Уравнение движения частицы в векторной форме

Уравнение движения частицы в векторной форме

§ 12. Уравнения равномерного прямолинейного движения

1. Уравнение в векторной форме.

Знаем, что одна из основных задач механики заключается в нахождении положения точки в любой момент времени при движении. Знаем, что положение точки может быть определено радиус-вектором, и в любом движении конечный радиус-вектор имеет вид:

.

— задан, а наиболее просто находить в равномерном прямолинейном движении с помощью скорости и времени.

— это и есть уравнение равномерного прямолинейного движения в векторной форме.

2. Уравнение в координатной форме.

Знаем, что векторы находят с помощью проекций на оси координат. Поэтому от векторного уравнения движения перейдём к проекциям векторных величин на оси координат.

Если , то:

.

Проекции радиусов равны соответствующим координатам. Поэтому:

.

Если траектория известна, то мы совмещаем траекторию с осью координат OX и пользуемся вместо трёх всего одним первым уравнением.

Никакую часть этого материала ни в каких целях, включая образовательные и научные, нельзя без письменного разрешения владельца авторских прав дублировать в сети Интернет и воспроизводить в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая запись на магнитный или электронный носитель, вывод на печать, фотокопирование.

Julia и движение заряженной частицы в электромагнитном поле

Закрепляем навыки решения и визуализации дифференциальных уравнений на примере одного из самых распространенных эволюционных уравнений, вспоминаем о старом-добром Scilab и пытаемся понять, а надо ли оно нам… Под катом картинки (килобайт на семьсот)

и приступим к постановке задачи

Движение заряженных частиц в электромагнитном поле

На заряженую частицу с зарядом движущуюся в ЭМП со скоростью действует сила Лоренца: . Данная формула справедлива при ряде упрощений. Пренебрегая поправками на теорию относительности, считаем массу частицы постоянной, так что уравнение движения имеет вид:

Направим ось Y вдоль электрического поля, ось Z — вдоль магнитного поля и предположим для простоты, что начальная скорость частицы лежит в плоскости XY. В этом случае вся траектория частицы также будет лежать в этой плоскости. Уравнения движения примут вид:

Обезразмерим: . Звёздочками обозначены размерные величины, а — характерный размер рассматриваемой физической системы. Получим безразмерную систему уравнений движения заряженной частицы в магнитном поле:

В качестве начальной конфигурации модели выберем: Тл, В/м, м/с. Для численного решения воспользуемся пакетом DifferentialEquations:

Здесь используется метод Эйлера, для которого задаётся количество шагов. Также сохраняется в матрицу ответов не всё решение системы, а только 1 и 2 индексы, то есть координаты икс и игрек (скорости нам не нужны).

Проверим результат. Введем вместо х новую переменную . Таким образом осуществляется переход в новую систему координат, движущуюся относительно исходной со скоростью u в направлении оси Х:

Если выбрать и обозначить , то система упростится:

Электрическое поле исчезло из последних равенств, и они представляют собой уравнения движения частицы, находящейся под действием однородного магнитного поля. Таким образом, частица в новой системе координат (х, у) должна двигаться по окружности. Так как эта новая система координат сама перемещается относительно исходной со скоростью , то результирующее движение частицы будет складываться из равномерного движения по оси X и вращения по окружности в плоскости XY. Как известно, траектория, возникающая при сложении таких двух движений, в общем случае представляет собой трохоиду. В частности, если начальная скорость равна нулю, реализуется простейший случай движения такого рода — по циклоиде.
Удостоверимся, что скорость дрейфа вышла действительно равной Е/В. Для этого:

  • подпортим матрицу ответов, поставив вместо первого элемента (максимального) заведомо меньшее значение
  • найдем номер максимального элемента во втором столбце матрицы ответов, который откладывается по ординате
  • вычислим безразмерную скорость дрейфа, разделив значение абсциссы в максимуме на соответствующее значение времени

Out: 8.333333333333332e-5
С точностью до седьмого порядка!
Для удобства определим функцию, принимающую параметры модели и подпись графика, которая будет также служить названием файла png, создаваемого в папке с проектом (работает в Juno/Atom и Jupyter). В отличии от Gadfly, где графики создавались в слоях, а потом выводились функцией plot(), в Plots, чтобы в одном фрейме наделать разных графиков, первый из них создается функцией plot(), а последующие добавляются использованием plot!(). Названия функций меняющих принимаемые объекты в Джулии принято оканчивать восклицательным знаком.

