Уравнение движения электрона в электрическом поле

Электрон в электрическом поле

Движение электрона в электрическом поле является одним из важнейших для электротехники физических процессов. Разберемся как это происходит в вакууме. Сначала рассмотрим пример движения электрона от катода к аноду в однородном электрическом поле.

На приведенном ниже рисунке изображена ситуация, когда электрон покидает отрицательный электрод (катод) с пренебрежимо малой начальной скоростью (стремящейся к нулю), и попадает в однородное электрическое поле, присутствующее между двумя электродами.

К электродам приложено постоянное напряжение U, а электрическое поле обладает соответствующей напряженностью E. Расстояние между электродами равно d. В данном случае на электрон со стороны поля будет действовать сила F, пропорциональная заряду электрона и напряженности поля:

Поскольку электрон обладает отрицательным зарядом, то эта сила будет направлена против вектора E напряженности поля. Соответственно электрон будет в данном направлении электрическим полем ускоряться.

Ускорение a, которое испытывает электрон, пропорционально величине действующей на него силы F и обратно пропорционально массе электрона m. Поскольку поле однородно, ускорение для данной картины можно выразить так:

В этой формуле отношение заряда электрона к его массе есть удельный заряд электрона — величина, являющаяся физической константой:

Итак, электрон находится в ускоряющем электрическом поле, ибо направление начальной скорости v0 совпадает с направлением силы F со стороны поля, и электрон движется поэтому равноускоренно. Если никаких препятствий нет, то он пройдет путь d между электродами и попадет на анод (положительный электрод) с некой скоростью v. В момент когда электрон достигнет анода, его кинетическая энергия будет соответственно равна:

Поскольку на всем пути d электрон ускорялся силами электрического поля, то данную кинетическую энергию он приобрел в результате работы, которую совершила сила, действующая со стороны поля. Эта работа равна:

Тогда кинетическая энергия, которую приобрел электрон двигаясь в поле, может быть найдена следующим образом:

То есть это есть ни что иное, как работа сил поля по ускорению электрона между точками с разностью потенциалов U.

В подобных ситуациях для выражения энергии электрона удобно использовать такую единицу измерения как «электронвольт», равную энергии электрона при напряжении в 1 вольт. А поскольку заряд электрона является константой, то и 1 электронвольт — также постоянная величина:

Из предыдущей формулы можно легко определить скорость электрона в любой точке на его пути при движении в ускоряющем электрическом поле, зная лишь разность потенциалов которую он прошел ускоряясь:

Как мы видим, скорость электрона в ускоряющем поле зависит лишь от разности потенциалов U между конечной и стартовой точками его пути.

Представим, что электрон начал движение от катода с пренебрежимо малой скоростью, а напряжение между катодом и анодом равно 400 вольт. В этом случае в момент достижения анода его скорость будет равна:

Тут же легко можно определить время, за которое электрон пройдет расстояние d между электродами. При равноускоренном движении из состояния покоя средняя скорость находится как половина конечной скорости, тогда время ускоренного полета в электрическом поле будет равно:

Теперь рассмотрим пример когда электрон движется в тормозящем однородном электрическом поле. То есть поле направлено как и прежде, но электрон начинает двигаться наоборот — от анода к катоду.

Предположим что электрон покинул анод с какой-то начальной скоростью v и изначально стал двигаться в направлении катода. В этом случае сила F, действующая на электрон со стороны электрического поля, будет направлена против вектора электрической напряженности Е — от катода к аноду.

Она станет уменьшать начальную скорость электрона, то есть поле будет замедлять электрон. Значит электрон в данных условиях станет двигаться равномерно равнозамедленно. Ситуация описывается так: «электрон движется в тормозящем электрическом поле».

От анода электрон начал двигаться с отличной от нуля кинетической энергией, которая при торможении начинает уменьшаться, поскольку энергия теперь расходуется на преодоление силы, действующей со стороны поля навстречу электрону.

Если начальная кинетическая энергия электрона, когда он покинул анод, сразу была больше энергии, которую необходимо затратить полю на ускорение электрона при движении от катода к аноду (как в первом примере), то электрон пройдет расстояние d и в итоге все же достигнет катода несмотря на торможение.

