Уравнение движения для классической частицы

Разбираемся в физике частиц: 4) волны, классическое уравнение движения

Вернёмся к уравнению колебаний шара на пружине

В одной из первых статей цикла мы сначала вывели формулу для колебательного движения шара

А затем нашли уравнение движения, для которого эта формула была решением

Здесь
• d 2 z/dt 2 обозначает изменение по времени изменения по времени z(t).
• K – сила пружины, М – масса шара, z0 — равновесное положение.
• ν = √ K/M / 2π

Ключевым шагом для получения последнего уравнения частоты, выраженной через К и М был подсчёт d 2 z/dt 2 для колебательного движения шара z(t) = z0 + A cos [ 2 π ν t ]. Мы нашли, что

Уравнение движения волн

Теперь мы хотим сделать то же самое для волн. Мы нашли формулу для формы и движения волны, колеблющейся как в пространстве, так и во времени.

Среди решений какого уравнения движения есть такая формула? Можно представить себе ответ. Очевидно, в него входят:

1. d 2 Z/dt 2 , изменение по времени изменения по времени Z(x,t).
2. d 2 Z/dx 2 , изменение в пространстве изменения в пространстве Z(x,t).

Естественным образом мы можем догадаться, что уравнение должно выглядеть как-то так:

Где Ct, Cx и C0 – константы. Отмечу, что если Где Ct = 1, Cx = 0, а C0 = -K/M, вы вернёмся к уравнению колебания шара на пружине. Какие же это константы в нашем случае?

Мы всегда можем положить Ct = 1. Если бы вы захотели, допустим, положить Ct = 5, я бы просто попросил вас разделить всё уравнение на 5, что и дало бы вам эквивалент варианта, в котором Ct = 1, просто с другими значениями остальных констант.

После этого оказывается, что значения Cx и C0 оказываются разными в различных физических системах. Мы изучим два разных класса волн, отличающихся разными константами.

У обеих классов Cx будет отрицательным, (здесь cw обозначает скорость перемещения высокочастотных волн).

Различаться эти классы будут тем, что у первого класса, Класс 1, C0 будет отрицательным, и будет равняться –(2 π μ)2, а у второго, Класс 0, C0 будет равно нулю.

Исследуем теперь свойства волн двух этих классов уравнений. Но до этого нужно провести ещё одно вычисление, которое мы уже делали ранее.

Быстрый подсчёт

Для нашей бесконечной волны

Нам нужно будет знать d 2 Z/dt 2 и d 2 Z/dx 2 . В предыдущей статье мы уже показали, что для шара на пружине, движущегося согласно z(t) = z0 + A cos [ 2 π ν t ], получается, что . Изменение по времени даёт нам множитель 2 π ν, а изменение по времени изменения по времени даёт нам два множителя. Кроме того, тут есть общий знак минуса. Поэтому вас не удивит, что:


Каждое изменение по времени даёт нам множитель ν = 1/T (чем больше период, тем медленнее идёт изменение по времени), а каждое изменение в пространстве даёт нам множитель 1/λ (чем длиннее волна, тем медленнее изменение в пространстве).

Доказательство

Для бесконечной волны у нас есть основное уравнение

И мы хотим показать, что

• Z – Z0 = A cos (2π [ν t – x/λ]) (просто в основном уравнении перенесли Z0 в левую часть)
• Поскольку Z0 — константа, не зависящая от времени и пространства, dZ0/dt = 0 and dZ0/dx = 0.
• d(cos t)/dt = – sin t, и d(sin t)/dt = + cos t
• d(F[a t +b x])/dt = a d(F[a t +b x])/d(a t+ b x), где a и b – константы, а F – любая функция от (a t + b x).
• d[A f(t)]/dt = A d[f(t)]/dt, где f(t) – любая функция от t, а A — константа

Всё вместе это означает, что:

Поскольку основная формула для волны не изменится при замене (ν t) на (-x/λ), вычисление d 2 Z/dx 2 не отличается от вычисления d 2 Z/dt 2 , просто вместо d/dt, дающего множитель (2π ν), у нас будет d/dx, дающий множитель (- 2π/λ). Но, поскольку в ответе есть два таких множителя, мы просто заменим (2π ν) 2 на (- 2π/λ) 2 = (+2π/λ) 2 ; минус значения не имеет (общий минус в сложении остаётся). Как нам и требовалось доказать,

Мелкий шрифт: все указанные выше производные на самом деле являются частными производными.

