Уравнение движения гармонического осциллятора вывод

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

КОЛЕБАНИЯ

Лекция 1

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции — если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, — фаза колебаний, определяющая смещение в момент времени , — начальная фаза, определяющая величину смещения в начальный момент времени, — циклическая частота колебаний.

Время одного полного колебания называется периодом, , где — число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

,

. (1.1.2)

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).

Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

. (1.1.3)

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Отсюда .

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2. Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

,

где . Тогда с учётом введённых обозначений:

, (1.1.4)

С учётом выражения (1.1.4) для силы, действующей на систему, получаем:

Согласно второму закону Ньютона, уравнение движения системы имеет вид: ,

, (1.1.5)

Выражений (1.1.5) совпадает с уравнением (1.1.3) свободных гармонических колебаний при условии, что

, (1.1.6)

и имеет два независимых решения: и , так что общее решение:

, или

,

где

Из формулы (1.1.6) следует, что частота определяется только собственными свойствами механической системы и не зависит от амплитуды и от начальных условий движения.

Зависимость координаты колеблющейся системы от времени можно определить в виде вещественной части комплексного выражения , где A=Xe-iα– комплексная амплитуда, её модуль совпадает с обычной амплитудой, а аргумент – с начальной фазой.

1.1.3. Примеры колебательных движений различной физической природы

Колебания груза на пружине

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , — смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х, после чего отпустить в момент времени t=0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma, или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t=0 грузу сообщить смещение х=А, то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx, стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз — пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk=0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx. Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ, который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ, поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ, обозначим ,

имеем: , или , и окончательно

.

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

.

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О. Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х. Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).

2. Если разность фаз то уравнение (1.1.9) переходит в уравнение эллипса, приведенного к координатным осям, При материальная точка движется по окружности, уравнение которой (рис.1.1.11).

3. Если частоты колебаний неодинаковы, то материальная точка описывает фигуры Лиссажу (рис.1112).

Рассмотрим сложение колебаний одного направления, частоты которых мало отличаются друг от друга. В этом случае результирующее движение можно рассматривать как гармоническое колебание с пульсирующей амплитудой. Такие колебания называются биениями.

Пусть частота одного колебания , второго . Амплитуды обоих колебаний одинаковы и равны а. Начальные фазы равны нулю. В таком случае уравнения колебаний имеют вид:

Сложим эти выражения:

(1.1.10)

График функции х(t) представлен на рис. 1.1.13. Множитель меняется гораздо медленнее, чем , поэтому (1.1.10) можно рассматривать как гармоническое колебание частоты , амплитуда которого меняется по некоторому периодическому закону

Частота изменения амплитуды – частота биений – равна разности частот складываемых колебаний .

Энергия колебаний

Смещение колеблющейся точки от положения равновесия, описывается уравнением:

ее ускорение равно второй производной от смещения по времени тогда сила, действующая на колеблющуюся точку, по второму закону Ньютона равна

— то есть сила пропорциональна смещению х и направлена против смещения к положению равновесия. Эта сила называется возвращающей силой. В случае груза на пружине возвращающей силой является сила упругости, в случае математического маятника – составляющая силы тяжести.

Возвращающая сила по характеру подчиняется закону Гука F= -kx, где

– коэффициент возвращающей силы. Тогда потенциальная энергия колеблющейся точки равна:

(постоянную интегрирования выбирают равной нулю, чтобы при х=0 энергия Wn=0).

где , тогда

Полная механическая энергия равна сумме кинетической и потенциальной энергий, и в случае свободных колебаний без трения сохраняется (рис.1.1.15). Когда материальная точка совершает колебания, кинетическая энергия переходит в потенциальную, и наоборот. В крайних точках (х = ±А) скорость , кинетическая энергия равна нулю, и полная энергия равна потенциальной:

Таким образом, полная механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия (х=0) потенциальная энергия переходит в кинетическую:

В промежуточных точках полная энергия равна

а скорость

На рисунке 1.1.16 приведена кривая потенциальной энергии , горизонтальная линия соответствует полной энергии. Расстояние от этой линии до кривой равно кинетической энергии. Движение ограничено значениями х, заключёнными в пределах от –А до +А.

Средние за период значения кинетической и потенциальной энергии одинаковы и равны , так что средняя полная энергия системы равна полной энергии системы ( средние значения ).

АНГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

Уравнение движения гармонического осциллятора вывод

потенциальную и наоборот, но их сумма в любой момент времени постоянна.

На рис. 2.1.5 приведена кривая потенциальной энергии.

Горизонтальная линия соответствует определенному значению полной энергии: E = 12 kA2. Расстояние от этой линии до кривой равно кинетической энергии, а движение ограничено значениями х, заключенными в пределах от +А до -А. Эти результаты полностью согласуются с полным решением уравнения движения.

2.1.6. Гармонические осцилляторы

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются: пружинный, математический и физический маятники, а также колебательный контур (для малых токов и напряжений).

• Пружинный маятник — это груз массой m, подвешенный на абсолютно упругой пружине с жесткостью k, совершающий гармонические колебания под действием упругой силы F = -kx. Уравнение движения маятника — .

Из сравнения выражений (2.1.13) и (2.1.19) следует, что пружинный маятник совершает гармонические колебания по закону x = A cos(ω0t + φ) с циклической частотой &omegta;0 и периодом Т, где .

Квантовый гармонический осциллятор

Конспект лекции (с демонстрациями)

Аннотация: изучение качественной стороны решения уравнения Шредингера для гармонического осциллятора, выяснение отличий получаемых результатов от выводов классической механики. (Традиционное изложение темы, дополненное демонстрациями на компьютерных моделях.)

Одна из важных задач о движении микрочастиц – это задача о движении гармонического осциллятора — системе, способной совершать гармонические колебания. История квантовой теории реально начинается с Макса Планка, который в 1900 г. получил формулу для правильного описания спектрального распределения теплового излучения. Планк пришел к выводу, что не может обеспечить вывод своей магической формулы для распределения излучения, если только не сделать предположения, которое с философской точки зрения он считал почти неприемлемым. Это предположение заключалось в том, что рассматриваемые им в качестве излучателей гармонические осцилляторы должны обладать энергиями, не распределенными как непрерывные переменные (чего следовало бы ожидать), а принимающими дискретные и регулярным образом расположенные значения. Осцилляторы с частотой υ должны были обладать значениями энергии, которые были бы кратны, т.е. n раз умножены (где n = 0,1, 2,3. ) на нечто, названное им квантом энергии hυ.

Рассмотрим одномерный случай. (Трехмерные задачи сложны в математическом отношении, а практически все принципиальные особенности движения микрочастиц можно выявить и на одномерных задачах.) Изменение потенциальной энергии по оси x описывается формулой

Какие примеры движения окружающего мира хотя бы приближенно описываются такой потенциальной функцией?

  • Колебания маятника с малой амплитудой.
  • Другой пример – вертикальные колебания грузика, подвешенного на пружине.

В мире микрочастиц примерами могут быть колебания двухатомной молекулы или колебания атомов в кристаллах. Существенным для всех примеров является ограничение движения некоторой областью значений x. Частица не может покинуть параболическую потенциальную яму, края которой уходят на бесконечность.

Из классической механики известно, что проекция движения частицы на ось x представляет собой синусоидальное колебание около положения равновесия x = 0 с частотой:

Точки a0 и -a0, в которых полная энергия частицы E равна потенциальной энергии, являются для частицы точками поворота. Плотность вероятности обнаружения колеблющейся частицы в различных точках оси x описывается формулой

Минимальна вероятность найти частицу около положения равновесия, где она движется с максимальной скоростью. Вблизи точек поворота частица как бы «зависает», и там вероятность обнаружения максимальна.

Оценка минимальной энергии осциллятора

Посмотрим, к каким выводам о характере движения приводит квантовая механика. Начнем с простой оценки минимального значения энергии осциллятора E. Полная энергия осциллятора E складывается из кинетической и потенциальной энергий:

Используя соотношение неопределенности Гейзенберга, в качестве оценки значения импульса p возьмем p

Для малых значений x кинетическая энергия превышает потенциальную, тогда как при больших значениях x имеет место обратное соотношение между ними. Для основного состояния, где энергия минимальна, найдем минимум функции (2). Значение переменной xmin, соответствующее минимуму, равно:

а соответствующее значение энергии E имеет порядок

Заметим, что оценка энергии основного состояния дает ненулевое(!) значение. Уже простые вычисления приводят к нетривиальному результату.

