Уравнение движения математического маятника 11 класс

Уравнение движения математического маятника 11 класс

«Физика — 11 класс»

Колебания тела можно описать, используя законы Ньютона.

Уравнение движения тела, колеблющегося под действием силы упругости.

Согласно второму закону Ньютона произведение массы тела на ускорение его равно равнодействующей всех сил, приложенных к телу:

Запишем уравнение движения для шарика, движущегося прямолинейно вдоль горизонтали под действием силы упругости Fупр пружины.
Направим ось ОХ вправо. Пусть начало отсчета координат соответствует положению равновесия шарика.

В проекции на ось ОХ уравнение движения можно записать так:

где ах и Fx упр — проекции ускорения и силы упругости пружины на эту ось.

Согласно закону Гука проекция Fx ynp прямо пропорциональна смещению шарика из положения равновесия.
Смещение же равно координате х шарика, причем проекция силы и координата имеют противоположные знаки. Следовательно,

Fx yпp = -kх

Разделив левую и правую части уравнения на массу, получим уравнение, описывающее колебания тела под действием силы упругости:

Проекция ускорения тела прямо пропорциональна его координате, взятой с противоположным знаком.

Так как масса и жесткость пружины — постоянные величины, то их отношение также постоянная величина.

Уравнение движения математического маятника

При колебаниях маятника на нерастяжимой нити он все время движется по дуге окружности, радиус которой равен длине нити l.
Положение маятника в любой момент времени определяется одной величиной — углом альфа (α) отклонения нити от вертикали.
Пусть угол α>0, если маятник отклонен вправо от положения равновесия,
и α 0) составляющая силы тяжести Ft направлена влево и ее проекция отрицательна: Ft 0.

Проекция ускорения маятника на касательную к его траектории аt характеризует быстроту изменения модуля скорости маятника.

Поступая налогично выводу форулы для маятника, колеблющегося под действием силы упругости,
получим уравнение движения для математического маятника (нитяного маятника):

Проекция ускорения тела прямо пропорциональна его координате, взятой с противоположным знаком.

где
l — длина нити маятника,
g — ускорение свободного падения,
х — смещение маятника.

Вывод:

Движение маятника на пружине и колебания маятника на нити происходят одинаковым образом, хотя силы, вызывающие колебания, имеют различную физическую природу.
Ускорение прямо пропорционально координате (смещению от положения равновесия).
Колебания в этих двух случаях совершаются под действием сил, равнодействующая которых прямо пропорциональна смещению колеблющегося тела от положения равновесия и направлена в сторону, противоположную этому смещению.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Механические колебания. Физика, учебник для 11 класса — Класс!ная физика

Урок по физике для 11 класса «Механические колебания, их характеристики. Математический маятник»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема: Механические колебания, их характеристики.

Тип урока: комбинированный урок.

Цели урока: познакомить учащихся с одним из наиболее распространённых движений в природе и технике – колебательным движением на примере математического маятника; ввести понятия характеристик колебательного движения; выяснить условия существования свободных колебаний; формировать у учащихся умения наблюдать и анализировать физические явления; способствовать развитию умений вести диалог и занимать активную позицию на уроке.

Оборудование: метроном, штатив с муфтой и кольцом, шарик с отверстием, нить, груз, скреплённый с пружиной, мячик.

Структура урока и используемые технологии

Приёмы и методы

Создание ситуации успеха на уроке

Осмысление эпиграфа к уроку; упражнение «Те, кто…»

II . Ревокация. Постановка учебной проблемы

Технология развивающего обучения

Беседа; демонстрация опытов; постановка целей и задач урока

III. Изучение нового материала

Технология развития критического мышления

Беседа; демонстрация опытов; записи на доске и в тетрадях

IV. Закрепление нового материала

Технология интерактивного обучения

Решение задач; работа в малых группах; сообщения «В мире интересного»

V. Рефлексия. Домашнее задание

Создание ситуации успеха

«Мы – сила»; «Ладонь знаний»; осмысление легенды; коментарий по домашнему заданию

Я всегда хочу учиться, но не всегда хочу, чтобы меня учили».

I. Вступительно-мотивационный этап урока.

Приветствие учащихся и контроль отсутствующих на уроке. План урока.

Учитель. Сначала я хочу провести с вами такое упражнение. Попрошу вас правильно реагировать на вопрос-задание.