Класс 0: волны любой частоты и равных скоростей

В этом классе волн уравнение движения будет таким:

Подключив формулу Z(x,t) для бесконечной волны и используя только что сделанные нами подсчёты, мы находим, что:

Поделим уравнение на , мы получим

Поскольку частоты, скорости и длины волн положительные, можно извлечь корень и получить

Из этой формулы мы узнаём, что:

• Изначально у нашей волны, так, как мы её записали, могла быть любая частота и любая длина волны. Но уравнение движения заставляет их зависеть друг от друга. Для волн класса 0 можно выбрать любую частоту, но после этого длина волны определяется через λ = cw/ν.
• Все волны класса 0, вне зависимости от частоты, перемещаются со скоростью cw. Это следует из формулы λ = cw T и рис. 3 предыдущей статьи. Понаблюдайте, как волна проходит один цикл колебаний за время одного периода Т. Что происходит? Волна выглядит точно так же после Т, но каждый гребень сместился туда, где был его сосед – на расстояние λ. Это значит, что гребень передвигается на расстояние λ за время Т – одна длина волны за один период колебаний – и значит, что гребни движутся со скоростью λ / T = cw. Это верно для всех частот и их периодов, и всех длин волн!
• Как и в случае с шаром на пружине, амплитуда А этих волн может быть любой, сколь угодно большой или малой. И это так для всех частот.

Класс 1: волны с частотой больше минимальной, с разными скоростями

Для этого класса волн наше уравнение движение будет таким:

Подставив формулу Z(x,t) для бесконечной волны и использовав быстрое вычисление, указанное выше, мы найдём, что

Поделив уравнение на , мы получим

Поскольку частоты, скорости и длины волн положительные, мы можем извлечь квадратный корень и получить

Напомню, что y 1/2 — это то же самое, что √y.

Эта формула сильно отличается от формулы для волн класса 0, как и последствия её применения.

Во-первых, уравнение движения говорит о наличии минимально допустимой частоты. Поскольку (cw/λ) 2 всегда положительно,

Чтобы приблизиться к ν = μ, необходимо увеличивать λ. Для очень больших длин волн частота приближается к μ, но меньше её стать не может. Для волн класса 0 это было не так. У них было ν = cw / λ, так что для них, чем больше вы делаете λ, тем сильнее ν приближается к нулю. Для волн класса 1 возможно любое значение ν, большее μ.

Во-вторых, мы нашли доказательство того, что у всех волн класса 0 скорость одинакова, но он не работает для волн класса 1. Единственный вариант, в котором он может сработать, если взять ν очень сильно больше, чем μ; для этого нам нужно сделать λ очень маленьким (и, соответственно, 1/ λ очень большим). В этом случае

То есть, на очень больших частотах и малых длинах волн у волн класса 1 будет примерно такое же соотношение между частотой и длиной волны, как у волн класса 0, поэтому по тем же причинам, что и волны класса 0, такие волны будут перемещаться со скоростью, (примерно) равной cw.

Что верно для волн обоих классов, так это то, что амплитуда А может быть любой, сколь угодно малой или большой, и не зависит от частоты.


Рис. 1. Для волн класса 0 и 1 уравнение движение даёт взаимосвязь между частотой, или периодом, и длиной волны, или 1/длину волны. На каждом из графиков показана взаимосвязь этих величин в зависимости от уравнения движения. Три графика показывают одно и то же, но построены они на разных переменных. Голубые линии относятся к волнам класса 0. Красные обозначают волны класса 1, скорость которых получается такой же на очень высоких частотах и малых длинах волн, когда они совпадают с голубыми линиями. Но на минимальной частоте μ (и с максимальным периодом 1/μ), обозначенных зелёным, две кривые расходятся при увеличении длин волн.

Мелкий шрифт: возможно, вы заметили, что я немножечко схитрил. Я не подсчитывал скорость волн класса 1. Дело в том, что здесь притаился очень хитрый подвох. У волн класса 0 я подсчитывал их скорость, следя за перемещениями гребней. Это работает потому, что в классе 0 волны всех частот перемещаются на одной скорости. Но у класса 1, или у любого другого, где волны разной частоты перемещаются с разной скоростью, скорость реальной волны не задаётся скоростью перемещения её гребней! Оказывается, что гребни движутся быстрее, чем cw, но скорость волны получается меньше, чем cw. Чтобы это понять, необходимо использовать весьма неочевидную логику и разницу между «групповой» и «фазовой» скоростью. Я пока обойду этот подвох; просто хотел обратить ваше внимание на его существование, чтобы вы не получили неправильное представление.