Решения уравнения Шредингера

Нахождение точного решения требует решения уравнения Шредингера с потенциальной энергией (1), которое имеет вид

Трудности решения связаны со слагаемым, содержащим x 2 . Приведем здесь только результаты вычислений. Анализ показывает, что, как и в случае с прямоугольной потенциальной ямой, волновые функции, являющиеся решением этого уравнения, будут непрерывными и конечными не при всех значениях энергии E, а лишь при дискретном наборе значений:

где n принимает значения 0, 1, 2, . . Отметим, что энергетические уровни гармонического осциллятора в отличие от случая прямоугольной потенциальной ямы расположены на одинаковом энергетическом расстоянии друг от друга ΔE = hυ.

Важной особенностью решения является наличие так называемых нулевых колебаний — колебаний с энергией, соответствующих значению квантового числа n = 0. Отличие от нуля минимальной энергии осциллятора характерно для всех квантовых систем и является следствием соотношения неопределенностей (см. оценку выше). В реальных квантовых системах, например, кристаллах, эти колебания сохраняются, как показывает опыт, даже при температурах, близких к абсолютному нулю, когда, казалось бы, все тепловое движение должно прекратиться. Опыты по рассеянию света кристаллами при низких температурах это подтверждают. Велика роль нулевых колебаний и в объяснении природы сил молекулярных взаимодействий (пример ниже) и других молекулярных явлений.

Первые три волновых функции гармонического осциллятора выглядят так:

Здесь введено обозначение x0 2 = h/(4π 2 mυ).

Графики этих волновых функций представлены на рисунке ниже.

Пунктиром показаны границы, между которыми совершала бы колебания классическая частица. Значения a0 отличаются для разных n, так как от n зависит энергия Е (

E 1/2 ). Очевидно, что при малых значениях квантового числа n плотность вероятности нахождения частицы, определяемая квадратом модуля волновой функции ψ0(x) 2 , кардинальным образом отличается от плотности вероятности обнаружения классического осциллятора: в основном состоянии максимальное значение вероятности приходится на центр, модуль волновой функции для всех квантовых чисел n имеет наибольшие значения между классическими точками поворота и экспоненциально убывающие «хвосты» вне этих точек.

Определим для основного состояния, как велика вероятность P обнаружения частицы вне пределов классической области, т.е. вне области -a0 Компьютерная модель

Компьютерная модель поможет Вам в исследовании квантового осциллятора. Ее возможности: после того, как Вы зададите порядковый номер атомов Z, из которых состоит молекула (по умолчанию Z=8), компьютер проведет необходимые расчеты и будет готов показать разрешенные значения энергии, соответствующие им волновые функции и распределения плотности вероятности нахождения частицы по координате. Двигайте указатель вдоль оси энергий (мышкой или клавишами со стрелками) и наблюдайте.

  • как плотность уровней зависит от массы атомов;
  • как энергия частицы зависит от квантового числа n;
  • как вероятность обнаружить частицу зависит от x; убедитесь в том, что амплитуда колебаний частицы увеличивается с ростом ее энергии;
  • как вероятность обнаружения частицы вне классической области зависит от квантового числа n. Для этого на нижнем графике установите крестик в начало области интегрирования, нажмите клавишу «Enter» и передвиньте крестик в конечную точку. Компьютер рассчитает площадь под кривой, равную вероятности обнаружить частицу в выбранном Вами диапазоне координат;

Смешение состояний (принцип суперпозиции)

Реальные объекты (атомы в молекуле, кристалле. ) редко находятся в основном состоянии. За счет, например, теплового возбуждения реальны состояния с квантовым числом n > 0. Одно из важнейших положений квантовой механики — принцип суперпозиции. Он гласит: если квантовая частица может находиться в состояниях, описываемых функциями Ψ1, Ψ2, . Ψn, то линейная комбинация (суперпозиция) волновых функций Ψi

где сi — произвольные постоянные, также является волновой функцией, описывающей одно из возможных состояний частицы. Коэффициенты сi изменяются во времени. Принцип неопределенности ΔtΔE>h/2π не позволяет определить зависимость от времени этих коэффициентов для конкретного осциллятора (можно, однако, получить средние значения для большого количества осцилляторов).

