Уравнение движения электрона в поле

Электрон в электрическом поле

Движение электрона в электрическом поле является одним из важнейших для электротехники физических процессов. Разберемся как это происходит в вакууме. Сначала рассмотрим пример движения электрона от катода к аноду в однородном электрическом поле.

На приведенном ниже рисунке изображена ситуация, когда электрон покидает отрицательный электрод (катод) с пренебрежимо малой начальной скоростью (стремящейся к нулю), и попадает в однородное электрическое поле, присутствующее между двумя электродами.

К электродам приложено постоянное напряжение U, а электрическое поле обладает соответствующей напряженностью E. Расстояние между электродами равно d. В данном случае на электрон со стороны поля будет действовать сила F, пропорциональная заряду электрона и напряженности поля:

Поскольку электрон обладает отрицательным зарядом, то эта сила будет направлена против вектора E напряженности поля. Соответственно электрон будет в данном направлении электрическим полем ускоряться.

Ускорение a, которое испытывает электрон, пропорционально величине действующей на него силы F и обратно пропорционально массе электрона m. Поскольку поле однородно, ускорение для данной картины можно выразить так:

В этой формуле отношение заряда электрона к его массе есть удельный заряд электрона — величина, являющаяся физической константой:

Итак, электрон находится в ускоряющем электрическом поле, ибо направление начальной скорости v0 совпадает с направлением силы F со стороны поля, и электрон движется поэтому равноускоренно. Если никаких препятствий нет, то он пройдет путь d между электродами и попадет на анод (положительный электрод) с некой скоростью v. В момент когда электрон достигнет анода, его кинетическая энергия будет соответственно равна:

Поскольку на всем пути d электрон ускорялся силами электрического поля, то данную кинетическую энергию он приобрел в результате работы, которую совершила сила, действующая со стороны поля. Эта работа равна:

Тогда кинетическая энергия, которую приобрел электрон двигаясь в поле, может быть найдена следующим образом:

То есть это есть ни что иное, как работа сил поля по ускорению электрона между точками с разностью потенциалов U.

В подобных ситуациях для выражения энергии электрона удобно использовать такую единицу измерения как «электронвольт», равную энергии электрона при напряжении в 1 вольт. А поскольку заряд электрона является константой, то и 1 электронвольт — также постоянная величина:

Из предыдущей формулы можно легко определить скорость электрона в любой точке на его пути при движении в ускоряющем электрическом поле, зная лишь разность потенциалов которую он прошел ускоряясь:

Как мы видим, скорость электрона в ускоряющем поле зависит лишь от разности потенциалов U между конечной и стартовой точками его пути.

Представим, что электрон начал движение от катода с пренебрежимо малой скоростью, а напряжение между катодом и анодом равно 400 вольт. В этом случае в момент достижения анода его скорость будет равна:

Тут же легко можно определить время, за которое электрон пройдет расстояние d между электродами. При равноускоренном движении из состояния покоя средняя скорость находится как половина конечной скорости, тогда время ускоренного полета в электрическом поле будет равно:

Теперь рассмотрим пример когда электрон движется в тормозящем однородном электрическом поле. То есть поле направлено как и прежде, но электрон начинает двигаться наоборот — от анода к катоду.

Предположим что электрон покинул анод с какой-то начальной скоростью v и изначально стал двигаться в направлении катода. В этом случае сила F, действующая на электрон со стороны электрического поля, будет направлена против вектора электрической напряженности Е — от катода к аноду.

Она станет уменьшать начальную скорость электрона, то есть поле будет замедлять электрон. Значит электрон в данных условиях станет двигаться равномерно равнозамедленно. Ситуация описывается так: «электрон движется в тормозящем электрическом поле».

От анода электрон начал двигаться с отличной от нуля кинетической энергией, которая при торможении начинает уменьшаться, поскольку энергия теперь расходуется на преодоление силы, действующей со стороны поля навстречу электрону.

Если начальная кинетическая энергия электрона, когда он покинул анод, сразу была больше энергии, которую необходимо затратить полю на ускорение электрона при движении от катода к аноду (как в первом примере), то электрон пройдет расстояние d и в итоге все же достигнет катода несмотря на торможение.

Если же начальная кинетическая энергия электрона меньше данной критической величины, то электрон не достигнет катода. В определенный момент он остановится, затем начнет равноускоренное движение обратно — к аноду. В итоге поле вернет ему энергию, которая израсходовалась в процессе торможения.

А что если электрон влетает на скорости v0 в область действия электрического поля под прямым углом? Очевидно, сила со стороны поля в этой области направлена для электрона от катода к аноду, то есть против вектора напряженности электрического поля E.

Значит электрон теперь имеет две составляющие движения: первая — со скоростью v0 перпендикулярно полю, вторая — равноускоренно под действием силы со стороны поля, направленной к аноду.

Получается, что влетев в область действия поля, электрон движется по параболической траектории. Но вылетев за пределы области действия поля, электрон продолжит равномерное движение по инерции по прямолинейной траектории.

Движение электрона в однородном электрическом поле.

В электрическом поле с напряженностью E на электрон действует сила:

Поскольку при движении в вакууме электрон не испытывает столкновений, приводящих к изменению величины и направления его скорости, то уравнение движения электрона выглядит так:

Где: – масса электрона;

ряд электрона;

скорость электрона;

напряженность электрического поля.

Это уравнение позволяет полностью описать движение электрона, найти его траекторию и скорость в любой точке, если известны начальные условия:

— координаты, величина и направление скорости в начале пути и если известна картина поля, т.е. заданы в виде функции координат векторы напряженности электрического поля E. Представим уравнение (1) в виде:

Проинтегрируем по пути от точки 1 до точки 2:

Электрическое поле влияет на кинетическую энергию электрона и на правление его движения. При движении в однородном электрическом поле напряженностью , пройдя расстояние между точками 1 и 2 пространства, в направлении противоположном напряженности, электрон приобретет потенциальную энергию или , которая перейдет в кинетическую энергию движения электрона. Пусть электрон имеет в отсутствие поля скорость движения . Тогда после интегрирования по пути движения получим уравнение, связывающее кинетическую энергию свободного электрона с пройденной разностью потенциалов :

Здесь — разность потенциалов между точками 1 и 2 в пространстве, находящимися на расстоянии ,

— масса электрона;

– скорость электрона в конце движения.

Если начальная скорость была невелика, то

Так если

Таким образом, приобретенная электроном энергия однозначно определяет его скорость. При скоростях электрона, близких к скорости света, во всех приведенных уравнениях должна быть учтена релятивистская масса электрона.