Финальные комментарии по поводу классических волн

Можно найти много знакомых примеров волн класса 0, включая звук в воздухе, воде или металле (где cw – скорость звуковых волн в материале), свет, и другие электромагнитные волны (где cw = с в вакууме), и волны на верёвках или струнах, как на рис. 2 в предыдущей статье. Поэтому волнам класса 0 обучают в начальных курсах физики. Не могу привести примера волн класса 1 в обычной жизни, но вскоре мы увидим, что эти волны так же важны для Вселенной.

У нас есть удобная формула E = 2 π 2 ν 2 A 2 M для энергии шара массы М на пружине. Формулы для других осцилляторов зависят от их природы, но их форма примерно такая же. Но в случае волн мы не упоминали их энергию. В частности из-за того, что мы для упрощения математики изучали волны с бесконечным числом гребней. Интуитивно понятно, что какая-то энергия должна храниться в движении и форме каждого гребня и впадины, и с бесконечным количеством гребней и впадин количество энергии в волне будет бесконечным. Это можно обойти двумя путями. Точные формулы зависят от типа волны, но давайте рассмотрим волны класса 0 на верёвке.

• Количество энергии на одну длину волны (хранящееся в промежутке между точкой x и точкой x + λ), конечно, и равно 2 π 2 ν 2 A 2 Mλ, где Mλ — масса отрезка верёвки длиной λ.
• В реальности волны не бывают бесконечными. Как импульс из нескольких гребней и впадин, показанный на рис. 2 в прошлой статье, любая волна будет конечной, у неё будет конечное количество гребней и впадин. Если она протянется на длину L, то есть, у неё будет L/λ гребней, тогда переносимая ей энергия будет равнятся 2 π 2 ν 2 A 2 ML, где ML — масса отрезка верёвки длиной L. Это просто L/λ, умноженное на энергию на одну длину волны.

Для волн, распространяющихся не по верёвкам, детали уравнений будут отличаться, но энергия на одну длину волны простой колебательной системы всегда будет пропорциональной ν 2 A 2 .

В классе 1 существует очень интересная волна, которой не бывает в классе 0. Это случай, когда ν = μ, минимальному значению, а λ = бесконечности. В этом случае волна принимает вид

Эта волна не зависит от x в любое время, то есть Z(x,t) будет константой по всему пространству, а Z колеблется во времени точно так, как шар на пружине с частотой μ. Такая стационарная волна, показанная на рис. 2, окажется очень важной в дальнейших рассуждениях.


Рис. 2

Релятивистская динамика

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: полная энергия, связь массы и энергии, энергия покоя.

В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него — к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения — модификацией второго закона Ньютона для теории относительности.

Релятивистская энергия

Предположим, что изолированное тело массы покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности — это знаменитая формула Эйнштейна:

Здесь — энергия тела, — скорость света в вакууме. Поскольку тело покоится, энергия , вычиляемая по формуле (1) , называется энергией покоя.

Формула (1) утверждает, что каждое тело само по себе обладает энергией — просто потому, что оно существует в природе. Образно говоря, природа затратила определённые усилия на то, чтобы «собрать» данное тело из мельчайших частиц вещества, и мерой этих усилий служит энергия покоя тела. Энергия эта весьма велика; так, в одном килограмме вещества заключена энергия

Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна Дж/кг, поэтому находим: кг . Это девять миллионов тонн!

Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.

Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.

Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину приводит к изменению массы тела на

Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой кг на (удельная теплоёмкость воды равна ) ей нужно передать количество теплоты:

Увеличение массы воды будет равно:

Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.

Формула ( 1 ) даёт энергию покоящегося тела. Что изменится, если тело движется?

Снова рассмотрим неподвижную систему отсчёта и систему , движущуюся относительно со скоростью . Пусть тело массы покоится в системе ; тогда энергия тела в системе есть энергия покоя, вычисляемая по формуле ( 1 ). Оказывается, при переходе в систему энергия преобразуется так же, как и время — а именно, энергия тела в системе , в которой тело движется со скоростью , равна:

Формула ( 2 ) была также установлена Эйнштейном. Величина — это полная энергия движущегося тела. Поскольку в данной формуле делится на «релятивистский корень», меньший единицы, полная энергия движущегося тела превышает энергию покоя. Полная энергия будет равна энергии покоя только при .

