Уравнение для скорости обратной реакции

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Обратимые и необратимые химические реакции. Химическое равновесие и способы его смещения

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На уроке будет рассмотрена тема «Обратимые и необратимые химические реакции. Химическое равновесие», будут рассматриваться факторы, влияющие на смещение химического равновесия. Вы познакомитесь с принципом Ле Шателье. Вводится понятие обратимых и необратимых реакций.

Уравнение для скорости обратной реакции

На уроке будет рассмотрена тема «Обратимые и необратимые химические реакции. Химическое равновесие», будут рассматриваться факторы, влияющие на смещение химического равновесия. Вы познакомитесь с принципом Ле Шателье. Вводится понятие обратимых и необратимых реакций.

I. Понятие прямой и обратной реакции

Рас­смот­рим неко­то­рую аб­стракт­ную ре­ак­цию, ко­то­рую за­пи­шем в виде:

Но мно­гие хи­ми­че­ские ре­ак­ции могут идти в об­рат­ную сто­ро­ну.

АВ А+В, об­рат­ная ре­ак­ция

Для крат­ко­сти такую ре­ак­цию за­пи­сы­ва­ют, ис­поль­зуя две стрел­ки, одну – впе­ред, дру­гую – назад.

А+ВАВ

При по­вы­ше­нии тем­пе­ра­ту­ры ско­рость боль­шин­ства хи­ми­че­ских ре­ак­ций уве­ли­чи­ва­ет­ся. Но ока­зы­ва­ет­ся, что в слу­чае неко­то­рых ре­ак­ций про­дукт ре­ак­ции при тем­пе­ра­ту­ре, когда она идет с хо­ро­шей ско­ро­стью, уже на­чи­на­ет раз­ла­гать­ся. В част­но­сти, такая си­ту­а­ция ре­а­ли­зу­ет­ся при вза­и­мо­дей­ствии во­до­ро­да с йодом при по­лу­че­нии йо­до­во­до­ро­да.

Н2 + I2 (1)

Ско­рость хи­ми­че­ской ре­ак­ции уве­ли­чи­ва­ет­ся с уве­ли­че­ни­ем кон­цен­тра­ции ис­ход­ных ве­ществ и со­от­вет­ствен­но умень­ша­ет­ся с умень­ше­ни­ем кон­цен­тра­ции ис­ход­ных ве­ществ. По­лу­ча­ет­ся, что, по мере про­хож­де­ния ре­ак­ций, ско­рость пря­мой ре­ак­ции будет умень­шать­ся, т. к. ис­ход­ные ве­ще­ства будут рас­хо­до­вать­ся. А ско­рость об­рат­ной ре­ак­ции будет воз­рас­тать, по­то­му что кон­цен­тра­ция ве­ще­ства АВ ис­ход­но­го для об­рат­ной ре­ак­ции будет по­сте­пен­но уве­ли­чи­вать­ся. До каких пор ско­рость пря­мой ре­ак­ции будет умень­шать­ся, а об­рат­ной уве­ли­чи­вать­ся? Это будет до того мо­мен­та, когда ско­ро­сти пря­мой и об­рат­ной ре­ак­ции ста­нут рав­ны­ми. На­сту­пит хи­ми­че­ское рав­но­ве­сие. Рис. 1.

Хи­ми­че­ское рав­но­ве­сие это со­сто­я­ние ре­ак­ци­он­ной си­сте­мы, в ко­то­ром ско­ро­сти пря­мой и об­рат­ной ре­ак­ции равны.

II. Константа равновесия

Рав­но­вес­ная кон­цен­тра­ция ве­ществ

Рав­но­вес­ная кон­цен­тра­ция ве­ществ – это кон­цен­тра­ции ве­ществ в ре­ак­ци­он­ной смеси, на­хо­дя­щих­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия. Рав­но­вес­ная кон­цен­тра­ция обо­зна­ча­ет­ся хи­ми­че­ской фор­му­лой ве­ще­ства, за­клю­чен­ной в квад­рат­ные скоб­ки.

