Уравнение для внешнего контура магнитной цепи

Магнитная цепь

Магнитной цепью называется устройство, отдельные участки которого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток. Примерами простейших цепей могут служить магнитопроводы кольцевой катушки и электромагнита, изображенного на рис. 6.11, а. Электрические машины и трансформаторы, электромагнитные аппараты и приборы имеют обычно магнитные цепи более сложной формы.

Рис. 6.11 Магнитные цепи (а — неразветвленная, б — разветвленная)

Если магнитная цепь выполнена из одного и того же материала и имеет по всей длине одинаковое сечение, то цепь называется однородной.

Если же отдельные участки цепи изготовлены из различных ферромагнитных материалов и имеют различные длины и сечения, то цепьнеоднородная.

Магнитные цепи, так же как и электрические, бывают разветвленные (рис. 6.11,6) и неразветвленные (рис. 6.11,а).

В неразветвленных цепях магнитный поток Ф во всех сечениях имеет одно и то же значение.

Разветвленные цепи могут быть симметричными и несимметричными. Цепь, представленная на рис. 6.11,6, считается симметричной, если правая и левая части ее имеют одинаковые размеры, выполнены из одного и того же материала и если МДС I1W1 и I2W2 одинаковы. При невыполнении хотя бы одного из указанных условий цепь будет несимметричной.

Разобьем неразветвленную магнитную цепь, например, на рис 6.11, а на ряд однородных участков, каждый из которых выполнен из определенного материала и имеет одинаковое поперечное сечение S вдоль всей своей длины. Длину каждого участка L будем считать равной длине средней магнитной линии в пределах этого участка. Из сказанного выше следует, что магнитные потоки всех участков неразветвленной цепи равны, т. е.

и поле на каждом участке можно считать однородным, т. е. Ф= BS; поэтому

Где n — число участков цепи. Магнитное напряжение на любом из участков магнитной цепи

Где H — Напряженность, (измеряется в ампер на метр А/М).

B — Магнитная индукция (измеряется в теслах Тл).

L — Длинна средне силовой линии проходящей через центр поперечного сечения магнитопровода.

S — площадь поперечного сечения магнитопровода.

— Магнитная постоянная.

При заданном направлении тока в обмотке направление потока и МДС IW определяется по правилу буравчика.

Магнитное сопротивление и закон Ома для магнитной цепи.

По аналогии с электрической цепью величину

называют магнитным сопротивлением участка магнитной цепи (измеряется в 1/Гн).

Таким образом, магнитное напряжениеВыражение (3) по аналогии с электрической цепью часто называют законом Ома для магнитной цепи Однако вследствие нелинейности цепи, вызванной непостоянством магнитной проницаемости μr ферромагнетиков, оно практически не применяется для расчета магнитных цепей.

Законы Кирхгофа для магнитной цепи

При расчетах разветвленных магнитных цепей пользуются двумя законами Кирхгофа, аналогичными законам Кирхгофа для электрической цепи.

Первый закон Кирхгофа непосредственно вытекает из непрерывности магнитных линий, т.е. и магнитного потока; алгебраическая сумма магнитных потоков в точке разветвления равна нулю:

Например, для узла а на рис. 6.11,б

Второй закон Кирхгофа для магнитной цепи основывается на законе полного тока: алгебраическая сумма магнитных напряжений на отдельных участках цепи равна алгебраической сумме МДС:

Например, для левого контура и а рис. 6.11, бКак следует из закона Ома, для получения наибольшего магнитного потока при наименьшей МДС у магнитной цепи должно быть возможно меньшее магнитное сопротивление. Большая магнитная проницаемость ферромагнитных материалов обеспечивает получение малых магнитных сопротивлений магнитопроводов из этих материалов. Поэтому магнитные цепи электрических машин выполняют преимущественно из ферромагнетиков, а участки цепей из неферромагнитных материалов, то есть неизбежные или необходимые воздушные зазоры, делают, как правило, возможно малыми.

Схема устройства магнитной цепи двухполюсной машины с явно выраженными полюсами показана на рис. 6.12.

Рис. 6.12 Магнитная цепь электрической машины с явно выраженными полюсами

Плоскость 00′, проведенная через середины полюсов N и S и ось машины, делит магнитную цепь на две симметричные части. В каждой из них магнитный поток Ф/2 замыкается через полюсы П, полюсные наконечники ПН, воздушные зазоры, якорь Я и станину машины С. Магнитодвижущая сила создается током в обмотке возбуждения ОВ, расположенной на полюсах N и S. Из северного полюса N магнитные линии выходят и в южный полюс S входят.