Если же начальная кинетическая энергия электрона меньше данной критической величины, то электрон не достигнет катода. В определенный момент он остановится, затем начнет равноускоренное движение обратно — к аноду. В итоге поле вернет ему энергию, которая израсходовалась в процессе торможения.

А что если электрон влетает на скорости v0 в область действия электрического поля под прямым углом? Очевидно, сила со стороны поля в этой области направлена для электрона от катода к аноду, то есть против вектора напряженности электрического поля E.

Значит электрон теперь имеет две составляющие движения: первая — со скоростью v0 перпендикулярно полю, вторая — равноускоренно под действием силы со стороны поля, направленной к аноду.

Получается, что влетев в область действия поля, электрон движется по параболической траектории. Но вылетев за пределы области действия поля, электрон продолжит равномерное движение по инерции по прямолинейной траектории.

Движение электрона в однородном электрическом поле.

В электрическом поле с напряженностью E на электрон действует сила:

Поскольку при движении в вакууме электрон не испытывает столкновений, приводящих к изменению величины и направления его скорости, то уравнение движения электрона выглядит так:

Где: – масса электрона;

ряд электрона;

скорость электрона;

напряженность электрического поля.

Это уравнение позволяет полностью описать движение электрона, найти его траекторию и скорость в любой точке, если известны начальные условия:

— координаты, величина и направление скорости в начале пути и если известна картина поля, т.е. заданы в виде функции координат векторы напряженности электрического поля E. Представим уравнение (1) в виде:

Проинтегрируем по пути от точки 1 до точки 2:

Электрическое поле влияет на кинетическую энергию электрона и на правление его движения. При движении в однородном электрическом поле напряженностью , пройдя расстояние между точками 1 и 2 пространства, в направлении противоположном напряженности, электрон приобретет потенциальную энергию или , которая перейдет в кинетическую энергию движения электрона. Пусть электрон имеет в отсутствие поля скорость движения . Тогда после интегрирования по пути движения получим уравнение, связывающее кинетическую энергию свободного электрона с пройденной разностью потенциалов :

Здесь — разность потенциалов между точками 1 и 2 в пространстве, находящимися на расстоянии ,

— масса электрона;

– скорость электрона в конце движения.

Если начальная скорость была невелика, то

Так если

Таким образом, приобретенная электроном энергия однозначно определяет его скорость. При скоростях электрона, близких к скорости света, во всех приведенных уравнениях должна быть учтена релятивистская масса электрона.

Релятивистский эффект нужно учитывать при анализе движения электрона, ускоряемого разностью потенциалов более 100 киловольт, как в приведённом примере.

В первом приближении можно считать массу электрона постоянной и,

что электроны ускоряются в однородном электрическом поле в межэлектродном пространстве. Однако вблизи отверстия в аноде электрическое поле неоднородно и обладает фокусирующим действием.

Движение электронов вблизи отверстия можно представить с помощью принципов «электронной оптики».

Рассмотрим прохождение заряженной частицы через границу двух эквипотенциальных областей.

Рис. 8 Прохождение заряженной частицы через границу двух эквипотенциальных областей

Предположим, что заряженная частица движется в пространстве, в котором имеется скачок потенциала на некоторой границе. Такой скачок потенциала, конечно, нельзя осуществить технически, так как ему соответствует бесконечно большая величина напряженности поля.

Наилучшим приближением будет система, состоящая из двух близко расположенных чрезвычайно тонких слоев металлической фольги (конденсатора), прозрачных для рассматриваемых частиц и заряженных до соответствующих потенциалов. Проходя через границу раздела, заряженная частица испытывает действие силы, направленной по нормали к этой границе. Поэтому нормальная составляющая скорости изменяется, а тангенциальная составляющая остается неизменной.

Последнее условие дает:

где v1 и v2 — значения скорости частицы до и после прохождения через поверхность раздела, а углы и могут быть по аналогии с оптикой названы углом падения и углом преломления. Отсюда

Если, как обычно, считать, что величина скорости частицы определяется значением потенциала в данной точке, то равенство может быть записано в следующем виде:

Написанное равенство полностью совпадает с обычной формулировкой закона преломления в оптике:

где — показатели преломления двух сред.

