Уравнение движения имеет вид x 0 4t2

Уравнение движения материальной точки имеет вид x=5+2t-0,4t2. Написать формулу зависимости

Уравнение движения вещественной точки имеет вид x=5+2t-0,4t2. Написать формулу зависимости Vx(t). Найти начальную координату точки, проекцию исходной скорости и ускорения. Отыскать координату точки и проекцию скорости через 2с. Помогите пожалуйста , безотлагательно нужно

  • Надежда Жерлицина
  • Физика 2019-08-23 13:27:22 0 1

xo=5 (исходная координата); Uo=2 (начальная скорость); a=-0,8 (ускорение)

Уравнение движения тела имеет вид x = 15t – 0,4t2. Определить промежуток времени после начала движения, в течение которого точка вернётся в исходное положение.

Готовое решение: Заказ №8342

Тип работы: Задача

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Предмет: Физика

Дата выполнения: 18.08.2020

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

№1 7. Уравнение движения тела имеет вид x = 15t – 0,4t2. Определить промежуток времени после начала движения, в течение которого точка вернётся в исходное положение. Найти путь, пройденный точкой, и её среднюю скорость за этот промежуток времени.

Начальное положение точки (координата точки в момент времени с): м. Определим момент времени после начала движения, в течение которого точка вернётся в исходное положение: ; ; поскольку , то: ; ; с.

Если вам нужно решить физику, тогда нажмите ➔ заказать физику.
Похожие готовые решения:
  • Диск массой m = 2 кг и радиусом R = 10 см вращается вокруг оси, проходящей через его центр. Уравнение движения диска имеет вид ф = Ct3, где C = – 1 рад/с3. Определить вращающий момент M в момент времени t = 2 с, если момент сил торможения постоянен и равен 12 Н•м.
  • На нитях одинаковой длины, равной 0,8 м, закреплённых в одной точке, подвешены два шарика массами 40 г и 60 г, соответственно. Нить с меньшим шариком отклонили на угол 60 градусов и отпустили. Считая удар неупругим, определить, какая энергия пошла на нагревание шариков.
  • Конькобежец массой 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой 3 кг со скоростью 8 м/с. Найти скорость движения конькобежца после броска.
  • Мальчик стоит на абсолютно гладком льду и бросает мяч массой 0,5 кг. С какой скоростью после броска начнёт скользить мальчик, если горизонтальная составля-ющая скорости мяча равна 5 м/с, а масса мальчика равна 20 кг?

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Уравнение движения материальной точки

Вы будете перенаправлены на Автор24

Система отсчета. Системы координат

Под движением материальной точки в пространстве понимают изменение ее положения относительно некоторых тел с течением времени. В связи с этим можно говорить только о движении в некоторой системе отсчета.

Сами по себе точки пустого пространства неразличимы между собой, поэтому говорить о той или иной точке пространства можно, если в ней находится материальная точка. Ее положение и определяется относительно тела отсчета с помощью измерений, для чего с телом (телами) отсчета жестко связывается некоторая система координат; в ней и измеряются пространственные координаты. Например, на поверхности Земли это географическая широта и долгота точки.

В теоретических рассуждениях часто наиболее удобна декартова прямоугольная система координат, в которой положение точки определяется радиус-вектором $\overline$ с тремя проекциями $x,y,z$ — координатами точки. Но возможно и использование других систем координат, например:

  • сферической, где положение точки и ее радиус-вектор определены координатами $r,\vartheta ,\varphi $;
  • цилиндрической: с координатами $p,z,\alpha $;
  • на плоскости — полярной: $r,\varphi $.

В теоретических рассуждениях часто не принимают во внимание реальную систему отсчета, сохраняя только систему координат, которая и служит математической моделью системы отсчета, применяемой при измерениях на практике.

Кинематическое уравнение движения материальной точки

Итак, в любой системе отсчета и системе координат имеется возможность определить координаты материальной точки в любой момент времени.