Релятивистский эффект нужно учитывать при анализе движения электрона, ускоряемого разностью потенциалов более 100 киловольт, как в приведённом примере.

В первом приближении можно считать массу электрона постоянной и,

что электроны ускоряются в однородном электрическом поле в межэлектродном пространстве. Однако вблизи отверстия в аноде электрическое поле неоднородно и обладает фокусирующим действием.

Движение электронов вблизи отверстия можно представить с помощью принципов «электронной оптики».

Рассмотрим прохождение заряженной частицы через границу двух эквипотенциальных областей.

Рис. 8 Прохождение заряженной частицы через границу двух эквипотенциальных областей

Предположим, что заряженная частица движется в пространстве, в котором имеется скачок потенциала на некоторой границе. Такой скачок потенциала, конечно, нельзя осуществить технически, так как ему соответствует бесконечно большая величина напряженности поля.

Наилучшим приближением будет система, состоящая из двух близко расположенных чрезвычайно тонких слоев металлической фольги (конденсатора), прозрачных для рассматриваемых частиц и заряженных до соответствующих потенциалов. Проходя через границу раздела, заряженная частица испытывает действие силы, направленной по нормали к этой границе. Поэтому нормальная составляющая скорости изменяется, а тангенциальная составляющая остается неизменной.

Последнее условие дает:

где v1 и v2 — значения скорости частицы до и после прохождения через поверхность раздела, а углы и могут быть по аналогии с оптикой названы углом падения и углом преломления. Отсюда

Если, как обычно, считать, что величина скорости частицы определяется значением потенциала в данной точке, то равенство может быть записано в следующем виде:

Написанное равенство полностью совпадает с обычной формулировкой закона преломления в оптике:

где — показатели преломления двух сред.

Роль коэффициента преломления играет квадратный корень из значения

потенциала в данной точке.

Рисунок 9 Преломление траектории электрона на эквипотенциальных поверхностях

Электростатическое поле всегда может быть изображено с помощью системы эквипотенциальных поверхностей (рисунок).

Если эти поверхности проведены достаточно близко друг к другу, то при рассмотрении движения частицы можно считать, что потенциал в пространстве между двумя соседними эквипотенциалями постоянен и все изменение потенциала происходит маленькими скачками на самих эквипотенциальных поверхностях. Таким образом, траектория движения электрона в неоднородном электрическом поле подобна траектории распространения светового луча в среде с переменным коэффициентом преломления.

Следует указать отличия, обычной оптики от электронной:

— в электронной оптике неосуществимы скачкообразные изменения коэффициента преломления, которые являются характерными для обычных линз;

— вследствие плавного изменения коэффициента преломления в электронной оптике электроны движутся вдоль кривых, в обычной оптике световые лучи распространяются вдоль прямых линий;

— коэффициент преломления в электронной оптике ограничен только электрической прочностью среды и может достигать 8-9, в то время, как в обычной – 1,1 – 1,4. Следовательно, оптическая сила электронных линз многократно превышает оптическую силу обычных линз.

Аналогом оптической линзы в электронной оптике служит электрическое поле, обладающее аксиальной (осевой) симметрией. Аксиально-симметричное поле может быть создано различными способами: коаксиальные цилиндры, диафрагмы с круглыми отверстиями, электроды, имеющие форму кольца. Каждая эквипотенциальная поверхность в такой системе вблизи оси будет иметь сферическую форму. Параксиальный пучок электронов (т.е. движущийся на небольшом расстоянии от оси и под малыми углами к ней), будет вести себя подобно пучку световых лучей в сложной оптической линзе, склеенной из бесконечно большого числа тонких менисков с постепенно изменяющимися коэффициентами преломления. Электростатические линзы обладают свойствами собирать (фокусировать) или рассеивать проходящие сквозь них пучки заряженных частиц. Существуют линзы различных типов. Рассмотрим действие линзы на электроны на примере иммерсионной линзы, состоящей из двух заряженных цилиндров:

Рисунок 10 Иммерсионная линза. Эквипотенциальные поверхности и изменение потенциала на оси.

Рассмотрим параксиальный пучок электронов, т.е. пучок, движущийся на небольшом расстоянии от оси и под малыми углами к ней и проходящий через зазор между двумя коаксиальными цилиндрами, потенциалы которых равны соответственно и ,.причем .

Рисунок 11 Иммерсионная линза, образованная двумя цилиндрами.

Электронные траектории, входящие в линзу параллельно оптической оси, пересекают ось после прохождения линзы в главных фокусах и. В обычной световой оптике такое устройство соответствует иммерсионной линзе.

Силу, действующую на электрон в каждой точке его пути, можно разложить на две составляющие: параллельную оси и перпендикулярную к ней. На участке траектории до середины зазора радиальная составляющая силы направлена к оси. После прохождения через середину зазора радиальная сила стремится отклонить его от оси. Фокусирующее действие радиальной составляющей на первой половине пути не может быть скомпенсировано дефокусирующим действием на второй половине пути. Это объясняется тем, что первую часть пути электрон движется с меньшей скоростью и, следовательно, дольше находится под действием сил, прижимающей его к оси. В результате электронная траектория пересекает ось в некоторой точке , расположенной справа от зазора. Эта точка является главным фокусом линзы, образованной двумя цилиндрами. Если рассмотреть пучок электронов, входящий в линзу справа налево, то пучок соберется на оси в точке . Точки и. (главные фокусы) окажутся на неодинаковом расстоянии от середины зазора. Чем больше относительное приращение энергии при переходе через зазор: , тем сильнее фокусирующее действие линзы, тем ближе к середине зазора располагаются главные фокусы. Фокусные расстояния иммерсионной линзы пропорциональны квадратным корням из потенциалов:

где и. — главные фокусные расстояния.

Общие свойства иммерсионных линз:

— иммерсионные линзы всегда собирающие;

— иммерсионные линзы несимметричны, их фокусные расстояния и. неравны.

Иммерсионная линза, создавая электронное изображение, всегда изменяет

энергию электронного пучка.