Рис, 6.13. Магнитная цепь электрической машины с неявно выраженными полюсами

Схема устройства магнитной цепи двухполюсной машины с неявно выраженными полюсами показана на рис. 6.13. Здесь обмотка возбуждения заложена в пазы ротора Р — вращающейся части машины, укрепленной на валу. Как и в предыдущем случае, плоскость 00′, проведенная через середины полюсов N и S, делит магнитную цепь машины на две симметричные части, в каждой из которых магнитный поток Ф/2. Магнитный поток замыкается через ротор машины, воздушные зазоры и станину машины С, представляющую собой неподвижный наружный стальной цилиндр — статор машины.

Расчет неразветвленной однородной магнитной цепи

Содержание:

Магнитные цепи:

В конструкцию многих электротехнических устройств (электрических машин, трансформаторов, электрических аппаратов, измерительных приборов и т. д.) входят магнитные цепи.

Магнитной цепью называется часть электротехнического устройства, содержащая ферромагнитные тела, в которой при наличии намагничивающей силы возникает магнитный поток и вдоль которой замыкаются линии магнитной индукции. Источниками намагничивающей силы могут быть катушки с токами, постоянные магниты.

В конструктивном отношении магнитные цепи выполняют неразветвленными и разветвленными; применение того или иного вида цепи определяется в основном назначением электромагнитного устройства.

Расчет неразветвленной однородной магнитной цепи

В неразветвленной магнитной цепи (рис. 9.1, 9.2) магнитный поток во всех участках один и тот же.

При расчете и конструировании магнитной цепи электромагнитного устройства решаются вопросы, связанные с выбором размеров, формы, материалов. Эти вопросы изучают в специальных курсах.
Здесь рассмотрим расчет для существующей или сконструированной магнитной цепи, размеры и материалы которой, а также расположение обмоток с токами известны. При этом решают задачи двух типов.

Прямая задача:

По заданному магнитному потоку в цепи требуется определить намагничивающую силу, необходимую для создания этого потока.

Рассмотрим решение этой задачи для неразветвленной однородной магнитной цепи (см. рис. 9.1) без учета потоков рассеяния.

1. По заданному магнитному потоку и известной площади S поперечного сечения сердечника находят магнитную индукцию:

2. Определяют напряженность магнитного поля Н в сердечнике. Зависимость В(Н) — характеристика намагничивания — для стали нелинейная, а магнитная проницаемость

Рис. 9.1. Неразветвленная однородная магнитная цепь

Рис. 9.2. Неразветвленная неоднородная магнитная цепь

Обычно напряженность магнитного поля определяют по кривой намагничивания данного сорта стали (см. рис. 8.30 и приложение 4).

3. Находят намагничивающую силу по закону полного тока [см. формулу (8.41)]:

где l — длина магнитопровода, подсчитанная по средней линии без учета закруглений, причем условно принимается, что эта средняя линия во всех точках совпадает с линией магнитной индукции.

Обратная задача:

По заданной намагничивающей силе требуется найти магнитный поток в магнитопроводе.
1. Определяют напряженность магнитного поля в сердечнике:

2. По кривой намагничивания данного сорта стали находят магнитную индукцию В.
3. Определяют магнитный поток:

Для конкретных величин В и Н, определенных в ходе решения задачи, можно подсчитать статическую магнитную проницаемость данного сорта стали по формуле (8.37):

тогда магнитная индукция

магнитный поток

Обозначив знаменатель этого выражения через Rм:

получим

Магнитное сопротивление

Выражение (9.2) по форме напоминает закон Ома для электрической цепи: на месте тока стоит магнитный поток, на месте э. д. с. — намагничивающая сила (ее называют еще магнитодвижущей силой — м. д. с.). Величину Rм называют магнитным сопротивлением. Выражение магнитного сопротивления сердечника по форме аналогично выражению для определения сопротивления проводника электрическому току. Нужно отметить, что формулы для электрической и магнитной цепей похожи только написанием. Никакого физического подобия явлений в электрической и магнитной цепях не существует.

Расчет магнитных цепей обычно проводят без определения магнитного сопротивления. Это понятие используют в некоторых случаях при качественном рассмотрении явлений в магнитных цепях. Пользуясь им, найдем, как должна измениться намагничивающая сила катушки, если в стальном сердечнике (см. рис. 9.1) сделать хотя бы незначительный воздушный зазор, а магнитный поток при этом должен остаться таким же.
Предположим, что в стальном сердечнике длиной l = 100 мм имеется воздушный зазор δ = 1 мм.
Магнитное сопротивление сердечника

Магнитное сопротивление сердечника с воздушным зазором равно сумме сопротивлений двух участков.

Сопротивление стальной части магнитной цепи при той же магнитной индукции останется практически без изменения, так как уменьшение длины ее очень незначительно (≈ 1 %).

Сопротивление воздушного зазора


Предположим, что относительная магнитная проницаемость стали = 1000, тогда

и

Магнитное сопротивление воздушного зазора оказывается в 10 раз больше сопротивления стального сердечника.