На­при­мер, сле­ду­ю­щая за­пись обо­зна­ча­ет, что рав­но­вес­ная кон­цен­тра­ция во­до­ро­да в рав­но­вес­ной си­сте­ме со­став­ля­ет 1 моль/л.

Хи­ми­че­ское рав­но­ве­сие (Рис. 2) от­ли­ча­ет­ся от при­выч­но­го для нас по­ня­тия «рав­но­ве­сие». Хи­ми­че­ское рав­но­ве­сие – ди­на­ми­че­ское. В си­сте­ме, на­хо­дя­щей­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия, про­ис­хо­дят и пря­мая, и об­рат­ная ре­ак­ции, но их ско­ро­сти равны, и по­это­му кон­цен­тра­ции участ­ву­ю­щих ве­ществ не ме­ня­ют­ся. Хи­ми­че­ское рав­но­ве­сие ха­рак­те­ри­зу­ет­ся кон­стан­той рав­но­ве­сия, рав­ной от­но­ше­нию кон­стант ско­ро­стей пря­мой и об­рат­ной ре­ак­ций.

Кон­стан­ты ско­ро­сти пря­мой и об­рат­ной ре­ак­ции – это ско­ро­сти дан­ной ре­ак­ции при кон­цен­тра­ци­ях ис­ход­ных для каж­дой из них ве­ществ в рав­ных еди­ни­цах. Также кон­стан­та рав­но­ве­сия равна от­но­ше­нию рав­но­вес­ных кон­цен­тра­ций про­дук­тов пря­мой ре­ак­ции в сте­пе­нях сте­хио­мет­ри­че­ских ко­эф­фи­ци­ен­тов к про­из­ве­де­нию рав­но­вес­ных кон­цен­тра­ций ре­а­ген­тов.

Если , то в си­сте­ме боль­ше ис­ход­ных ве­ществ. Если , то в си­сте­ме боль­ше про­дук­тов ре­ак­ции.

III. Обратимые и необратимые химические реакции

Если кон­стан­та рав­но­ве­сия зна­чи­тель­но боль­ше 1, такую ре­ак­цию на­зы­ва­ют необ­ра­ти­мой.

Необ­ра­ти­мы­ми на­зы­ва­ют­ся хи­ми­че­ские ре­ак­ции , ко­то­рые про­ис­хо­дят толь­ко в одном на­прав­ле­нии до пол­но­го рас­хо­до­ва­ния од­но­го из ре­а­ген­тов.

На­при­мер, это ре­ак­ция:

Об­ра­ти­мы­ми на­зы­ва­ют­ся хи­ми­че­ские ре­ак­ции , ко­то­рые осу­ществ­ля­ют­ся во вза­им­но про­ти­во­по­лож­ных на­прав­ле­ни­ях при одних и тех же усло­ви­ях.

IV. Факторы, влияющие на смещение равновесия

Если из­ме­нить внеш­ние усло­вия, то со­сто­я­ние хи­ми­че­ско­го рав­но­ве­сия на­ру­шит­ся. Сме­ще­ние рав­но­ве­сия в за­ви­си­мо­сти от из­ме­не­ния внеш­них усло­вий в общем виде опре­де­ля­ет­ся

Прин­ци­пом Ле Ша­те­лье: если на си­сте­му, на­хо­дя­щу­ю­ся в рав­но­ве­сии, ока­зы­ва­ют воз­дей­ствие извне путем из­ме­не­ния ка­ко­го-ли­бо из усло­вий, опре­де­ля­ю­щих по­ло­же­ние рав­но­ве­сия, то оно сме­ща­ет­ся в на­прав­ле­нии того про­цес­са, про­те­ка­ние ко­то­ро­го ослаб­ля­ет эф­фект про­из­ве­дён­но­го воз­дей­ствия.