Прохождение электронного луча через отверстие в аноде можно уподобить прохождению его через иммерсионную линзу. В результате траектории большинства электронов стягиваются к центру отверстия, электроны пролетают сквозь него и попадают в пространство за анодном. Так как потенциалы анода и мишени одинаковы, электрическое поле в пространстве за анодом отсутствует, и дальнейшее движение электронов происходит по инерции. Степень фокусировки электронов электростатическим полем не велика, и диаметр луча в наименьшем сечении лежит в интервале от долей до единиц миллиметров. В дальнейшем электронный поток формируется, и фокусируются электромагнитной системой на малую площади обрабатываемой заготовки. Наименьший диаметр площади фокусировки зависит от тока луча и может составлять сотые доли миллиметра.

ЗОННАЯ ТЕОРИЯ ТВЕРДЫХ ТЕЛ

2.1. Движение электронов в периодическом поле кристалла.

Уравнение Шредингера для кристалла

В первой главе обсуждалось квантово-механическое описание свободных микрочастиц или частиц, находящихся во внешнем силовом поле. Однако основные успехи квантовой механики связаны с изучением систем взаимодействующих микрочастиц (электронов, ядер, атомов, молекул), из которых состоит вещество. В этой главе мы применим квантовую механику к описанию поведения электронов в твердых кристаллических телах, рассматривая кристалл как систему микрочастиц.

В общем случае эта задача требует решения уравнения Шредингера для системы частиц (электронов и ядер), образующих кристалл. В этом уравнении необходимо учесть кинетическую энергию всех электронов и ядер, потенциальную энергию взаимодействия электронов между собой, ядер между собой, электронов с ядрами. Понятно, что в общем виде решение такого уравнения не представляется возможным, поскольку оно содержит порядка 10 22 переменных. Поэтому задачи, связанные с поведением электронов в кристалле, решаются при некоторых упрощающих допущениях (приближениях), правомерность которых определяется конкретными свойствами кристалла. Рассмотрим основные из этих допущений.

Адиабатическое приближение. В этом приближении предполагается, что электроны движутся в поле неподвижных ядер. Под ядрами здесь подразумевают собственно ядра атомов со всеми электронам, исключая валентные. Правомерность этого допущения определяется тем, что скорости электронов приблизительно на два порядка больше, чем скорости ядер, поэтому для любой, даже неравновесной конфигурации ядер всегда будет успевать устанавливаться соответствующее ей электронное равновесие. В этом представлении исключается обмен энергией между электронной и ядерной системами, поэтому это приближение называется адиабатическим. Естественно, что в адиабатическом приближении нельзя рассматривать такие явления, как диффузия, ионная проводимость и др., связанные с движением атомов или ионов.

Одноэлектронное приближение. В этом приближении вместо взаимодействия данного электрона с остальными электронами и ядрами по отдельности рассматривают его движение в некотором результирующем усредненном поле остальных электронов и ядер. Такое поле называют самосогласованным. В одноэлектронном приближении, таким образом, задача сводится к независимому описанию каждого электрона в среднем внешнем поле с потенциальной энергией U(r). Вид функции U(r) определяется свойствами симметрии кристалла. Основное свойство самосогласованного поля заключается в том, что оно имеет тот же период, что и поле ядер.

Таким образом, адиабатическое и одноэлектронное приближение приводит к задаче движения электрона в некотором периодическом потенциальном поле, имеющем период, равный постоянной решетки кристалла. Уравнение Шредингера в этом случае будет иметь вид

. (2.1)

Следующие два допущения связаны с невозможностью точно определить вид функции U(r). Поэтому обычно при описании свойств электронов в кристалле рассматривают два предельных случая взаимодействия электронов с решеткой.

Приближение слабой связи. В этом приближении электроны в кристалле рассматривают как почти свободные частицы, на движение которых оказывает слабое возмущение поле кристаллической решетки. Данное допущение применимо, когда потенциальная энергия взаимодействия электрона с решеткой много меньше его кинетической энергии. Такой подход, который иногда называют «приближением почти свободных электронов«, позволяет получить решение некоторых задач, связанных с поведением валентных электронов в металлах.

В полупроводниках более приемлемым для анализа их физических свойств является приближение сильной связи. В этом приближении состояние электрона в кристалле мало отличается от его состояния в изолированном атоме. Приближение сильной связи применимо, когда потенциальная энергия электрона значительно больше его кинетической энергии.

Характерным для обоих приближений слабой и сильной связи является то, что оба они приводят к фундаментальному свойству энергетического распределения электронов в кристалле — возникновению разрешенных и запрещенных энергетических зон.

2.2. Энергетические зоны в приближении сильной связи

Несмотря на то, что метод сильной связи применим для электронов глубоких энергетических уровней, он хорошо иллюстрирует общие закономерности образования энергетических зон при сближении изолированных атомов и образования из них кристаллической решетки. Рассмотрим качественно картину возникновения энергетических зон на примере образования кристаллической решетки из изолированных атомов натрия. Электронная структура Na 11 (1s 2 2s 2 2p 6 3s): всего в атоме 11 электронов, по два электрона на 1s и 2s уровнях, 6 электронов на уровне 2р, последний заполненный уровень в атоме натрия — 3s, на котором находится один валентный электрон. Поскольку в приближении сильной связи предполагается, что состояние электрона в кристалле незначительно отличается от его состояния в изолированном атоме, будем в оценке влияния на это состояние кристаллического поля соседних атомов исходить из энергетической структуры изолированного атома. На рис. 2.1,а показаны схематически энергетические уровни и распределение электронов на них для атомов натрия, находящихся на достаточно большом расстоянии друг от друга так, что потенциальные кривые электронов не перекрываются (взаимодействие между атомами пренебрежимо мало). Состояния электронов в этом случае описываются волновыми функциями изолированного атома, разрешенные уровни энергии дискретны и определяются квантовыми числами n, l, m — главным, орбитальным, магнитным соответственно. На каждом невырожденном по энергии уровне могут находиться с учетом спина по два электрона, а на каждом вырожденном по орбитальному квантовому числу уровне 2(2l +1) электронов.

Рис. 2.1. Изменение состояния электронов при сближении атомов

Сблизим теперь эти атомы на расстояние, равное параметру кристаллической решетки натрия (рис. 2.1,б). Взаимодействие с соседними атомами будет оказывать влияние на первоначальные атомные энергетические уровни. В приближении сильной связи предполагается, что потенциальная энергия электрона в кристалле U(r) может быть представлена суммой

, (2.2)

где Ua — потенциальная энергия электрона в изолированном атоме; D U (r) — поправка, учитывающая влияние соседних атомов. Предполагается, что соседние атомы оказывают слабое возмущение на Ua( D U (r) D U (r) приводит к уравнению Шредингера для изолированного атома.