При нулевой начальной скорости, как и предполагалось, получаем циклоиду:

Получим траекторию частицы при занулении индукции, напряженности и при смене знака заряда. Напомню, что точка значит поочередное выполнение функции со всеми элементами массива

Немного о Scilab

На Хабре уже есть достаточно информации о Сайлабе, например 1, 2, а тут про Octave поэтому ограничимся ссылками на Википедию и на домашнюю страницу.

От себя добавлю, про наличие удобного создания интерфейса с флажками кнопками и выводом графиков и довольно интересного инструмента визуального моделирования Xcos. Последний можно использовать, например, для моделирования сигнала в электротехнике:


И здесь очень удобное руководство:

Собственно, нашу задачу вполне можно решить и в Scilab:


Здесь информация по функции для решения дифуров ode. В принципе напрашивается вопрос

А зачем нам Julia?

… если и так есть такие замечательные штуки как Scilab, Octave и Numpy, Scipy?
Про последние два не скажу — не пробовал. Да и вообще вопрос сложный, так что прикинем навскидку:

Scilab
На харде займет чуть больше 500 Мб, запускается быстро и сходу доступно и дифуросчитание, и графика и всё остальное. Хорош для начинающих: отличное руководство (по большей части локализованное), есть много книг на русском. Про внутренние ошибки уже было сказано тут и здесь, и так как продукт очень нишевый, сообщество вялое, и дополнительные модули весьма скудны.

Julia
По мере добавления пакетов (особенно всякой питонщины а-ля Jupyter и Mathplotlib) разрастается от 376 Мб до вполне-таки шести с лишним гигабайт. Оперативку она тоже не щадит: на старте 132 Мб и после того, как в Юпитере намалевать графиков, до 1 ГБ спокойно дойдёт. Если работать в Juno, то всё почти как в Scilab: можно выполнять код сразу в интерпретаторе, можно печатать во встроенном блокноте и сохранять как файл, есть обозреватель переменных, журнал команд и интерактивная справка. Лично у меня вызывает возмущение отсутствие clear(), т. е. запустил я код, потом начал там поправлять и переименовывать, а старые переменные-то остались (в Юпитере нет обозревателя переменных).

Но всё это не критично. Scilab подходит вполне на первых парах, сделать лабу, курсач или посчитать чего промежуточного — очень даже подручный инструмент. Хоть здесь тоже есть поддержка параллельного вычисления и вызов сишных/фортрановских функций, для чего серьезного его использовать не получается. Большие массивы повергают его в ужас, чтоб задать многомерные, приходится заниматься всяким мракобесием, а вычисления за рамками классических задач вполне могут обронить всё вместе с операционкой.

И вот после всех этих болей и разочарований можно смело переходить на Julia, чтоб огрести ещё и здесь. Будем учиться дальше, благо комьюнити очень отзывчивое, проблемы утрясаются быстро, да и у Джулии есть еще много интересных особенностей, которые превратят процесс обучения в увлекательное путешествие!

Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у 2 + νz 2 ).

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

и затем, используя уравнение v=E/B, мы находим, что

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.


источники:

http://habr.com/ru/post/429790/

http://www.syl.ru/article/203046/new_dvijenie-zaryajennoy-chastitsyi-v-magnitnom-pole-formulyi-dvijenie-zaryajennyih-chastits-v-odnorodnom-magnitnom-pole