие вещества находятся в разных фазах; катализ идет на поверхности раздела фаз).

Ингибитор — вещество, замедляющее скорость реакции

Для увеличения площади соприкосновения реагирующих веществ, их измельчают. Наибольшей степени измельчения достигают путем растворения веществ. Быстрее всего вещества реагируют в растворах.

Например, металлы магний и железо реагируют с соляной кислотой одинаковой концентрации с различной скоростью. Это связано с разной химической активностью металлов.

При на­ли­чии га­зо­об­раз­ных ре­а­ген­тов — по­вы­ше­ние дав­ле­ния по­вы­ша­ет кон­цен­тра­цию га­зо­об­раз­ных ве­ществ, увеличивая скорость реакции.

ПЛОЩАДЬ СОПРИКОСНОВЕНИЯ РЕАГИРУЮЩИХ ВЕЩЕСТВ

Для увеличения площади соприкосновения реагирующих веществ, их измельчают. Наибольшей степени измельчения достигают путем растворения веществ. Быстрее всего вещества реагируют в растворах.

ПРИРОДА РЕАГИРУЮЩИХ ВЕЩЕСТВ

Например, металлы магний и железо реагируют с соляной кислотой одинаковой концентрации с различной скоростью. Это связано с разной химической активностью металлов.

При на­ли­чии га­зо­об­раз­ных ре­а­ген­тов — по­вы­ше­ние дав­ле­ния по­вы­ша­ет кон­цен­тра­цию га­зо­об­раз­ных ве­ществ, увеличивая скорость реакции.


источники:

http://natalibrilenova.ru/kataliz/

http://www.sites.google.com/site/himulacom/%D0%B7%D0%B2%D0%BE%D0%BD%D0%BE%D0%BA-%D0%BD%D0%B0-%D1%83%D1%80%D0%BE%D0%BA/9-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%B9-%D0%B3%D0%BE%D0%B4-%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F/%D1%83%D1%80%D0%BE%D0%BA-4-%D1%81%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C-%D1%85%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-%D1%80%D0%B5%D0%B0%D0%BA%D1%86%D0%B8%D0%B9-%D0%BF%D0%B5%D1%80%D0%B2%D0%BE%D0%BD%D0%B0%D1%87%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%BF%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BE-%D0%BA%D0%B0%D1%82%D0%B0%D0%BB%D0%B8%D0%B7%D0%B5