Для гармонического осциллятора интересен набор состояний, который минимизирует соотношение неопределенности «координата — импульс», т.е. произведение ΔpΔx=h/2π. Впервые он был построен Шредингером в 1926 г. Волновая функция Ψ(x,t) может быть разложена по волновым функциям стационарных состояний осциллятора

Коэффициенты этого разложения

Вероятность осциллятору находиться в состоянии с квантовым числом n равна

т.е. дается распределением Пуассона. Волновая функция Ψ(x,t) представляет нерасплывающийся волновой пакет. Центр пакета движется по классическому закону, ширина пакета не зависит от времени.

Эти состояния называют когерентными, так как они используются для описания когерентных свойств электромагнитного излучения в квантовой теории поля (R. Glauber, Нобелевская премия 2005 года; текст нобелевской лекции, 269 кб). Можно показать, что свободное электромагнитное поле эквивалентно бесконечному набору независимых гармонических осцилляторов.

Со свойствами когерентных состояния гармонического осциллятора можно познакомиться поближе с помощью компьютерной модели (автор L. Kocbach).

Вычисление средних значений

С помощью волновых функций можно найти среднее значение любой величины (если ее можно в принципе измерить экспериментально). Величина |ψ(x)| 2 dx — вероятность нахождения частицы в интервале dx. В случае многократных наблюдений за частицей |ψ(x)| 2 dx — доля частиц, которые находились в этом интервале, т.е. |ψ(x)| 2 является функцией распределения по координате. С ее помощью найдем, что среднее значение координаты

Аналогичным образом находится среднее значение любой функции координаты, например, для потенциальной энергии имеем

В этих формулах, чтобы вычислить среднее значение, мы умножаем значение функции в точке x на вероятность нахождения частицы около x и суммируем по всем возможным значениям x. В качестве примера найдем эти величины для основного состояния гармонического осциллятора

т.к. под интегралом нечетная функция, и

Среднее значение потенциальной энергии равно половине полной энергии этого состояния.

Правило для вычисления средней кинетической энергии отличается от приведенного, т.к. кинетическая энергия является функцией импульса p, а не координаты x:

Для основного состояния гармонического осциллятора

т.е. мы показали, что для основного состояния гармонического осциллятора средние значения потенциальной энергии и кинетической энергии равны между собой и составляют половину полной энергии осциллятора. Можно показать, что это утверждение будет справедливым и для любого другого состояния квантового гармонического осциллятора. Среднее значение потенциальной энергии увеличивается с ростом n, так как при больших значениях n функция ψ(x) заметно отлична от нуля в тех областях оси х, где потенциал U(x) увеличивается. Обратите на это внимание при экспериментах с компьютерной моделью .

Энергия излучения при переходе из одного состояния в другое равна

Набор равноотстоящих энергетических уровней гармонического осциллятора (3) на первый взгляд означает, что осциллятор может поглощать и испускать излучение с частотой, кратной υ, т.е. kυ , где k — разность квантовых чисел начального и конечного уровней осциллятора. Однако, на самом деле это не так. Точный анализ показывает, что если

где n и m квантовые числа начального и конечного состояний, среднее значение координаты не меняется во времени, и такие переходы запрещены.

Проверим выполнение этого условия для гармонического осциллятора. Пусть n=1, а m=0. Опуская постоянные, для интеграла получим выражение

т.к. под интегралом четная функция. Если положить n=2, m=1,

по той же причине. Переходы между соседними уровнями 0↔1 и 1↔2 являются разрешенными. Рассмотрим теперь переход между состояниями n=0 и m=2. Соответствующий интеграл имеет вид

поскольку функция под интегралом нечетная, а пределы симметричны относительно x=0. Следовательно, переходы 0↔2 запрещены. Особенности испускания и поглощения электромагнитного излучения гармоническим осциллятором таковы, что возможны переходы только между соседними уровнями Δn = ± 1. Это правило отбора для гармонического осциллятора.

Трехмерный гармонический осциллятор

В общем случае потенциальная энергия выражается суммой

Уравнение Шредингера допускает разделение переменных. Если решение искать в виде ψ(x,y,z)=X(x)Y(y)Z(z), получается три дифференциальных уравнения, совпадающих по виду с одномерным. Для изотропного случая (kx =ky =kz = k) значения энергии таковы

где квантовые числа n1, n2 и n3 пробегают значения от 0 до бесконечности. Как и в одномерной задаче, налицо дискретность значений энергии, не равная нулю нулевая энергия. Но в трехмерном случае решение определяется тремя квантовыми числами. И особенность: одно и то же значение энергии могут иметь различные состояния, для которых выполнено условие n1+n2+n3 = const. Такие состояния называют вырожденными.