Роль коэффициента преломления играет квадратный корень из значения

потенциала в данной точке.

Рисунок 9 Преломление траектории электрона на эквипотенциальных поверхностях

Электростатическое поле всегда может быть изображено с помощью системы эквипотенциальных поверхностей (рисунок).

Если эти поверхности проведены достаточно близко друг к другу, то при рассмотрении движения частицы можно считать, что потенциал в пространстве между двумя соседними эквипотенциалями постоянен и все изменение потенциала происходит маленькими скачками на самих эквипотенциальных поверхностях. Таким образом, траектория движения электрона в неоднородном электрическом поле подобна траектории распространения светового луча в среде с переменным коэффициентом преломления.

Следует указать отличия, обычной оптики от электронной:

— в электронной оптике неосуществимы скачкообразные изменения коэффициента преломления, которые являются характерными для обычных линз;

— вследствие плавного изменения коэффициента преломления в электронной оптике электроны движутся вдоль кривых, в обычной оптике световые лучи распространяются вдоль прямых линий;

— коэффициент преломления в электронной оптике ограничен только электрической прочностью среды и может достигать 8-9, в то время, как в обычной – 1,1 – 1,4. Следовательно, оптическая сила электронных линз многократно превышает оптическую силу обычных линз.

Аналогом оптической линзы в электронной оптике служит электрическое поле, обладающее аксиальной (осевой) симметрией. Аксиально-симметричное поле может быть создано различными способами: коаксиальные цилиндры, диафрагмы с круглыми отверстиями, электроды, имеющие форму кольца. Каждая эквипотенциальная поверхность в такой системе вблизи оси будет иметь сферическую форму. Параксиальный пучок электронов (т.е. движущийся на небольшом расстоянии от оси и под малыми углами к ней), будет вести себя подобно пучку световых лучей в сложной оптической линзе, склеенной из бесконечно большого числа тонких менисков с постепенно изменяющимися коэффициентами преломления. Электростатические линзы обладают свойствами собирать (фокусировать) или рассеивать проходящие сквозь них пучки заряженных частиц. Существуют линзы различных типов. Рассмотрим действие линзы на электроны на примере иммерсионной линзы, состоящей из двух заряженных цилиндров:

Рисунок 10 Иммерсионная линза. Эквипотенциальные поверхности и изменение потенциала на оси.

Рассмотрим параксиальный пучок электронов, т.е. пучок, движущийся на небольшом расстоянии от оси и под малыми углами к ней и проходящий через зазор между двумя коаксиальными цилиндрами, потенциалы которых равны соответственно и ,.причем .

Рисунок 11 Иммерсионная линза, образованная двумя цилиндрами.

Электронные траектории, входящие в линзу параллельно оптической оси, пересекают ось после прохождения линзы в главных фокусах и. В обычной световой оптике такое устройство соответствует иммерсионной линзе.

Силу, действующую на электрон в каждой точке его пути, можно разложить на две составляющие: параллельную оси и перпендикулярную к ней. На участке траектории до середины зазора радиальная составляющая силы направлена к оси. После прохождения через середину зазора радиальная сила стремится отклонить его от оси. Фокусирующее действие радиальной составляющей на первой половине пути не может быть скомпенсировано дефокусирующим действием на второй половине пути. Это объясняется тем, что первую часть пути электрон движется с меньшей скоростью и, следовательно, дольше находится под действием сил, прижимающей его к оси. В результате электронная траектория пересекает ось в некоторой точке , расположенной справа от зазора. Эта точка является главным фокусом линзы, образованной двумя цилиндрами. Если рассмотреть пучок электронов, входящий в линзу справа налево, то пучок соберется на оси в точке . Точки и. (главные фокусы) окажутся на неодинаковом расстоянии от середины зазора. Чем больше относительное приращение энергии при переходе через зазор: , тем сильнее фокусирующее действие линзы, тем ближе к середине зазора располагаются главные фокусы. Фокусные расстояния иммерсионной линзы пропорциональны квадратным корням из потенциалов:

где и. — главные фокусные расстояния.

