Уравнение движения электрона в магнитном поле

Шпаргалка по общей электронике и электротехнике.

5. ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ МАГНИТНОМ ПОЛЕ.

В некоторых электровакуумных приборах используется движение электронов в магнитном поле.

Рассмотрим случай, когда электрон влетает в однородное магнитное поле с начальной скоростью v0, направленной перпендикулярно магнитным силовым линиям. В этом случае на движущийся электрон действует так называемая сила Лоренца F, которая перпендикулярна вектору нО и вектору напряженности магнитного поля Н. Величина силы F определяется выражением: F= еv0Н.

При v0 = 0 сила Рравна нулю, т. е. на неподвижный электрон магнитное поле не действует.

Сила F искривляет траекторию электрона в дугу окружности. Поскольку сила F действует под прямым углом к скорости нО, она не совершает работы. Энергия электрона и его скорость не изменяются по величине. Происходит лишь изменение направления скорости. Известно, что движение тела по окружности (вращение) с постоянной скоростью получается благодаря действию направленной к центру центростремительной силы, которой именно и является сила F.

Направление поворота электрона в магнитном поле в соответствии с правилом левой руки удобно определяется по следующим правилам. Если смотреть в направлении магнитных силовых линий, то электрон движется по часовой стреле. Иначе говоря, поворот электрона совпадает с вращательным движением винта, который ввинчивается по направлению магнитных силовых линий.

Определим радиус r окружности, описываемой электроном. Для этого воспользуемся выражением для центростремительной силы, известным из механики: F = mv20/r. Приравняем его значению силы F = еv0Н: mv20/r = еv0Н. Теперь из этого уравнения можно найти радиус: r= mv0/(еН).

Чем больше скорость электрона v0, тем сильнее он стремится двигаться прямолинейно по инерции и радиус искривления траектории будет больше. С другой стороны, с увеличением Н растет сила F, искривление траектории возрастает и радиус окружности уменьшается.

Выведенная формула справедлива для движения в магнитном поле частиц с любыми массами и зарядом.

Рассмотрим зависимость rот mи е. Заряженная частица с большей массой mсильнее стремится лететь по инерции прямолинейно и искривление траектории уменьшится, т. е. rстанет больше. А чем больше заряд е, тем больше сила F и тем сильнее искривляется траектория, т. е. ее радиус становится меньше.

Выйдя за пределы магнитного поля, электрон дальше летит по инерции по прямой линии. Если же радиус траектории мал, то электрон может описывать в магнитном поле замкнутые окружности.

Таким образом, магнитное поле изменяет только направление скорости электронов, но не ее величину, т. е. между электроном и магнитным полем нет энергетического взаимодействия. По сравнению с электрическим полем действие магнитного поля на электроны является более ограниченным. Именно поэтому магнитное поле применяется для воздействия на электроны значительно реже, нежели электрическое поле.

Шаг винтовой линии электрона

Электрон, ускоренный разностью потенциалов U = 6 кВ, влетает в однородное магнитное поле под углом α = 30° к направлению поля и движется по винтовой траектории. Индукция магнитного поля B = 13 мТл. Найти радиус R и шаг h винтовой траектории.

Дано:

U = 6 кВ = 6·10 3 В

В = 13 мТл = 13 ·10 -3 Тл

Решение:

Разложим вектор скорости ν частицы на две составляющие (рис.): v 1 , направленную вдоль линий магнитной индукции, и v2, перпендикулярную этим линиям. Модули этих составляющих – соответственно υ 1 = ν cos α и v 2 = υ sin α

На частицу действует сила Лоренца, обусловленная со­ ставляющей v 2 . Вследствие этого частица движется по окружности со скоростью v 2 в плос­ кости, перпендикулярной магнитному полю. Радиус этой окружности определим, составив уравнение на основании второго закона Ньютона.

По второму закону Ньютона F Л = m е a, где a = υ 2 / R центростремительное ускорение.

Скорость найдем из закона сохранения энергии

Одновременно частица будет двигаться и вдоль поля. Это равномерное движение со скоростью v 1 , так как состав ляющая v 1 не вызывает появления силы Лоренца. В ре­ зультате одновременного движения по окружности и по прямой частица будет двигаться по винтовой линии, «на­виваясь» на линии магнитной индукции. Шаг винтовой линии

где Т — период обращения частицы по окружности:

получаем шаг винтовой линии

Ответ:

Заряд q влетает со скоростью в однородное постоянное магнитное поле под углом a к линиям магнитной индукции (рис. 12.7).

Рис. 12.7. Траектория движения заряда в магнитном поле:
а – отрицательный заряд; б – положительный заряд

Уравнение движения электрона определяется II законом Ньютона (12.1) с учетом магнитной силы (11.9)

(12.29)

где q – заряд электрона.