Выражение для полной энергии ( 2 ) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.

1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства

Оно означает, что : скорость массивного тела всегда меньше скорости света.

2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке в формулу ( 2 ) её числитель обращается в нуль. Но энергия-то фотона ненулевая!

Единственный способ избежать здесь противоречия — это принять, что безмассовая частица обязана двигаться со скоростью света. Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2 ) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.

Интуитивно чувствуется, что полная энергия ( 2 ) состоит из энергии покоя и собственно «энергии движения», т. е. кинетической энергии тела. При малых скоростях движения это показывается явным образом. Используем приближённые формулы, справедливые при :

С помощью этих формул последовательно получаем из ( 2 ):

Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:

При формула ( 6 ) переходит в нерелятивистское выражение .

Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5 ), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого. В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов. В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!

Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы. Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана суммарная масса продуктов распада примерно на меньше массы исходного ядра. Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.

При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!

Рассмотрим в качестве примера два тела массы , летящих навстречу друг другу с одинаковой скоростью . В результате неупругого столкновения образуется тело массы , скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:

Мы видим, что, 2m’ alt=’M> 2m’ /> — масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный , возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.

Релятивистский импульс.

Классическое выражение для импульса не годится в теории относительности — оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.

Пусть система движется относительно системы со скоростью (рис. 1 ). Два тела массы в системе летят навстречу друг другу с одинаковой скоростью . Происходит неупругое столкновение.

Рис. 1. К закону сохранения импульса

В системе тела после столкновения останавливаются. Давайте, как и выше, найдём массу образовавшегося тела:

Теперь посмотрим на процесс столкновения с точки зрения системы . До столкновения левое тело имеет скорость:

Правое тело имеет скорость:

Нерелятивистский импульс нашей системы до столкновения равен:

После столкновения получившееся тело массы двигается со скоростью .
Его нерелятивистский импульс равен:

Как видим, , то есть нерелятивистский импульс не сохраняется.

Оказывается, правильное выражение для импульса в теории относительности получается делением классического выражения на «релятивистский корень»: импульс тела массы , двигающегося со скоростью , равен:

Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.

Импульс системы до столкновения:

Импульс после столкновения:

Вот теперь всё правильно: !

Связь энергии и импульса.

Из формул ( 2 ) и ( 7 ) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:

Это и есть искомое соотношение:

Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2 ) и ( 7 ) значений и мы получим нули в числителе и знаменателе. Но зато с помощью ( 8 ) легко находим: , или

В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9 ) находится его импульс.

Релятивистское уравнение движения.

Рассмотрим тело массы , движущееся вдоль оси под действием силы . Уравнение движения тела в классической механике — это второй закон Ньютона: . Если за бесконечно малое время приращение скорости тела равно , то , и уравнение движения запишется в виде:

Теперь заметим, что — изменение нерелятивистского импульса тела. В результате получим «импульсную» форму записи второго закона Ньютона — производная импульса тела по времени равна силе, приложенной к телу:

Все эти вещи вам знакомы, но повторить никогда не помешает 😉

Классическое уравнение движения — второй закон Ньютона — является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид). Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным. Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.

То, что второй закон Ньютона ( 10 ) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.

Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11 ), где p — релятивистский импульс:

Производная релятивистского импульса по времени равна силе, приложенной к телу.

В теории относительности уравнение ( 12 ) приходит на смену второму закону Ньютона.

Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы . При условии из формулы ( 12 ) получаем:

Остаётся выразить отсюда скорость:

Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при :

Формулы ( 14 ) и ( 15 ) отличаются от формул ( 3 ) и ( 4 ) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства — они часто используются в физике.

Итак, начинаем с малых времён движения. Преобразуем выражение ( 13 ) следующим образом:

При малых имеем:

Последовательно пользуясь нашими приближёнными формулами, получим:

Выражение в скобках почти не отличается от единицы, поэтому при малых имеем:

Здесь — ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно — при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.

Теперь переходим к большим временам. Преобразуем формулу ( 13 ) по-другому:

При больших значениях имеем:

Хорошо видно, что при скорость тела неуклонно приближается к скорости света , но всегда остаётся меньше — как того и требует теория относительности.

Зависимость скорости тела от времени, даваемая формулой ( 13 ), графически представлена на рис. 2 .

Рис. 2. Разгон тела под действием постоянной силы

Начальный участок графика — почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой .


источники:

http://ege-study.ru/ru/ege/materialy/fizika/relyativistskaya-dinamika/