Поскольку в кристалле каждый уровень изолированного атома повторяется N раз, то он становится N-кратно вырожденным. Известно, что электрическое поле снимает вырождение и каждый уровень изолированного атома расщепляется на N близко расположенных (по значениям энергии) энергетических уровней. Здесь имеется аналогия со связанными осцилляторами. Если мы имеем два не связанных между собой каким-либо взаимодействием совершенно одинаковых осциллятора (математические маятники, электрические колебательные контуры и др.), то частоты их собственных колебаний совпадают. Взаимодействие между осцилляторами приводит к расщеплению одной частоты на две близкие частоты (при условии, что энергия взаимодействия между осцилляторами много меньше энергии собственных колебаний). Для N связанных между собой осцилляторов получим полосу из N близко расположенных частот. Аналогичный результат получается для системы взаимодействующих атомов. Число энергетических уровней, на которые расщепляется каждый энергетический уровень изолированного атома, равно числу атомов в кристалле. Величина расщепления тем больше, чем сильнее взаимодействие между атомами, т.е. чем меньше расстояние между ними. На рис. 2.2 показано схематически расщепление двух энергетических уровней атома под воздействием полей соседних атомов. Схема приведена для восьми атомов.

Решение уравнения Шредингера в приближении сильной связи приводит к следующему выражению для энергии электрона в периодическом поле трехмерной кубической решетки

, (2.3)

здесь C — некоторая постоянная величина, которая может принимать положительные и отрицательные значения; А — обменный интеграл, зависящий от перекрытия волновых функций атомов; k x , k y , k z — компоненты волнового вектора электрона; а — параметр решетки кристалла.

Рис.2.2. Расщепление энергетических уровней атома

Экстремальные значения энергии электрона Е имеют место при coskia = ± 1 (i = x, y, z) и определяют ширину энергетической зоны, образованной расщепленным уровнем изолированного атома. Для простой кубической решетки ширина энергетической зоны D E = 12A . Ширина энергетической зоны для более высоких уровней больше, т.к. для этих состояний электронов сильнее перекрываются волновые функции электронов и, следовательно, больше обменный интеграл А. Середина зоны сдвинута относительно положения энергетического уровня изолированного атома на величину С. Направление смещения зависит от знака С. Энергетические зоны в общем случае разделены интервалами энергии D E g , называемыми запрещенными зонами. Иногда энергетические зоны могут перекрываться.

В реальных кристаллах размером приблизительно 1 см 3 содержится

10 22 атомов. Ширина энергетической зоны обычно

1 эВ. В этом случае расстояние между уровнями в зоне составляет

10 -22 эВ. Следовательно, спектр электронов в пределах энергетической зоны можно считать практически непрерывным.

2.3. Общие свойства волновой функции электрона в периодическом потенциале. Теорема Блоха

Для точного решения в одноэлектронном приближении задачи о движении электрона в кристалле необходимо решить уравнение Шредингера вида (2.1), где потенциал U(r) имеет периодичность кристаллической решетки, т.е.

, (2.3)

здесь R — любой вектор прямой кристаллической решетки.

Необходимость решения квантово-механической задачи связана с тем, что длина волны де Бройля электрона по порядку величины совпадает с периодом потенциала U (

10 -8 cм). Можно получить некоторые общие свойства волновой функции электрона в кристалле, используя только свойство периодичности потенциала кристаллического поля, не решая уравнения Шредингера. Мы будем рассматривать здесь идеализированный случай гипотетического кристалла с абсолютно идеальной периодичностью потенциала. Типичный вид потенциала вдоль линии, соединяющей цепочку атомов (одномерный случай) мы получили ранее, анализируя качественно влияние взаимодействия атомов на спектр электронов при сближении изолированных атомов (рис. 2.1,б). Точное определение функции U(r) является очень сложной задачей.

Фундаментальные свойства волновой функции стационарного состояния определяются теоремой Блоха: собственные функции стационарного волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны на функцию с периодичностью потенциала:

. (2.4)

Индекс k у волновой функции указывает на то, что эта функция зависит от волнового числа. Появление индекса n связано с тем, что при фиксированных значениях k волновая функция не одинакова для электронов различных зон, образовавшихся из атомных уровней, n часто называют номером зоны. Множитель un,k(r) называют блоховским множителем. Он учитывает влияние кристаллического поля и отражает тот факт, что вероятность нахождения электрона в той или иной области кристалла повторяется от ячейки к ячейке.

Схематическое изображение электронных волновых функций, представленных в теореме Блоха, показано для одномерного случая на рис.2.3. Вверху (рис. 2.3,а) представлен потенциал U(x) вдоль цепочки атомов. Ниже (рис. 2.3,б) приведен пример собственной функции (ее действительной части). Эта функция равна произведению блоховского множителя u(x), имеющего периодичность решетки (рис. 2.3,в) и волновой функции свободного электрона в виде плоской волны (рис. 2.3,г), длина которой определяется волновым числом k. Представление волновой функции в виде (2.4) может быть сделано различными способами. Покажем это для одномерного случая. Одномерная волновая функция по теореме Блоха может быть записана в виде

. (2.5)

Домножим и разделим правую часть равенства (2.5) на функцию , где

а — параметр решетки. Тогда получим

. (2.6)

Рис. 2.3. Схематическое изображение электронных волновых функций в кристалле

В квадратных скобках формулы (2.6) стоит функция, удовлетворяющая требованиям теоремы Блоха: она является периодической с периодом а, т.к. равна произведению двух периодических функций с тем же периодом. Функция описывает плоскую волну, но с другим волновым вектором, отличающимся на величину . Таким образом, одно и то же стационарное состояние электрона в кристаллическом периодическом поле может быть описано как волновой функцией с волновым числом k , так и волновой функцией с волновым числом и другим блоховским множителем. Аналогичные результаты получатся, если k изменить на величину , где n — любое целое число.

Для одномерной цепочки атомов величина совпадает с размером первой зоны Бриллюэна в обратном пространстве. Если ограничиться рассмотрением волновых чисел в пределах первой зоны Бриллюэна, т.е. в интервале от до , то этот набор k исчерпает все физически различные значения волновых чисел в кристалле.