Отсюда следует, что для обеспечения того же магнитного потока при наличии воздушного зазора в 1 мм нужно иметь намагничивающую силу примерно в 10 раз большую, чем при его отсутствии. Эта разница оказывается во много раз большей для сердечников из специальных сплавов, для которых величина достигает сотен тысяч.

Поэтому во всех случаях, когда по условиям работы электромагнитного устройства без воздушного зазора обойтись нельзя, следует по возможности его сокращать.

Задача 9.1.

В сердечнике кольцевой формы из электротехнической стали нужно получить магнитный поток Ф = 2 • 10 -3 Вб. Определить: 1) ток в обмотке, имеющей N = 100 витков; 2) магнитную проницаемость стали при заданном потоке в сердечнике; 3) индуктивность катушки.
Размеры сердечника заданы в миллиметрах на рис. 9.3.

Рис. 9.3. К задаче 9.1

Решение. Площадь сечения сердечника

Считая магнитную индукцию по сечению сердечника постоянной, найдем ее величину по заданному потоку:

По кривой намагничивания (см.рис. 8.30) определим напряженность магнитного поля: H = 50 А/см = 5000 А/м.
Намагничивающая сила, необходимая для создания заданного потока,

Ток в обмотке

Магнитная проницаемость стали при найденных величинах В и H

Относительная магнитная проницаемость

Индуктивность катушки

Задача 9.3.

Определить магнитный поток и магнитное сопротивление сердечника (рис. 9.4), размеры которого заданы в миллиметрах, если в катушке с числом витков N = 200 ток I = 6 А. Сердечник изготовлен из электротехнической стали 1511, причем 10% его сечения занимает изоляция между листами.


Рис. 9.4. К задаче 9.3

Решение. Намагничивающая сила и напряженность поля


где I — длина замкнутого сердечника по средней линии; согласно размерам, указанным на чертеже, l = 80 см = 0,8 м.
Магнитная индукция по характеристике намагничивания электротехнической стали 1511 В = 1,42 Тл.
Полная площадь сечения сердечника

Активная площадь

Магнитный поток

Магнитная проницаемость при заданной величине намагничивающей силы
Магнитное сопротивление

Расчет неразветвленной неоднородной магнитной цепи

Неоднородная магнитная цепь состоит из нескольких участков, отличающихся в общем случае длиной, поперечным сечением и материалом. Чаще всего встречаются магнитные цепи, у которых кроме участков из ферромагнитных материалов имеются воздушные зазоры.

Прямая задача:

При решении прямой задачи размеры и материалы каждого участка цепи известны, а магнитный поток задан; определяют намагничивающую силу. Порядок решения прямой задачи такой же, как и для однородной цепи, но магнитную индукцию и напряженность поля определяют для каждого участка; при этом потоки рассеяния в расчет не принимают.

Магнитная индукция k-го участка

где Sk — площадь поперечного сечения k-го участка.
По магнитной индукции определяют напряженность поля: для участков из ферромагнитных материалов — по кривым намагничивания; для воздушных зазоров и других участков из неферромагнитных материалов — по формуле
Далее составляют уравнение согласно закону полного тока:

где Нk — напряженность магнитного поля k-го участка (принимают ее одинаковой во всех точках этого участка); lk — длина k-то участка, взятая по средней линии; Нklk — магнитное напряжение к-то участка (далее магнитное напряжение будем обозначать Um); — алгебраическая сумма намагничивающих сил всех обмоток, входящих в рассматриваемую цепь.

Намагничивающую силу считают положительной в левой части уравнения (9.3), если ее направление, определенное по правилу буравчика, совпадает с направлением обхода магнитного контура. Магнитное напряжение в правой части уравнения считают положительным, если направление магнитного потока совпадает с направлением обхода контура.
Для магнитной цепи (см. рис. 9.2) развернутое уравнение (9.3) имеет вид

Обратная задача:

Обратную задачу — определение магнитного потока по заданным намагничивающим силам — нельзя решить так же просто, как для однородной цепи, так как нельзя сразу установить распределение магнитного напряжения между участками.

Нельзя воспользоваться формулой (9.2), так как магнитное сопротивление участка из ферромагнитного материала зависит от величины , которая определяется не известной еще магнитной индукцией.

Задачу можно решить методом последовательных приближений.
При наличии в цепи воздушного зазора первое значение магнитного потока можно взять, считая магнитное сопротивление воздушного зазора равным сопротивлению всей магнитной цепи.

Основанием для такого выбора является то, что даже малый воздушный зазор имеет магнитное сопротивление, значительно большее, чем вся остальная часть цепи, выполненная из ферромагнитных материалов.
Пренебрегая в первом приближении магнитным сопротивлением ферромагнитной части цепи, получим поток

Определить магнитный поток можно, построив кривую намагничивания цепи в целом. Для этого нужно задаться произвольно несколькими величинами магнитного потока и определить соответствующие им величины намагничивающей силы.