Общие свойства иммерсионных линз:

— иммерсионные линзы всегда собирающие;

— иммерсионные линзы несимметричны, их фокусные расстояния и. неравны.

Иммерсионная линза, создавая электронное изображение, всегда изменяет

энергию электронного пучка.

Прохождение электронного луча через отверстие в аноде можно уподобить прохождению его через иммерсионную линзу. В результате траектории большинства электронов стягиваются к центру отверстия, электроны пролетают сквозь него и попадают в пространство за анодном. Так как потенциалы анода и мишени одинаковы, электрическое поле в пространстве за анодом отсутствует, и дальнейшее движение электронов происходит по инерции. Степень фокусировки электронов электростатическим полем не велика, и диаметр луча в наименьшем сечении лежит в интервале от долей до единиц миллиметров. В дальнейшем электронный поток формируется, и фокусируются электромагнитной системой на малую площади обрабатываемой заготовки. Наименьший диаметр площади фокусировки зависит от тока луча и может составлять сотые доли миллиметра.

electro.rcl-radio.ru

Основы электроники и радиотехники

ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Взаимодействие движущихся электронов с электрическим полем является основным процессом во всех электронных приборах. Будем полагать, что электроны движутся в вакууме, т. е. без столкновений с другими частицами. Такое движение совершается в электронных лампах. В газоразрядных и полу проводниковых приборах движение сложнее, так как происходит столкновение электронов с ионами и другими частицами вещества. Необходимо прежде всего рассмотреть движение электрона в однородном и постоянном во времени электрическом поле.

Законы движения одного электрона в однородном электрическом поле с известным приближением можно применить к движению его в электронном потоке, если пренебречь взаимным отталкиванием электронов.

Электрическое поле в большинстве случаев неоднородно и весьма сложно по своей структуре. Изучение движения электронов в неоднородных электрических полях представляет большие трудности и относится к области электроники, называемой электронной оптикой. Если неоднородность поля незначительна, то можно приближенно считать, что электроны движутся по законам, выведенным для однородного поля. Эти законы позволяют рассмотреть с качественной стороны движение электронов и в полях со значительной неоднородностью.

Напомним, что электрон является частицей материи с отрицательным электрическим зарядом, абсолютное значение которого е = 1,6•10∧-19 Кл. Масса неподвижного электрона m = =9,1•10∧-28 г. С возрастанием скорости масса электрона увеличивается. Теоретически при скорости с = 3•10∧8 м/с она должна стать бесконечно большой. В обычных электровакуумных приборах скорость электронов не превышает 0,1 с и можно считать массу электрона постоянной.

Движение электрона в ускоряющем поле.

На рисунке изображено в виде силовых линий (линий напряженности) однородное электрическое поле между двумя электродами, например катодом и анодом диода.

Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля:

Для однородного поля величина Е является постоянной.

Пусть из электрода, имеющего более низкий потенциал, например из катода К, вылетает электрон с кинетической энергией Wo и начальной скоростью Vo направленной вдоль силовых линий поля. Поле ускоряет движение электрона. Иначе говоря, электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называют ускоряющим.

Напряженность поля численно равна силе, действующей на единичный положительный заряд. Поэтому сила, действующая на электрон:

Знак «минус» поставлен потому, что сила F направлена в сторону, противоположную вектору Е. Иногда этот знак не ставят.

Под действием постоянной силы F электрон получает ускорение а = F/m. Двигаясь прямолинейно, электрон приобретает наибольшую скорость V и кинетическую энергию W в конце своего пути, т. е. при ударе оп электрод, к которому он летит. Таким образом, ускоряющем поле кинетическая энергия электрона увеличивается за счет работы поля по перемещению электрона. В соответствии с законом сохранении энергии увеличение кинетической энергии электрона W — Wo равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U:

Если начальная скорость электрон равна нулю, то:

т.е. кинетическая энергия электрона равна работе поля.