2.4. Модель Кронига-Пенни

Теорема Блоха позволяет аналитически решить задачу об электроне в периодическом поле кристаллической решетки в приближении слабой связи при некоторых упрощающих предположениях. Основная трудность в решении уравнения (2.1) связана с невозможностью точно записать вид функции U(r). Поэтому часто периодическую зависимость функции U(r) заменяют более простой функцией с точно таким же периодом. В модели Кронига-Пенни ограничиваются рассмотрением одномерной задачи, в которой периодический потенциал заменяется цепочкой прямоугольных потенциальных ям (рис. 2.4). Ширина каждой ямы а, они отделены друг от друга прямоугольными потенциальными барьерами высотой U 0 и шириной b. Период повторения ям с = а + b.

Рис.2.4. Изменение потенциальной энергии электрона:

а — в реальном кристалле; б — в модели Кронига-Пенни

Стационарное уравнение Шредингера будет иметь в этом случае вид

. (2.7)

Начало системы координат (точку х = 0) выберем так, чтобы она совпадала с левым краем потенциальной ямы, как это показано на рис. 2.4,б. Tогда потенциальная функция

. (2.8)

В соответствии с теоремой Блоха волновая функция электрона y (x) может быть представлена в виде

. (2.9)

Индексы n и k упущены для простоты записи. Функция u(x) (блоховский множитель) имеет период c

Подставляя (2.9) в уравнение (2.7), получим дифференциальное уравнение для блоховского множителя

(2.10a)

для электронов, находящихся внутри потенциальных ям, и

(2.10б)

для электронов, находящихся вне потенциальных ям. В этих уравнениях Ek — кинетическая энергия электрона

.

Общее решение уравнения (2.10а) для электронов внутри потенциальных ям может быть записано в виде

, (2.11а)

где a — некоторый параметр, который может быть найден подстановкой решения в виде (2.11а) в исходное уравнение (2.10а). Эта подстановка приводит к следующему значению a :

.

В области вне потенциальных ям при условии, что высота потенциального барьера U0 выше полной энергии электрона Е, решение уравнения (2.10б) имеет вид

, (2.11б)

.

Постоянные A, B, C и D в формулах (2.11а) и (2.11б) находятся как обычно из граничных условий. Граничные условия требуют, чтобы функция u(x) и ее первая производная в местах скачков потенциала, т. е. на стенках потенциальных ям, были непрерывны. Эти требования приводят к следующей системе уравнений:

(2.12)

Система уравнений (2.12) после подстановки в нее функций и , согласно равенствам (2.10а) и (2.10б), преобразуется в систему линейных однородных алгебраических уравнений, в которых неизвестными являются коэффициенты A, B, C и D. Определитель этой системы будет равен нулю (только при этом условии система линейных однородных уравнений имеет отличные от нуля решения), если выполняется следующее равенство:

. (2.13)

Выражение (2.13) можно значительно упростить, если допустить, что ширина барьера стремится к нулю , а его высота — к бесконечности , но таким образом, чтобы произведение U0b оставалось постоянным . При этих условиях выражение (2.13) преобразуется к виду:

, (2.14)

.

Поскольку a — параметр, определяемый энергией Е электрона, а k — волновой вектор электрона, то выражение (2.14) представляет зависимость E(k), т. е. дисперсионное соотношение для электрона в кристаллической решетке. Это дисперсионное соотношение можно записать в явном виде, решив уравнение (2.14) относительно a при фиксированном значении параметра p.

2.5. Энергетические зоны в модели Кронига-Пенни

Найдем в явном виде дисперсионное соотношение для электрона в периодическом кристаллическом поле. Исследуя выражение (2.14) находим, что волновое число k может быть вещественным только при условии, что значения левой части этого равенства находятся в интервале от -1 до +1. Зависимость левой части уравнения (2.14) от a для параметра p = 2 приведен на рис. 2.5. Заштрихованные участки соответствуют запрещенным значениям параметра a и, следовательно, энергии электрона в кристалле. Этот результат получен только на основании теоремы Блоха, условием применимости которой является единственное требование периодичности потенциала в стационарном уравнении Шредингера для электрона в кристалле. Таким образом, наличие периодического потенциала приводит к появлению для энергии электрона таких интервалов, для которых нет волнового решения, соответствующего вещественным значениям волнового числа электрона. Результатом этого является чередование разрешенных и запрещенных зон энергии для электрона в кристалле.

Рис. 2.5. Зависимость от параметра a левой части уравнения (2.14)

Рис. 2.6. Зависимость энергии электрона от волнового числа для p =2 и p =0 (штриховая линия)

На рис. 2.6 приведено дисперсионное соотношение для энергии электрона в кристалле. Видно, что зависимость E(k) претерпевает разрывы в точках, где и т. д.

Если параметр p = 0, согласно равенству (2.14) и

.

Последнее равенство соответствует дисперсионному соотношению для свободного электрона. На рис. 2.6 это дисперсионное соотношение изображено штриховой линией.

Поскольку, как подчеркивалось выше, все физически различимые значения волнового числа лежат в пределах первой зоны Бриллюэна, которая в одномерном случае ограничена интервалом значений волнового числа от до , целесообразно перейти от представления расширенных зон Бриллюэна (рис. 2.6) к представлению приведенных зон Бриллюэна (рис. 2.7). Волновые функции, соответствующие вещественным k, могут быть построены только для заштрихованных областей энергии электрона. Эти области представляют собой разрешенные энергетические зоны, которые отделены друг от друга зонами (щелями) запрещенных энергий.

Рис.2.7. Энергия электрона как функция волнового числа в схеме приведенных зон Бриллюэна

Предел P ® ¥ дает дискретный ряд уровней

которые совпадают с полученными в первой главе результатами для частицы в одномерной прямоугольной потенциальной яме (см. уравнение (1.34)). Энергия электронов в периодическом поле кристалла претерпевает разрыв на границах зон Бриллюэна, для которых . Физическая природа разрывов связана с

отражением электронных волн от атомных плоскостей кристаллической решетки. Действительно, с учетом того, что , условие, при котором происходит нарушение непрерывности функции E(k), может быть записано в виде , что совпадает с условием Вульфа-Брэгга при угле падения волн 90 0 .

2.6. Заполнение энергетических зон электронами.

Металлы, диэлектрики и полупроводники

Твердые тела делятся на металлы, диэлектрики и полупроводники прежде всего по величине удельной электропроводности. Для типичных металлов эта величина составляет 10 8 . 10 6 (Ом • м) -1 . В диэлектриках удельная электропроводность ничтожно мала: s -8 (Ом • м) -1 . Для хороших диэлектриков удельная электропроводность достигает величины 10 -11 (Ом • м) -1 . Твердые тела с промежуточной электропроводностью относят к полупроводникам. Оказывается, что столь большие различия в электрических свойствах твердых тел связаны со структурой и степенью заполнения электронами энергетических зон в этих телах.