Рис. 9.5. Кривая намагничивания магнитной цепи


Рис. 9.6. К расчету неразветвленной неоднородной магнитной цепи (обратная задача)

По результатам расчета строится кривая намагничивания цепи (рис. 9.5). По кривой находят магнитный поток, соответствующий заданной намагничивающей силе.

Возможен и другой путь графо-аналитического решения обратной задачи (рис. 9.6). По взятым произвольно нескольким величинам магнитного потока находят величины (для стальной части цепи) и (для воздушного зазора). Затем из начала координат строят кривую
На оси абсцисс находят точку a, соответствующую заданной намагничивающей силе IN, из которой влево проводят прямую Ф(IN — Uм0).
В точке пересечения этих графиков по оси ординат находят искомый поток, а по оси абсцисс — величины Uм.с = Нlс и Uм0 = Н0δ.

Задача 9.5.

Магнитная цепь электромагнитного реле клапанного типа, изготовленная из стали, имеет поток Ф = 1,2 • 10 -3 Вб. Определить число витков катушки реле, необходимое для возбуждения созданного магнитного потока при токе в катушке 0,2 А. Ярмо и якорь реле прямоугольного сечения 7,5 x 1,2 см, сердечник круглого сечения диаметром 3 см. Другие размеры показаны на рис. 9.2.
Решение. Магнитная цепь реле делится на однородные участки:

а) сердечник круглого сечения

длина l1 = 8,6 см;
б) ярмо прямоугольного сечения

длина l2 = 14,9 см (см. рис. 9.2);
в) якорь прямоугольного сечения

длина l3 = 6,1 см;
г) воздушный зазор, сечение которого принимаем равным сечению сердечника, пренебрегая некоторым увеличением его за счет выпучивания линий магнитной индукции:

длина δ = 0,2 см.
Магнитная индукция в участках цепи:




Напряженность магнитного поля в стальных участках определена по кривой намагничивания литой стали, которая принята такой же и для кованой стали: Н1 = 57 А/см; Н2 = 18 А/см; Нз = 18 А /см.

В воздушном зазоре

Составляем уравнение по закону полного тока:

Число витков обмотки

Задача 9.7.

Две катушки N1 = 2000 и N2 = 600 витков насажены на стержни сердечника из электротехнической стали 1211. Размеры магнитной цепи показаны на рис. 9.7. Определить магнитный поток при токе в катушках I = 0,8 А и при соединении концов катушек по схеме: К1 соединен с К2 напряжение приложено к зажимам Н1 и Н2.
Решение. Магнитная цепь рис. 9.7 имеет шесть участков, размеры которых найдены из чертежа:
а) воздушный зазор — δ01 = 0,09 см, S01 = 5 • 4,5 = 22,5 см 2 ;
б) стержень А — l1 = 20 см, S1 = 22,5 см 2 ;
в) ярмо Б — l2 = 25 см, S2 = 22,5 см 2 ;
г) стержень В — lз = 20 см, S3 = 22,5 см 2 ;
д) воздушный зазор — δ02 = 0,09 см, S02 = 22,5 см 2 ;
е) якорь Д — l0 = 25 см, S6 = 22,5 см 2 .

Рис. 9.7. К задаче 9.7

Задаемся несколькими величинами магнитного потока, причем наибольший возможный поток найдем в предположении, что магнитное сопротивление создают только воздушные зазоры [см. формулы (9.1), (9.2)]:


При определении потока учтено, что катушки включены согласно, поэтому их намагничивающие силы сложены.
Для полученного потока найдем намагничивающую силу с учетом стальной части магнитной цепи. Последовательность решения та же, что и при решении задачи 9.5. Результаты расчета для Ф0 и других величин потока сведены в табл. 9.1.

Зависимость Ф(IN) построена на рис. 9.5.
По этой кривой определяем искомый поток, соответствующий намагничивающей силе:

Для графо-аналитического способа определения потока по типу рис. 9.6 из табл. 9.1 выпишем величины Ф и Нlc в табл. 9.2.


Зависимости Ф(Um.c) и Ф(IN — Um0) показаны на рис. 9.6, причем прямая Ф(IN — Um0) построена по двум точкам. При IN — Um0 = 0

при Ф = 0

В точке пересечения графиков определяем искомый магнитный поток, а также величины Hlc = Um.c и H0δ = Um0, соответствующие этому потоку:

Расчет разветвленной магнитной цепи

В разветвленной магнитной цепи магнитные потоки в общем случае различны в разных ветвях (рис. 9.8).

Разветвленные магнитные цепи делятся на симметричные и несимметричные.