Если положение материальной точки в каждый момент времени определено в данной системе отсчета, то движение ее задано или описано.

Это задание достигается в виде кинематического уравнения движения:

Аналитически положение точки всегда определяется совокупностью трех независимых между собой чисел. Этот факт выражают словами: свободная точка имеет три степени свободы движения.

Готовые работы на аналогичную тему

Движение точки согласно уравнению (1) полностью определено, если указано ее положение в любой момент времени $t$. Для этого достаточно задать декартовы координаты точки как однозначные и непрерывные функции времени:

Прямоугольные декартовы координаты $x,y,z$ являются проекциями радиус-вектора $\overline$, проведенного в точку из начала координат, т.е.:

Длина и направление вектора $\overline$находятся из известных соотношений:

Здесь, $\alpha ,\beta ,\gamma $ — углы, образованные радиус-вектором с координатными осями.

Равенства (2) являются кинематическими уравнениями движения материальной точки в декартовых координатах. Но уравнения могут быть записаны в любой другой системе координат, связанной с декартовой взаимно однозначным преобразованием. При движении точки в плоскости Оху часто бывает удобно пользоваться полярными коордиинатами $r,\varphi $, связанными с декартовыми преобразованием:

В этом случае кинематические уравнения движения точки имеют следующий общий вид:

$r=r(t),\varphi =\varphi (t)$. (3)

В криволинейных координатах $q_ <1>,q_ <2>,q_ <3>$ связанных с декартовыми преобразованием:

кинематические уравнения движения точки запишутся так:

(Это могут быть сферические, цилиндрические и другие координаты).

Годограф радиус-вектора точки, т.е. кривая, описываемая концом вектора $\overline$при движении точки, совпадает с траекторией движения этой точки. Уравнение траектории в параметрической форме, когда параметром служит время $t$, дано кинематическими уравнениями движения (2), (5). Для получения уравнения траектории в координатной форме достаточно исключить из кинематических уравнений время.

Движение точки может быть определено по-другому: заданием траектории и мгновенным положением точки на ней. Положение точки на кривой определяется указанием только одной величины — расстояния, измеряемого вдоль кривой от некоторой начальной точки. При этом должно быть указано положительное направление кривой. Тогда мгновенное положение точки на заданной кривой определяется функцией:

Это уравнение является уравнением движения точки по траектории. Такой способ задания движения называется естественным или траекторным.

Координатный и естественный способы задания движения точки физически (в смысле фиксации ее положения в пространстве)

эквивалентны. Что же касается математической стороны дела, то в одних задачах оказывается проще применение координатного, а в другом — естественного метода.

Закон движения точки по траектории может быть задан аналитически, графически или в виде таблицы. Оба последних способа широко применяются на транспорте (например, графики и расписания движения поездов).

Уравнение движения материальной точки имеет вид $x=0,4t^ <2>$. Написать формулу зависимости $v_ (t)$ и построить график зависимости скорости точки от времени. Показать на графике площадь, численно равную пути, пройденному точкой за 4 секунды, и вычислить этот путь. \end

Решение: Зависимость скорости от времени имеет вид:

Запишем уравнение зависимости координаты от времени и сравним его с данным:

Из сравнения видно, что $x_ <0>=0$, $v_ <0x>=0$, $a_ =0,8$м/с2.

Подставим полученные данные в уравнение скорости и получим:

Определим точки и построим график:

Путь, пройденный телом, численно равный площади фигуры, ограниченной графиком и может быть найден по следующей формуле:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 01 07 2021


источники:

http://natalibrilenova.ru/uravnenie-dvizheniya-tela-imeet-vid-x—15t—04t2-opredelit-promezhutok-vremeni-posle-nachala-dvizheniya-v-techenie-kotorogo-tochka-vernyotsya-v-ishodnoe-polozhenie-/

http://spravochnick.ru/fizika/dinamika/uravnenie_dvizheniya_materialnoy_tochki/