Несмотря на то, что энергетические зоны квазинепрерывны, они состоят пусть из очень большого, но конечного числа энергетических уровней. Число этих уровней определяется числом атомов N, объединенных в кристалл, и орбитальным квантовым числом l:

(2.15)

В каждой энергетической зоне могут располагаться в соответствии принципом Паули не более 2(2l + 1) электронов — по два с противоположными спинами на каждом уровне. Число электронов в кристалле также конечно и зависит как от числа атомов N, так и от количества электронов в атоме. Поскольку электроны стремятся занять энергетические уровни с наинизшей энергией, то в кристалле нижние энергетические зоны оказываются полностью заполненными, а самые верхние заполнены либо частично, либо совершенно свободны.

Частично заполненная зона образуется, например, у кристалла натрия. Этот элемент имеет полностью заполненные 1s-, 2s- и 2p-уровни, на которых располагается в общей сложности 10 электронов. В кристалле Na соответствующие 1s-, 2s- и 2p-зоны также будут полностью заполнены. Одиннадцатый валентный электрон в атоме Na располагается на 3s-уровне, на котором могут располагаться 2 электрона. Следовательно, 3s-зона кристаллического натрия будет заполнена лишь наполовину. Зонная структура Na приведена на рис. 2.8,a. Заполненные электронами зоны и часть 3s-зоны заштрихованы. Eg — ширина запрещенной зоны.

Часто частично заполненная зона образуется в результате перекрытия полностью заполненной зоны со следующей совершенно свободной. Пример такой зонной структуры приведен на рис. 2.8,б для бериллия, у которого перекрываются заполненная 2s- и свободная 2p-зоны.

Большую группу составляют кристаллы, у которых над целиком заполненным зонами располагаются совершенно пустые зоны, причем ширина запрещенной зоны варьируется у них от нескольких десятков электронвольт до единиц электронвольт. Типичные примеры этой группы кристаллов показаны на рис. 2.8, в, г. Это углерод в модификации алмаза и кремний.

Структура энергетических зон кристалла оказывает решающее влияние на величину его электропроводности. Поскольку электрический ток есть направленное движение зарядов (в металлах — электронов), то возникновение электрического тока связано с увеличением импульса электронов вдоль направления действующей на него силы. Вместе с импульсом электрона меняется его волновой вектор. Поскольку энергия и волновой вектор электрона — две взаимосвязанные величины, связь между которыми определяется дисперсионным соотношением, то увеличение волнового числа должно обязательно сопровождаться увеличением энергии электрона. Нетрудно оценить, каково увеличение энергии электрона за счет его ускорения в электрическом поле, вызывающим электрический ток в проводниках. Если величина напряженности электрического поля равна 10 4 В/м, то на расстоянии, равном средней длине свободного пробега электрона в кристалле, а она обычно составляет

10 -8 м, электрон приобретает энергию приблизительно 10 -4 эВ. Понятно, что эти значения энергии позволяют электрону переходить с уровня на уровень только внутри одной энергетической зоны. Для перехода между зонами необходима энергия больше ширины запрещенной зоны Eg, которая, как указывалось выше, составляет 0.1 . 10 эВ.

Рис.2.8. Заполнение энергетических зон электронами

Эти рассуждения приводят к выводу о том, что для появления у тел высокой проводимости необходимо, чтобы в их энергетическом спектре присутствовали зоны, заполненные частично. На свободные уровни этих зон могут переходить электроны, увеличившие свою энергию под действием внешнего электрического поля (рис. 2.9). Поэтому тела с частично заполненными энергетическими зонами являются проводниками. Частично заполненные зоны имеют все металлы.

Теперь рассмотрим кристаллы, верхняя энергетическая зона которых заполнена электронами полностью (рис. 2.8, в, г). Внешнее электрическое поле не в состоянии изменить характер движения электронов, т. к. оно не в состоянии поднять электроны в вышележащую свободную зону. Внутри же самой полностью заполненной зоны, не содержащей ни одного свободного уровня, оно может вызывать лишь перестановку электронов местами, что не нарушает симметрии их распределения по скоростям. Это не приводит к возникновению электрического тока в таких кристаллах.

Таким образом, твердые тела с полностью заполненными электронами энергетическими зонами являются непроводниками. По ширине запрещенной зоны непроводники делятся на диэлектрики и полупроводники.

К диэлектрикам относят тела, имеющие относительно широкую запрещенную зону. У типичных диэлектриков Eg > 3 эВ. Так, у алмаза Eg = 5,2 эВ; у нитрида бора Eg = 4,6 эВ; у Al2O3 Eg = 7 эВ.

У типичных полупроводников ширина запрещенной зоны менее 3 эВ. Например, у германия Eg = 0,66 эВ; у кремния Eg = 1,12 эВ; у антимонида индия Eg = 0,17 эВ.

Верхняя заполненная зона полупроводников и диэлектриков называется валентной зоной, следующая за ней свободная зона называется зоной проводимости. В металлах частично заполненную зону называют как валентной зоной, так и зоной проводимости.

2.7. Эффективная масса электрона в кристалле и ее физический смысл

Особенности движения электронов в кристалле обусловлены их взаимодействием с кристаллической решеткой. Оказывается, что движение отдельного электрона в кристалле можно описывать тем же уравнением, что и для свободной частицы, т.е. в виде второго закона Ньютона, в котором учитываются только внешние по отношению к кристаллу силы.

Рассмотрим движение электрона в кристалле под действием внешнего электрического поля. Внешнее электрическое поле приводит к увеличению скорости электрона и, следовательно, его энергии. Поскольку электрон в кристалле — это микрочастица, описываемая волновой функцией, то энергия электрона зависит от его волнового вектора. Зависимость между этими двумя характеристиками электрона в кристалле определяется дисперсионным соотношением, которое в свою очередь зависит от строения энергетических зон. Поэтому при расчете движения электрона в кристалле необходимо исходить из закона дисперсии.

Свободный электрон описывается монохроматической волной де Бройля и электрон в этом состоянии нигде не локализован. В кристалле же электрону необходимо сопоставить группу волн де Бройля с различными значениями частот w и волновых векторов k. Центр такой группы волн перемещается в пространстве с групповой скоростью

Эта групповая скорость соответствует скорости перемещения электрона в кристалле.