Так, по­вы­ше­ние тем­пе­ра­ту­ры вы­зы­ва­ет сме­ще­ние рав­но­ве­сия в на­прав­ле­нии того из про­цес­сов, те­че­ние ко­то­ро­го со­про­вож­да­ет­ся по­гло­ще­ни­ем тепла, а по­ни­же­ние тем­пе­ра­ту­ры дей­ству­ет в про­ти­во­по­лож­ном на­прав­ле­нии.

Рав­но­ве­сие сме­ща­ет­ся впра­во, если по­вы­си­лись рав­но­вес­ные кон­цен­тра­ции про­дук­тов пря­мой ре­ак­ции. Если по­вы­ша­ют­ся рав­но­вес­ные кон­цен­тра­ции ис­ход­ных ве­ществ пря­мой ре­ак­ции, то рав­но­ве­сие сме­ща­ет­ся влево. Какие фак­то­ры можно из­ме­нять, чтобы сме­стить рав­но­ве­сие? Это

До­бав­ле­ние ка­та­ли­за­то­ра и из­ме­не­ние пло­ща­ди ре­ак­ци­он­ной по­верх­но­сти ге­те­ро­ген­ных ре­ак­ций не ока­зы­ва­ют вли­я­ние на сме­ще­ние хи­ми­че­ско­го рав­но­ве­сия.

Рассмотрим влияние фак­то­ров на смещение химического равновесия более де­таль­но.

1. Влияние тем­пе­ра­ту­ры

Ре­ак­ция син­те­за ам­ми­а­ка от­но­сит­ся к эк­зо­тер­ми­че­ским ре­ак­ци­ям. При про­хож­де­нии пря­мой ре­ак­ции теп­ло­та вы­де­ля­ет­ся, а при про­хож­де­нии об­рат­ной – по­гло­ща­ет­ся.

Правило: Если уве­ли­чить тем­пе­ра­ту­ру, то, со­глас­но пра­ви­лу Ле Ша­те­лье, рав­но­ве­сие сме­стит­ся в таком на­прав­ле­нии, чтобы умень­шить это воз­дей­ствие.

В дан­ном слу­чае влево, так как теп­ло­та по­гло­ща­ет­ся. Ре­ак­ция син­те­за ам­ми­а­ка про­во­дит­ся при тем­пе­ра­ту­ре около 500

Если ре­ак­ция эн­до­тер­ми­че­ская, то по­вы­ше­ние тем­пе­ра­ту­ры при­ве­дет к сме­ще­нию рав­но­ве­сия впра­во.

2. Из­ме­не­ние кон­цен­тра­ции ве­ществ

Правило:При уве­ли­че­нии кон­цен­тра­ции ка­ко­го-ли­бо из ве­ществ, участ­ву­ю­щих в рав­но­вес­ной ре­ак­ции, рав­но­ве­сие ре­ак­ции сме­стит­ся в сто­ро­ну его рас­хо­до­ва­ния, а со­от­вет­ствен­но, при умень­ше­нии кон­цен­тра­ции ка­ко­го-ли­бо из ве­ществ – в сто­ро­ну ре­ак­ции его об­ра­зо­ва­ния.

На­при­мер, при уве­ли­че­нии кон­цен­тра­ции азота в ре­ак­ции син­те­за ам­ми­а­ка, рав­но­ве­сие сме­стит­ся впра­во, т. е. в сто­ро­ну рас­хо­до­ва­ния азота. Если же в этой ре­ак­ции уда­лять из ре­ак­ци­он­ной смеси ам­ми­ак, то рав­но­ве­сие сме­стит­ся в сто­ро­ну его об­ра­зо­ва­ния. Сде­лать это можно, на­при­мер, при рас­тво­ре­нии ам­ми­а­ка в воде.

3. Из­ме­не­ние дав­ле­ния

Правило:Из­ме­не­ние дав­ле­ния может ока­зы­вать вли­я­ние толь­ко на ре­ак­ции с уча­сти­ем га­зо­об­раз­ных ве­ществ. При увеличении давления химическое равновесие смещается в сторону уменьшения объемов веществ.