Рис. 9.8. Разветвленная симметричная магнитная цепь

Рис. 9.9. Магнитная цепь четырехполюсной электрической машины

Симметричную магнитную цепь мысленно можно разделить на неразветвленные цепи таким образом, что во всех участках выделенной цепи магнитный поток будет один и тот же. Кроме того, предполагается симметричное расположение намагничивающих сил (рис. 9.8, 9.9).
Если указанные условия симметрии не соблюдаются, то магнитная цепь относится к несимметричным (рис. 9.10).

Узловые и контурные уравнения магнитной цепи

Симметричная магнитная цепь (см. рис. 9.8) состоит из двух одинаковых контуров. Средний стержень вместе с катушкой (источником намагничивающей силы) входит в оба контура.

Место соединения среднего стержня с ярмом является узлом магнитной цепи, в котором магнитный поток Ф1, делится на два равных потока, если магнитное сопротивление обоих контуров одинаково:

Расчет разветвленной симметричной цепи из-за равенств потоков симметричных контуров сводится к расчету одного контура, который выполняют в том же порядке, что и расчет неразветвленной цепи.
В аналогичной несимметричной магнитной цепи поток в узле делится на неравные части, но для любого узла пригодно уравнение

Для схемы рис. 9.8 это уравнение в развернутом виде записывают так:
или
При составлении такого уравнения учитывают направления потоков: направленные к узлу и направленные от узла потоки берутся с разными знаками.

Для каждого контура магнитной цепи можно также составить уравнение по закону полного тока.

Предположим, что все участки магнитной цепи выполнены из материалов с постоянными значениями магнитной проницаемости. Каждый участок и вся цепь имеют линейную зависимость магнитного потока от магнитного напряжения Ф(Uм).


Рис. 9.10. Разветвленная несимметричная магнитная цепь


Рис. 9.11. К расчету разветвленной магнитной цепи графическим методом

Определив для каждого участка магнитное сопротивление Rм, магнитную цепь можно представить соответствующей схемой замещения, в которую войдут постоянные магнитные сопротивления участков и намагничивающие силы.
На рис. 9.11, а показана схема замещения магнитной цепи (см. рис. 9.8). Пренебрегая потоками рассеяния, расчет магнитной цепи можно выполнить аналогично расчету электрической цепи, решая систему линейных уравнений, составленных для узлов (см. формулу (9.4)] и контуров [см. формулу (9.3)].

Графический расчет разветвленной цепи

Элементы схем замещения магнитных цепей, осуществляемых на практике (кроме элементов, соответствующих воздушным зазорам), имеют нелинейные характеристики Ф(Uм), так как магнитная проницаемость ферромагнитных материалов зависит от напряженности поля. Нелинейными являются и магнитные цепи в целом.

Аналогия с электрической цепью указывает на возможность графического расчета нелинейной магнитной цепи в порядке. Первый этап расчета состоит в построении характеристик Ф(Uм) для каждого участка цепи в общей системе координат. Для этого используются характеристики намагничивания материалов, из которых изготовлена магнитная цепь. Например, чтобы построить характеристику Ф3(U), нужно ряд величин напряженности поля Н3, взятых из характеристики намагничивания материала третьего участка магнитной цепи, умножить на длину этого участка (H3l3 = U), а соответствующие им величины магнитной индукции умножить на площадь S3 этого участка (В3S3 = Ф3).

По полученным значениям U и Ф3 строят график Ф3(U) (рис. 9.11, б). Магнитные сопротивления R и R соединены параллельно. Поэтому магнитные напряжения второго и третьего участков одинаковы: U = U = U2.3м.

Сумма магнитных потоков этих участков равна магнитному потоку первого участка (сопротивление R): Ф1 = Ф2 + Ф3.
Складывая магнитные потоки Ф2 и Ф3 для ряда значений магнитного напряжения, получим кривую Ф1 (U2.3м).

На рис. 9.11, б это показано для одного значения Uм.п.Отрезки 4-3 и 4-2 в масштабе магнитных потоков выражают потоки Ф3 и Ф2. Сумма этих отрезков, равная отрезку 4-1, выражает магнитный поток Ф. Магнитное сопротивление R и сопротивление, эквивалентное R и R, соединены последовательно. Поэтому намагничивающая сила всей цепи IN равна сумме магнитных напряжений U и U2.3м: IN = U + U2.3м. Магнитные же потоки участков цепи с сопротивлениями R и R2.3м одинаковы.

Складывая магнитные напряжения U и U2.3м для ряда значений магнитного потока, получим кривую Ф1(IN). На рис. 9.11, б это показано для одного значения Ф1п. Отрезки 7-6 и 7-1 в масштабе магнитных напряжений выражают магнитные напряжения U и U2.3м. Сумма этих отрезков дает отрезок 7-5, выражающий намагничивающую силу IN.

Выполнив указанные построения, нетрудно решить различные задачи расчета магнитной цепи.

Задача 6.9.