Задачу о движении электрона будем решать для одномерного случая. Увеличение энергии электрона dE под действием внешней силы F равно элементарной работе dA, которую совершает внешняя сила за бесконечно малый промежуток времени dt:

(2.16)

Учитывая, что для электрона как микрочастицы , имеем следующее выражение для групповой скорости

Подставляя полученное выражение для групповой скорости в формулу (2.16), получим

Распространяя этот результат на трехмерный случай, получим векторное равенство

(2.17)

Как видно из этого равенства, величина ћ k для электрона в кристалле изменяется со временем под действием внешней силы точно так же, как импульс частицы в классической механике Несмотря на это, ћ k нельзя отождествить с импульсом электрона в кристалле, поскольку компоненты вектора k определены с точностью до постоянных слагаемых вида (здесь a — параметр кристаллической решетки, ni=1, 2, 3, . ). Однако в пределах первой зоны Бриллюэна ћ k обладает всемисвойствами импульса. По этой причине величину ћ k называют квазиимпульсом электрона в кристалле.

Вычислим теперь ускорение a, приобретаемое электроном под действием внешней силы F. Ограничимся, как и в предыдущем случае, одномерной задачей. Тогда

При вычислении ускорения учтено, что энергия электрона является функцией времени . Учитывая, что , получим

(2.18)

Сравнивая выражение (2.18) со вторым законом Ньютона, видим, что электрон

в кристалле движется под действием внешней силы так, как двигался бы под действием той же силы свободный электрон, если бы он обладал массой

(2.19)

Величину m* называют эффективной массой электрона в кристалле.

Строго говоря, эффективная масса электрона никакого отношения к массе свободного электрона не имеет. Она является характеристикой системы электронов в кристалле в целом. Вводя понятие эффективной массы, мы реальному электрону в кристалле, связанному взаимодействиями с кристаллической решеткой и другими электронами, сопоставили некую новую свободную “микрочастицу”, обладающую лишь двумя физическими параметрами реального электрона — его зарядом и спином. Все остальные параметры — квазиимпульс, эффективная масса, кинетическая энергия и т.д. — определяются свойствами кристаллической решетки. Такую частицу часто называют квазиэлектроном, электроном-квазичастицей, носителем отрицательного заряда или носителем заряда n-типа, чтобы подчеркнуть ее отличие от реального электрона.

Особенности эффективной массы электрона связаны с видом дисперсионного соотношения электрона в кристалле (рис.2.10). Для электронов, располагающихся у дна энергетической зоны, дисперсионное соотношение можно приблизительно описать параболическим законом

Вторая производная , следовательно, эффективная масса положительная. Такие электроны ведут себя во внешнем электрическом поле подобно свободным электронам: они ускоряются под действием внешнего электрического поля. Отличие таких электронов от свободных состоит в том, что их эффективная масса может существенно отличаться от массы свободного электрона. Для многих металлов, в которых концентрация электронов в частично заполненной зоне мала и они располагаются вблизи ее дна, электроны проводимости ведут себя подобным образом. Если к тому же эти электроны слабо связаны с кристаллом, то их эффективная масса незначительно отличается от массы покоя реального электрона.

Для электронов, находящихся у вершины энергетической зоны (рис.2.10), дисперсионное соотношение можно приблизительно описать параболой вида

и эффективная масса является величиной отрицательной. Такое поведение эффективной массы электрона объясняется тем, что он при своем движении в кристалле обладает не только кинетической энергией поступательного движения Ек, но и потенциальной энергией его взаимодействия с кристаллической решеткой U. Поэтому часть работы A внешней силы может перейти в кинетическую энергию и изменить ее на величину D Eк , другая часть — в потенциальную D U :

Рис. 2.10. Закон дисперсии для электрона в кристалле

Рис. 2.11. Зависимость эффективной массы электрона от волнового числа

Если при движении электрона в потенциальную энергию переходит не только вся работа внешней силы, но и часть кинетической энергии, имевшейся у электрона ( D Eк 0 ), то его скорость будет уменьшаться. В этом случае электрон ведет себя как частица с отрицательной эффективной массой. В случае, когда вся работа внешней силы переходит в потенциальную энергию ( D Eк = 0 ), то приращения кинетической энергии и скорости не происходит. Электрон ведет себя как частица с бесконечно большой эффективной массой. Бесконечно большой эффективной массой обладает электрон в точках перегиба дисперсионной кривой, которые на рис. 2.10 обозначены штриховыми линиями. Схематически зависимость эффективной массы электрона от его волнового числа показана на рис. 2.11.

2.8. Собственные полупроводники. Понятие о дырках

Из структуры энергетических зон полупроводников следует, что при абсолютном нуле они не проводят электрического тока. Нагревание их приводит к тому, что часть электронов валентной зоны приобретает энергию, достаточную для их перехода в зону проводимости, в результате чего появляется заметная электропроводность. С увеличением температуры число электронов в зоне проводимости увеличивается и вместе с этим растет электропроводность полупроводника. Тепловое возбуждение электронов проводимости иллюстрирует рис. 2.12. Ес и Еv обозначают дно зоны проводимости и потолок валентной зоны соответственно. Кроме температуры, возбуждение электронов проводимости может происходить и под действием других факторов, способных сообщить электронам энергию, достаточную для перехода их в зону проводимости. Этими факторами могут быть световое облучение, ионизирующее излучение и др.

Рассмотренный выше механизм возникновения электропроводности полупроводниковых кристаллов, справедлив для абсолютно чистых материалов, не содержащих примесей, влияющих на электропроводность. Такие полупроводники называются собственными, а их электропроводность собственной электропроводностью. К собственным полупроводникам относятся кристаллы чистых химических элементов, таких как германий (Ge), кремний (Si), селен (Se), теллур (Te) и др., а также некоторые химические соединения: арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и многие другие.