Разложим скорость на составляющие, направленные параллельно и перпендикулярно вектору :

и (12.30)

При движении электрона со скоростью вдоль силовых линий поля (вдоль вектора ) магнитная сила равна нулю и поэтому движение электрона будет равномерным и прямолинейным.

При движении электрона со скоростью магнитная сила равна

,(12.31)

или, в скалярном виде,

.(12.32)

электрон будет двигаться по окружности радиусом

.(12.33)

В результате сложения этих двух движений электрон будет двигаться по винтовой линии радиусом R и шагом винта h:

где T – период движения по окружности:

.(12.35)

Таким образом получаем, что шаг винта будет равен:

.(12.36)

1. Как будет двигаться заряженная частица, влетевшая в однородное магнитное поле под углом в вектору отличным от нуля и л/2?

2. Если заряженная частица, пролетая некоторую область про-­
странства, не отклоняется от первоначального направления движения, можно ли утверждать, что магнитное поле в этой области пространства отсутствует?

3. Протон и электрон, имеющие одинаковую скорость, попадают в однородное магнитное поле, индукция которого В перпендику­лярна скорости зарядов. Как будут отличаться траектории заряжен­ных частиц?

4. Чему равна работа силы, действующей на электрон, движущийся в однородном магнитном поле с индукцией В?

5. Покажите, что какой бы скоростью ни обладал электрон, влетающий в однородное магнитное поле с индукцией В, и каков бы ни был угол α между векторами и , время Т, за которое он опишет виток винтовой линии, будет одним и тем же.

6. Какова форма траектории электрона, движущегося в сов­падающих по направлению электрическом и магнитном полях, в случаях, когда: 1) начальная скорость электрона направлена вдоль полей, 2) скорость электрона перпендикулярна к Е и В?

7. Можно ли определить, каким полем вызвано отклонение пуч­ка протонов, попавшего в некоторую область пространства, – электрическим или магнитным?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: «Что-то тут концом пахнет». 8526 – | 8113 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

§14. Движение заряженных частиц в электрическом и магнитном полях

14.3 Движение по винтовой линии в однородном магнитном поле.

Рассмотрим теперь произвольный случай движения заряженной частицы в однородном магнитном поле.

Введем систему декартовых координат, так, чтобы вектор индукции однородного магнитного поля (

vec B) был направлен вдоль оси Oz (рис. 97). Пусть вектор скорости (

vec upsilon_0) частицы массы m, имеющей электрический заряд q, направлен под произвольным углом α к вектору индукции поля. Разложим этот вектор на две составляющих[

vec upsilon_1] – параллельную вектору индукции и (

vec upsilon_2) – перпендикулярную ему. Действующая на частицу сила Лоренца (

vec F_L) перпендикулярна векторам скорости и индукции, то есть лежит в плоскости xOy. Модуль этой силы равен

F_L = q upsilon_0 B sin alpha = q upsilon_2 B) . (1)

Если спроецировать уравнение второго закона Ньютона для частицы

m vec a = q vec upsilon imes vec B) , (2)

на плоскость xOy, то получим уравнение, в которое только компонента скорости, перпендикулярная полю. Это уравнение описывает движение частицы, движущейся перпендикулярно вектору индукции, которое было подробно рассмотрено ранее. Оно представляет собой равномерное движение по окружности радиуса

и угловой скоростью

не зависящими, ни от модуля скорости частицы, ни от ее направления.

Проекция магнитной силы на ось Oz равна нулю, поэтому проекция скорости на эту остается постоянной. Следовательно, эта координата изменяется по линейному закону

z = z_0 + upsilon_1 t = z_0 + upsilon_0 t cos alpha) . (6)

Таким образом, движение частицы можно представить в виде суперпозиции равномерного движения вдоль оси Oz и равномерного движения по окружности в перпендикулярной плоскости. Траекторией этого движения является винтовая линия, радиус которой определяется формулой (3), а шаг рассчитывается по формуле

h = upsilon_1 t = 2 pi frac cos alpha) . (7)

Таким образом, заряженные частицы движутся по спиралям (точнее винтовым линиям), навивающимся на силовые линии магнитного поля. Такой же характер движения сохраняется и в неоднородном магнитном поле – частицы движутся по спиралям, навивающимся на силовые линии поля, при этом радиус и шаг спирали плавно изменяются с изменением индукции поля. Направление смещения (дрейфа) частиц в магнитном поле определяется направлением начальной скорости частиц и не зависит ни от знака заряда частицы, ни от направления вектора индукции поля, последние определяют только направление вращения вокруг силовой линии. Такое движение заряженных частиц позволяет конструировать различные «магнитные ловушки» для накопления заряженных частиц, управлять движением сильно ионизованного газа (плазмы). Аналогичный характер имеет движение заряженных частиц и в магнитном поле Земли.


источники:

http://4apple.org/shag-vintovoj-linii-jelektrona/