Катушка, имеющая 500 витков, расположена на среднем стержне магнитопровода, изготовленного из стали 1511 (см. рис. 9.8). Определить ток в катушке, если в крайнем стержне поток Ф2 = Ф3 = 2 • 10 -3 Вб. Рассеяние потока не учитывается.
Решение. В данной симметричной цепи можно наметить два одинаковых в магнитном отношении контура: а-б-в-г-а и а-е-д-г-а. В каждом из них по два участка:


Рассматривая один из контуров, решим задачу в порядке, принятом для неразветвленной цепи:

Магнитный поток в среднем стержне в два раза больше, чем в крайних:


По кривым намагничивания стали 1511 находим:

По закону полного тока,

Ток в катушке

Задача 9.10.

В крайнем стержне магнитопровода, взятого по условию задачи 9.9, имеется воздушный зазор δ = 0,1 см. Определить, как нужно изменить ток в катушке, чтобы сохранить прежнюю величину потока в этом стержне (см. рис. 9.10).
Решение. При наличии воздушного зазора в одном крайнем стержне магнитная цепь становится несимметричной.
В контуре а-е-д-г-а сохранились те же участки; в контуре а-б-в-г-а: l1 = 16 см; l3 = 41,9 см; δ = 0,1 см; S1 = 30 см 2 ;

Магнитная индукция в воздушном зазоре и крайнем стержне 6-в

Напряженность поля

по кривой намагничивания стали 1511 Н3 = 3 А/см.
В магнитной цепи можно наметить третий контур (а-б-в-г-д-е-а). Для этого контура, по закону полного тока,


Магнитная индукция на участке l2 по кривой намагничивания В2 = 1,48 Тл. Магнитный поток на участке l2

Магнитный поток в среднем стержне (участок l1) определим на основании первого закона Кирхгофа для узла а:

Магнитная индукция на этом участке

Напряженность поля Н1 = 69,5 А/см.
Для одного из контуров, включающего средний стержень, например а-б-в-г-а, по закону полного тока,


Ток в катушке

Вывод. Для того чтобы сохранить в крайнем стержне такой же магнитный поток при наличии воздушного зазора δ = 0,1 см, требуется увеличить ток в катушке почти в восемь раз по сравнению с тем случаем, когда зазор отсутствует.

Постоянные магниты

В измерительных приборах, электрической аппаратуре и других устройствах в качестве источников намагничивающей силы широко применяют постоянные магниты.

На рис. 9.12 схематично изображены магнитные системы магнито-электрического измерительного прибора (а) и поляризованного реле (б).
Эти системы, как и большинство им подобных, имеют несколько участков: 1) из магнитно-твердого материала— постоянного магнита 1; 2) из магнитно-мягкого материала 2, служащего магнитопроводом, и воздушного зазора 3, форма и размеры которого определяются конструкцией и назначением устройства.
При расчете магнитной цепи с постоянным магнитом требуется определить магнитный поток и индукцию в воздушном зазоре или по заданному потоку найти оптимальные размеры постоянного магнита (наименьшие объем и габариты).

Характеристики размагничивания постоянных магнитов

Величины остаточной магнитной индукции Вг и коэрцитивной силы Hс характеризуют материал постоянного магнита: чем они больше, тем выше его качество. Как известно, на петле гистерезиса Вг соответствует Н = 0, а при В = 0 Н = Нс.

Рис. 9.12. Магнитные цепи с постоянными магнитами

Рис. 9.13. Характеристики размагничивания постоянных магнитов:
1 — АНКО-4; 2 — АНКО-2; З-АН-2; 4 — сталь с 30% СО

Промежуточные магнитные состояния определяются частью петли магнитного гистерезиса, лежащей во второй четверти, — характеристикой размагничивания (рис. 9.12). Эта характеристика используется при расчете постоянных магнитов.
Согласно закону полного тока, сумма магнитных напряжений участков магнитной цепи (рис. 9.12) равна нулю, так как внешняя намагничивающая сила (ампер-витки) отсутствует:

где Uм.т — магнитное напряжение постоянного магнита; — сумма магнитных напряжений всех участков магнитной цепи, включая воздушные зазоры, но без постоянного магнита.

Левая и правая части равенства (9.5) связаны с магнитной индукцией и потоком определенными зависимостями: Фт(Uм.т) — кривая размагничивания постоянного магнита (по форме повторяет кривую размагничивания материала, из которого выполнен постоянный магнит); Фм(Uм.с) — кривая намагничивания части конструкции устройства, изготовленной из магнитно-мягкого материала; Ф0(Uм0) — прямая, проходящая через начало координат и повторяющая в других масштабах зависимость

Определение магнитного потока в магнитной цепи с постоянным магнитом

Пренебрегая потоком рассеяния и магнитным напряжением в участках из магнитно-мягкого материала (), можно построить в общей системе координат зависимости и .