В разделе 2.8 показано, что электроны, расположенные у по-толка энергетической зоны, об-ладают отрицательной эффектив-ной массой. Именно такие электроны, расположенные у вершины валентной зоны, переходят в зону проводимости и участвуют в электропроводности полупроводника. Каждому электрону, перешедшему в зону проводимости, в валентной зоне соответствует незанятое (вакантное) состояние, которое называют дырочным состоянием. Дырочные состояния изображены на рис. 2.12 светлыми кружками. Наличие вакансий в валентной зоне позволяет электронам этой зоны изменять свое энергетическое состояние под действием внешнего электрического поля. Рассмотрим подробнее этот процесс на примере кристалла, в котором имеется одно вакантное состояние. В отсутствие электрического поля это состояние будет находиться в вершине зоны, т.к. электроны стремятся расположиться на уровнях с наименьшей энергией (рис. 2.13,а). Занятые электронами состояния изображены на рис. 2.13 точками и расположены на дисперсионной кривой, описывающей зависимость энергии электрона от компоненты волнового вектора k x . У вершины энергетической зоны эта кривая приблизительно описывается параболой. Если к полупроводнику приложить внешнее электрическое поле Е (пусть для определенности оно будет направлено вдоль положительного направления оси х, рис. 2.13,б) , то у каждого электрона х-компонента волнового вектора kx одновременно получит отрицательное приращение. Этот вывод следует из уравнения движения, одинакового для каждого электрона:

. (2.20)

Следовательно, электроны валентной зоны будут перемещаться в направлении, указанном стрелкой на рис. 2.13,б. Вакантное состояние в результате этого движения электронов вначале переместится в точку Е, а затем — в точку D и т.д. Таким образом, последовательное перемещение электронов по энергетическим уровням под влиянием электрического поля эквивалентно перемещению вакантного состояния. Квантовое состояние, не занятое электроном в энергетической зоне, называется дыркой. Суммарный волновой вектор электронов в полностью заполненной энергетической зоне равен нулю, поскольку дисперсионная кривая симметрична относительно точки k = 0 и каждому электрону с волновым вектором k всегда найдется электрон с противоположным по знаку волновым вектором — k . Если из состояния с волновым вектором ke удален электрон, то полный волновой вектор системы станет равным — k e . Таким образом, дырке следует приписать волновой вектор

. (2.21)

Учитывая (2.20) и (2.21), уравнение движения дырки будет иметь вид

. (2.22)

Это уравнение движения положительного заряда в электрическом поле. Поскольку дырка перемещается вдоль направления действующей на нее силы, то этой частице следует приписать положительную эффективную массу, равную по абсолютному значению отрицательной эффективной массе электрона, покинувшего вакантное состояние у потолка валентной зоны.

Вычислим ток, создаваемый электронами полностью заполненной энергетической зоны. Вклад в плотность тока от одного электрона, движущегося со скоростью vj равен

.

Ток всех электронов валентной зоны равен сумме токов отдельных электронов:

.

Суммирование производится по всем состояниям, занятым электронами. Поскольку дисперсионные кривые симметричны, каждому электрону с ненулевым значением скорости в положительном направлении всегда найдется электрон с равной по абсолютному значению, но противоположно направленной скоростью. Следовательно, сила тока, создаваемого электронами полностью заполненной зоны, будет равна нулю.

Если в валентной зоне заняты все состояния, кроме одного, характеризующегося волновым вектором ks и скоростью vs (рис. 2.13,г), то суммарную плотность тока в этом случае можно представить в следующем виде:

.

В этой формуле учтено, что первое слагаемое в силу симметричности состояний электронов равно нулю.

Таким образом, движение электронов валентной зоны, в которой есть одно вакантное состояние, эквивалентно движению одной частицы с положительной эффективной массой и положительным электрическим зарядом, помещенной в это состояние.

2.9. Примесные полупроводники

В реальных кристаллах полупроводников всегда присутствуют, пусть и в небольших количествах, дефекты, примеси, некоторые из которых оказывают существенное влияние на их электропроводность. Например, добавление в кремний бора в количестве одного атома на 10 5 атомов кремния увеличивает его электропроводность при комнатной температуре в 1000 раз. Полупроводники, содержащие примеси, существенно влияющие на его электропроводность, называются примесными полупроводниками, а их электропроводность примесной электропроводностью.

Рассмотрим механизм примесной проводимости на примере полупроводникового кристалла кремния с примесными атомами фосфора. Четыре валентных электрона кремния образуют в химически чистом кристалле парные ковалентные связи с четырьмя своими ближайшими соседями (рис. 2.14,а). Примесный атом фосфора замещает один из атомов кремния в узле кристаллической решетки. У атома фосфора пять валентных электронов, четыре из которых поддерживают связи с соседними атомами кремния, а пятый остается свободным (рис. 2.14,б). Этот избыточный электрон может перейти в зону проводимости кремния и «участвовать» в создании электрического тока. Примеси, поставляющие в зону проводимости дополнительное количество электронов, называются донорными примесями, а полупроводники с такими примесями — донорными полупроводниками или полупроводниками n-типа. Наиболее распространенными донорными примесями в кристаллах кремния и германия являются атомы пятой группы периодической системы элементов Д. И. Менделеева: фосфор (P), мышьяк (As), сурьма (Sb), висмут (Bi). Энергию, которую необходимо затратить, чтобы перевести электрон примесного донорного атома в зону проводимости, называют энергией связи донорной примеси. Оценить энергию связи донорной примеси можно из простой модели, подобной боровской модели атома водорода. Согласно этой модели примесный электрон движется по круговой орбите в кулоновском поле сил иона фосфора подобно электрону в поле ядра атома водорода. Различие заключается в том, что поле примесного иона ослаблено диэлектрическими свойствами кристалла полупроводника. Это влияние учитывается диэлектрической проницаемостью среды, которая для типичных полупроводников составляет 5 . 2000. Необходимо учесть также тот факт, что эффективная масса электрона в кристалле отличается от массы свободного электрона. Для количественных оценок воспользуемся результатами, полученными в теории Бора для атома водорода. Энергия связи электрона в атоме водорода равна . Учитывая диэлектрическую проницаемость полупроводника e и заменяя массу свободного электрона m на его эффективную массу в кристалле m*, получим следующее выражение для энергии ионизации донорной примеси:

Рис. 2.14 Схема проводимости в донорном полупроводнике:

а — ковалентные связи в чистом полупроводнике кремния; б — примесный атом фосфора;

в — зонная структура донорного полупроводника

. (2.23)

Энергия ионизации свободного атома водорода равна 13,6 эВ. В соответствии с формулой (2.23) это значение надо умножить на коэффициент , чтобы получить величину Ed. В кремнии e = 11,7; m*/m » 0,2. В результате получим Ed » 0,02 эВ.

Экспериментальное значение энергии ионизации фосфора в кремнии составляет 0,044 эВ. Другие донорные примеси имеют в кремнии и германии энергию ионизации того же порядка величины (см. таблицу).


источники:

http://poisk-ru.ru/s24926t9.html

http://sibsauktf.ru/courses/foet/Foet_2.htm