Если в ре­ак­ции син­те­за ам­ми­а­ка уве­ли­чить дав­ле­ние, рав­но­ве­сие сме­стит­ся в сто­ро­ну умень­ше­ния числа моль газа. Если слева число моль газа боль­ше, чем спра­ва, рав­но­ве­сие сме­стит­ся в сто­ро­ну об­ра­зо­ва­ния ам­ми­а­ка.

Если число моль газа оди­на­ко­во и слева и спра­ва, на­при­мер, в ре­ак­ции по­лу­че­ния ок­си­да азота (II),

N2 +O2 (3)

то из­ме­не­ние дав­ле­ния не будет ока­зы­вать вли­я­ние на по­ло­же­ние хи­ми­че­ско­го рав­но­ве­сия в таких ре­ак­ци­ях. Изу­че­ние хи­ми­че­ско­го рав­но­ве­сия имеет боль­шое зна­че­ние, как для тео­ре­ти­че­ских ис­сле­до­ва­ний, так и для ре­ше­ния прак­ти­че­ских задач. Опре­де­ляя по­ло­же­ние рав­но­ве­сия для раз­лич­ных тем­пе­ра­тур и дав­ле­ний, можно вы­брать наи­бо­лее бла­го­при­ят­ные усло­вия про­ве­де­ния хи­ми­че­ско­го про­цес­са. Окон­ча­тель­ный выбор усло­вий тре­бу­ет учета вли­я­ния их и на ско­рость про­цес­са.

V. Примеры решения задач

Задача №1. Во сколько раз изменится скорость прямой и обратной реакции в системе: 2SO2(г) + O2(г) = 2SO3(г), если объем газовой смеси уменьшить в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: [SO2]= a,2] = b, [SO3] = с.Согласно закону действия масс скорости v прямой и обратной реакции до изменения объема:

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: [SO2] = 3а, [О2] = 3b; [SO3] = 3с. При новых концентрациях скорости v прямой и обратной реакции:

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной – только в девять раз. Равновесие системы сместилось в сторону образования SO3.

Задача №2. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 о С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

Следовательно, скорость реакции νТ2 при температуре 70 о С больше скорости реакции νТ1при температуре 30 о С в 16 раз.

Задача № 3. Константа равновесия гомогенной системы: СО(г) + Н2О(г) = СО2(г) + Н2(г)

при 850 о С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО]исх =3 моль/л, [Н2О]исх = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

В условии задачи даны исходные концентрации, тогда как в выражение Кр входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрации [СО2]р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей (х моль/л) СО и Н2О расходуется для образования по х молей СО2 и Н2. Следовательно, равновесные концентрации всех четырех веществ:

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

Таким образом, искомые равновесные концентрации:

[СО]р = 3 – 1,2 = 1,8 моль/л;

Задача № 4. При некоторой температуре равновесные концентрации в системе 2CO (г) + O2 (г) ↔ 2CO2(г) составляли: [CO] = 0,2 моль/л, [O2] = 0,32 моль/л, [CO2] = 0,16 моль/л. Определить константу равновесия при этой температуре и исходные концентрации CO и O2, если исходная смесь не содержала СО2.

1). Так как в условии задачи даны равновесные концентрации, то константа равновесия равна 2:

2). Если исходная смесь не содержала СО2, то на момент химического равновесия в системе образовалось 0,16 моль СО2.

На образование 0,16 моль СО2 затрачено:

υисходное = υпрореагировавшее + υравновесное

υисходное (СО)=0,16 +0,2 = 0,36 моль


источники:

http://interneturok.ru/lesson/chemistry/11-klass/bklassifikaciya-himicheskih-reakcijb/obratimye-i-neobratimye-himicheskie-reaktsii-himicheskoe-ravnovesie-i-sposoby-ego-smescheniya

http://kardaeva.ru/89-dlya-uchenika/9-klass/136-obratimye-i-neobratimye