Формула с некоторым приближением может применяться и в том случае, когда начальная скорость много меньше конечной скорости V, так как при этом:

Если условно принять заряд электрона за единицу количества электричества, то при U = 1 В энергия электрона принимается за единицу энергии, которую назвали электрон-вольтом (эВ). В большинстве случаев удобно выражать энергию электронов в электрон-вольтах, а не в джоулях.

Определяем скорость электрона:

Подставляя сюда значения е и m, можно получить удобное выражение для скорости в метрах или километрах в секунду:

Таким образом, скорость электрона в ускоряющем поле зависит от пройденной разности потенциалов.

Начальную энергию электрона удобно выражать в электрон-вольтах, имея в виду равенство:

т. е. считая, что эта энергия создана ускоряющим полем с разностью потенциалов .

Скорости электронов даже при небольшой разности потенциалов значительны. При U = 1 В скорость равна 600 км/с, а при U = 100 В — уже 6000 км/с.

Найдем время t пролета электрона между электродами, определив его с помощью средней скорости:

Средняя скорость равноускоренного движения равна полусумме начальной и конечной скоростей:

Подставляя сюда значения конечной скорости, получим время пролета в секундах:

здесь расстояние d выражено в метрах, а если выразить его в миллиметрах, то:

Например, время пролета электрона при d = 3 мм и U =100В:

Вследствие неоднородности поля расчет времени пролета электрона в электронных приборах более сложен. Практически это время равно 10^-10 с. Можно такое малое время пролета во многих случаях не учитывать. Но все же, из-за того что электроны имеют массу, они не могут мгновенно изменять свою скорость и мгновенно пролетать расстояние между электродами. На ультра- и сверхвысоких частотах (сотни и тысячи мегагерц) время пролета электрона становится соизмеримым с периодом колебаний. Например, при f = 1000 МГц период Т = 10^-9 с. Прибор перестанет быть безынерционным или малоинерционным. Иначе говоря, проявляется инерция электронов, которая практически не влияет на работу при низких и высоких частотах. На этих частотах период колебаний Т много больше времени пролета электрона переменные напряжения на электродах за время пролета не успевают заметно измениться, т. е, можно считать, что пролет электрона совершается при постоянных напряжениях электродов.

Режим работы при постоянных напряжениях электродов называют статическим режимом. Когда напряжение хотя бы одного электрода изменяется так быстро, что законы статического режима применять нельзя, режим называют динамическим. Если же напряжения изменяются с невысокой частотой, так, что явления можно рассматривать приближенно с помощью законов статического режима, то режим называют квазистатическим. Выражения для энергии, скорости и времени полета остаются в силе для любого участка пути электрона. В этом случае величины W,V,t,d,U относятся только к данному участку. Если на разных участках напряженность поля различна, то на отдельных участках электрон будет лететь с разным ускорением, а конечная скорость электрона определяется только конечной разностью потенциалов и начальной его скоростью. Из закона сохранения энергии вытекает, что конечная разность потенциалов U равна алгебраической сумме разностей потенциалов отдельных участков. Поэтому полное приращение кинетической энергии равно произведению eU.

Движение электрона в тормозящем поле.

Пусть начальная скорость электрона Vo противоположна по направлению силе F, действующей на электрон со стороны поля (см. рис.), т.е. электрон вылетает с некоторой начальной скоростью из электрода с более высоким потенциалом. Так как сила F направлена навстречу скорости Vo, то электрон тормозится и движется равнозамедленно. Поле в этом случае называют тормозящим. Энергия электронов в тормозящем поле уменьшается, так как работа совершается не полем, а самим электроном, который преодолевает сопротивление сил поля. Таким образом, в тормозящем поле электрон отдает энергию полю.

Если начальная энергия электрона равна eUo и он проходит в тормозящем поле разность потенциалов U, то его энергия уменьшается на eU. Когда eUp > eU, электрон пройдет все расстояние между электродами и ударит в электрод с более низким потенциалом. Если же eUo


источники:

http://poisk-ru.ru/s24926t9.html

http://electro.rcl-radio.ru/?p=146