Взаимодействие двух осцилляторов

Существование нулевой энергии (формула (3) при n = 0) сыграло важную роль для объяснения такого загадочного явления, как межатомное взаимодействие у благородных газов. Так как это взаимодействие проявляется в уравнении состояния Ван-дер-Ваальса для реальных газов

оно названо ван-дер-ваальсовским. Если молекулы (атомы) обладают дипольным моментом, то их притяжение обусловлено взаимодействием диполей (качественно и количественно исследованный факт). Но нейтральные молекулы с симметричным в состоянии покоя распределением заряда могут взаимодействовать только при смещении зарядов, вызывающем появление дипольного момента. Такое смещение возникает при не исчезающих ни при каких условиях нулевых колебаний с энергией hυ/2. Появление дипольного момента у одной молекулы индуцирует дипольный момент в другой. Взаимодействие этих быстро меняющихся моментов и обуславливает притяжение.

В качестве простой модели рассмотрим два линейных осциллятора, расположенных на расстоянии R друг от друга и колеблющихся вдоль соединяющей их прямой. Положительные заряды будем считать неподвижными, x1 и x2 — смещение отрицательных частиц (электронов) от положения равновесия.

В отсутствии второго (или при очень большом R) потенциальная энергия каждого осциллятора может быть рассчитана по формуле (1), а частоту колебаний обозначим через υ0

Энергия взаимодействия двух диполей по закону Кулона равна

Первые два слагаемых описывают отталкивание одноименных зарядов разных диполей, а вторые два — притяжение. Всегда R >> x1 и R >> x2. Поэтому разложим дроби в ряды и, удерживая по три члена разложения, получим

Полная энергия двух взаимодействующих осцилляторов равна (здесь p — импульс электрона)

выражение для полной энергии приводится к виду

представляющему сумму энергий двух независимых осцилляторов с несколько отличающимися частотами

Как мы видели, энергия этих осцилляторов имеет квантованные значения (см. (3) выше) и, следовательно, полная энергия нашей системы будет

а для основного состояния (n1 = 0 и n2 = 0)

Теперь надо учесть, что вторые слагаемые под корнями много меньше первых (связь электрона со своим ядром гораздо сильнее связи осцилляторов). Корни квадратные разложим в степенные ряды и ограничимся тремя членами в разложении. Это даст

Последнее выражение равно удвоенной энергии изолированного осциллятора минус небольшая энергия. Поскольку добавка отрицательна, полная энергия взаимодействующих осцилляторов меньше энергии изолированных, для разрыва связи нужно энергию затратить! И, заметим, энергия связи очень быстро убывает с расстоянием

Не было бы нулевых колебаний (чисто квантового эффекта), не существовало бы и связи молекул в основном состоянии.

Ангармонический осциллятор

Гармонический осциллятор — идеализация. Реальные зависимости U(x) выглядят как на рисунке справа. Парабола (штриховая кривая) является хорошим приближением только для малых колебаний вблизи положения равновесия. Для колебаний большой амплитуды формула (3) непригодна, интервалы между верхними уровнями энергии и нижними не одинаковы. Для верхних уровней энергии En потенциальная яма шире параболы, и поэтому интервалы между этими уровнями меньше интервалов между нижними уровнями.

Подведем итоги:

  • энергия основного состояния частицы не равна нулю;
  • энергия частицы квантована, и значение ее растет линейно с n;
  • вероятность обнаружить частицу меняется от точки к точке;
  • в трехмерном случае различным состояниям может соответствовать одно и то же значение энергии (вырождение);
  • нулевые колебания объясняют происхождение сил притяжения между атомами инертных газов;
  • для ангармонического осциллятора уровни не эквидистантны и правило отбора Δn = ± 1 нарушается;
  • если значение квантового числа n устремить к бесконечности, решение переходит в классическое.

Если возникли какие-либо вопросы, напишите мне.


источники:

http://www.chem-astu.ru/chair/study/physics-part1/?p=115

http://teachmen.csu.ru/work/lectureOsc/