В этом случае искомый магнитный поток Ф0 определяется точкой их пересечения (рис. 9.14).

Магнитная индукция в воздушном зазоре

Из равенства (9.5) следует, что напряженности поля в воздушном зазоре и магните направлены в противоположные стороны.

При отсутствии воздушного зазора (постоянный магнит замкнут) остаточная индукция имеет величину Вг, а при наличии зазора будет меньше Вг (рис. 9.14). Воздушный зазор создает эффект размагничивания магнита.

Рис. 9.14. К расчету магнитной цепи с постоянным магнитом

Задача 9.12.

Определить магнитный поток и индукцию в воздушном зазоре постоянного магнита (см. рис. 9.12, а), если магнит, изготовленный из сплава АНКО-2, имеет длину lт = 10 см; SТ = 4 см 2 . Полюса и цилиндрический сердечник изготовлены из магнитно-мягкой стали, имеют общую длину lм = 15 см; воздушный зазор между полюсом и сердечником δ = 0,2 см с каждой стороны и площадь S = 10 см 2 . Характеристика размагничивания сплава АНКО-2 представлена на рис. 9.13.
Решение. Построим зависимость магнитного потока в магните от магнитного напряжения Ф(Uм.т).
Для этого, согласно кривой 2 на рис. 9.13, берем величины В и Н, подсчитываем Ф и Uм.т и результаты подсчета сводим в табл. 9.3.
Для тех же величин магнитного потока определим Uм0 = Н0δ для воздушного зазора. Величинами Hсlс для участков из стали пренебрегаем из-за их незначительной величины.

Т а б л и ц а 9.3

Для потока Ф = 3,28 • 10 -4 Вб

Результаты подсчетов сводим в табл. 9.4.


Зависимости Ф(Uм.т) и Ф(Uм0) построены на рис. 9.14. В точке пересечения этих графиков находим магнитный поток:

Магнитная индукция в воздушном зазоре

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Энергия магнитного поля
  • Синусоидальные Э.Д.С. и ток
  • Электрические цепи с взаимной индуктивностью
  • Резонанс в электрических цепях
  • Электромеханические аналогии
  • Индуктивно связанные электрические цепи
  • Фильтры и топологические методы анализа линейных электрических цепей
  • Электрическое поле и его расчёт

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Ток или поток? Магнитные цепи и их основные характеристики

Привет, Хабр! С недавнего времени я стал задумываться об актуальности статей и заметил, что на Хабре нет ни одной обзорной статьи про магнитные цепи. Как так!? Ведь это. а что это такое?

Действительно, наверняка даже самые отстраненные от инженерного дела люди имеют представление о том, что такое электрические цепи, но возможно, что про магнитные цепи не слышали вовсе. Каждый школьник когда-то в учебнике физики наблюдал разные схемы и формулы, описывающие законы Ома. Но магнитные цепи в рамки школьного курса не входят.

Я решил написать данную статью, чтобы показать, насколько удивителен мир физики и заинтересовать школьников в её изучении. В данной статье, однозначно, для полноты вещей будут и выводы формул и использование некоторых математических операций, которые могут быть известны не всем, но такие моменты я постараюсь сгладить. Приступим!

Что нужно вспомнить?

Для более четкого представления сей статьи, неплохо бы вспомнить основные характеристики самого магнитного поля: вектор магнитной индукции, вектор напряженности, поток вектора магнитной индукции — а также нужно вспомнить немного про магнитные вещества, а именно про ферромагнетики.

Полагается, что вам известен обобщенный закон Ома и помнится, что такое ток, напряжение и сопротивление. Если нет, то крайне советую обратиться к сторонним ресурсам, чтобы иметь хотя бы общее представление о том, что последует далее. Крайне советую учебник И.Е. Иродова «Электромагнетизм» .

Применение магнитных цепей

Магнитные цепи находят очень большое поле применения, а именно, они используются для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в некоторых случаях, определенными потерями. В электротехнической промышленности широко используется взаимная зависимость магнитной и электрической энергий, переход из одного состояния в другое. На подобном принципе работают, например, трансформаторы, разные электродвигатели, генераторы и другие устройства.

Конечно, можно продолжительное время говорить об устройствах, разных типах магнитопроводов (про которые речь пойдет далее), но наша первичная цель — рассмотреть выводы основных характеристик магнитных цепей. Продолжаем!

Как устроены магнитные цепи?

Магнитную цепь, на самом деле, не так сложно представить, как может показаться человеку, который о них впервые слышит. Обычно магнитные цепи представляют из себя некоторые фигуры из ферромагнитного сердечника с источником или несколькими источниками ПОтока. Пожалуй, один из самых простых примеров с одним источником, который можно взять на вооружение, проиллюстрирован ниже:

Перед продолжением обусловимся, что среди электротехников сердечник называют магнитопроводом. Часть магнитопровода, на которой отсутствуют обмотки и которая служит для замыкания магнитной цепи, называется «ярмо».

Начнем с тороидального сердечника. Такой тороидальный сердечник может служить формой для катушки, как бы странно это не звучало. Но что за катушка? Ну, первое что приходит в голову — провод, образующий витки. Хорошо, но какого его предназначение? Вернемся к электрическим цепям и вспомним, что существуют источники тока / напряжения, так называемые активные элементы. Так вот, в магнитных цепях роль источника выполняют катушки с током, накрученные на основной элемент магнитной цепи — ферромагнитный магнитопровод.

Вспомним теперь про ферромагнитные материалы. Почему именно они? Дело в том, что благодаря высокому значению магнитной проницаемости, что сигнализирует о хорошей намагниченности ферромагнетика, силовые линии магнитного поля практически не выходят за пределы сердечника, либо не выходят вовсе. Однако это будет справедливо лишь тогда, когда наш сердечник замкнутый, либо имеет небольшие зазоры. То есть, ферромагнетики обладают сильно выраженными магнитными свойствами, когда как у парамагнетиков и диамагнетиков они значительно слабее, что можно наблюдать на следующем графике зависимости намагниченности от напряженности магнитного поля:

Вещества, которые входят в конструкцию магнитопровода, могут обладать не только сильномагнитными свойствами, но также и слабомагнитными. Однако мы рассматриваем сердечник из ферромагнитного материала.

Ещё из школьного курса мы представляем себе картину с линиями магнитной индукции соленоида, мы можем визуально представить его поле и понимаем, что концентрация силовых линий, их насыщенность, наибольшая в центре рассматриваемого соленоида. Тут очень важно вспомнить правило буравчика, чтобы правильно указать направление силовых линий.

Отсюда становится ясно, что катушки-источники порождают магнитное поле, а следовательно и поток линий магнитной индукции. Такие линии будут циркулировать по нашему сердечнику, словно повторяя его форму. Именно поэтому нам важно условие замкнутости сердечника и материал, из которого он сделан. Положим, что наш воображаемый сердечник замкнут. Из этого следует, что и силовые линии замкнуты, а следовательно выполняется теорема Гаусса для магнитного поля, которая гласит: поток линий магнитной индукции через замкнутую поверхность равен нулю. Стоит учесть, что поток адаптируется под площадь сечения.*

Ну и в конечном счете ферромагнитный сердечник поток куда-то передает! Аналогичным образом замкнутый проводник позволяет передать электрический ток.

Отлично! Мы разобрались с тем, что такое магнитные цепи и даже вспомнили про теорему Гаусса и ферромагнетики. Теперь поговорим о том, какие следствия вытекают из теоремы Гаусса и возможности пренебрежения полем вне сердечника и в зазорах.

1] Магнитные потоки Ф1 и Ф2 через произвольные сечения будут равны между собой.

2] В узле (разветвлении) сердечника алгебраическая сумма потоков (с учетом их направлений) будет равна нулю. Мне одному это что-то напоминает?

То есть мы окончательно сформулировали, что замкнутая (или почти замкнутая) система из ферромагнитных сердечников может рассматриваться как проводящая цепь. В нашем случае — магнитная.

Расчет магнитных цепей

Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи — силу тока. Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа. Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):

Криволинейный интеграл по замкнутому контуру от напряженности магнитного поля будет равен алгебраической сумме токов, сцепленных (окруженных) данным контуром.

Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:

Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.

Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.

Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:

В любой момент времени алгебраическая сумма напряжений на ветвях контура равна нулю.

Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.

Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:

Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;

Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;

После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;

Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).

Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.

А примеры расчетов будут?

Здесь — нет. А по ссылке — да! В данном документе Самарского государственного технического университета рассмотрены базовые примеры, которые позволят лучше разобраться в теме, если она вас заинтересовала. Помимо всего прочего, там же приведены теоретические справки. Советую прочитать в надежде, что вы сможете для себя что-то новое подчерпнуть.

Заключение

Во-первых, спасибо, что дочитали статью! Один из способов поддержать меня как автора — подписаться на мой паблик Вконтакте, где иногда выходят «локальные статьи».

Во-вторых, вернемся к началу статьи. Там я задался целью показать, почему физика удивительна. Не хочу быть многословным, поэтому просто попрошу вспомнить все то, что было описано выше. Мы оперировали моделями, которые относятся к разделу физики электричества и перенесли их на физику магнетизма. Наверняка, вы замечали, насколько часто встречаются элементы механики в иных разделах. Это по истине удивительно! Однако главное не поработиться иллюзией, что в мире все законы нам предельно известны.


источники:

http://www.evkova.org/raschet-nerazvetvlennoj-odnorodnoj-magnitnoj-tsepi

http://habr.com/ru/post/575418/