Поднимите правую руку те, кто увлечён вопросами загадок и тайн природы, историей. Поднимите левую руку те, кто увлекается музыкой и танцами. А теперь поднимите обе руки те, кто увлечён компьютером. Захлопайте в ладоши те, кто увлекается спортом. Вот и хорошо! Сегодня я буду работать с интересными учениками, которые занимают активную жизненную позицию. Эпиграфом к уроку я взяла слова У. Черчилля: «Я всегда хочу учиться, но не всегда хочу, чтобы меня учили». Эти слова должны стать в каком-то роде девизом вашей учебной деятельности. Поверьте, самостоятельно находить ответ на вопрос, разрешать проблемную ситуацию, наблюдать и анализировать, проводить опыты – это очень результативно и увлекательно. В процессе работы на уроке вы в этом убедитесь. Не бойтесь ошибиться при ответе на вопросы, т.к. не ошибается только тот, кто не работает.

II. Ревокация. Постановка учебной проблемы.

Учитель. Прежде чем я оглашу тему урока, хочу обратить ваше внимание к таким демонстрациям: катится по столу мяч и движется стрелка метронома. В чём различия этих движений?

Учащиеся. Движение стрелки метронома – движение повторяющееся периодически.

Учитель. Да. Колеблются ветки деревьев под действием ветра, бьётся сердце человека, колеблется маятник часов, качели, на которых качался каждый из нас, струны музыкальных инструментов, движение наших голосовых связок. Колебательное движение происходит и в жизни нашей планеты: землетрясения, приливы и отливы. Это всё примеры колебательного движения или механических колебаний. Я думаю, что такой широкий спектр проявления колебательных движений вас действительно заинтересовал. С этим движением мы сегодня и познакомимся.

Оглашение темы урока и формирование целей урока совместно с учениками:

1) дать определение механическим колебаниям и их характеристикам;

2) ввести понятие свободных и вынужденных колебаний;

3) выяснить, что такое математический маятник и каковы его особенности.

Это тема, с которой начинается новый раздел физики «Механические колебания и волны». Поэтому её могут символизировать чистые ладони. Кое у кого на партах есть такие ладошки. В конце урока на ладони должен появиться результат вашей работы на уроке: вы что-то узнали, чему-то научились… Укажите это, пожалуйста, на пальцах своей ладони.

Запись в тетради числа и темы урока.

II . Изучение нового материала.

Учитель. Ребята, перед вами скелет опорного конспекта урока. В него вы будете вписывать определения, которые нами будут изучены.

Колебания – один из самых распространённых видов движения в природе и технике. Сначала давайте запишем определение механических колебаний. Механические колебания – это физические процессы, точно или приблизительно повторяющиеся через одинаковые интервалы времени.

Демонстрация колебаний тела на пружине и шарика, подвязанного к нити.

Учитель. Перед вами два ярких примера механических колебаний. Скажите, пожалуйста, в чём их особенность?

Учащиеся. 1. Во время колебаний тело периодически отклоняется от положения равновесия.

2. Для того, что бы получить колебательное движение, на тело воздействуют извне силой.

Учитель. Вторая особенность, на которую вы указали, даёт возможность разделить колебательное движение на два вида: свободные и вынужденные.

Свободные колебания – это колебания, происходящие в механической системе под действием внутренних сил системы после кратковременного воздействия внешней силы.

Вынужденные колебания – это колебания, происходящие под действием внешних сил.

Приведите, пожалуйста, примеры этих видов колебаний.

Учащиеся. К свободным мы отнесём колебания тел на пружине и на нити, чашки весов. А к вынужденным, например, качели, которые мы периодически подталкиваем, струны гитары.

Учитель. А теперь вернёмся к выше перечисленным вами особенностям. Первая, замеченная вами, особенность связана с одной из характеристик колебательного движения. Максимальное смещение тела от положения равновесия называют амплитудой и обозначают x . Единицы измерения амплитуды – метры.

Какие же ещё величины характеризуют колебательное движение? Что ещё можно измерить относительно этого движения?

Учащиеся. Время одного полного колебания и количество колебаний.

Учитель. Время одного полного колебания называют периодом колебаний. Т.е. это промежуток времени, через который движение полностью повторяется.

T =

Число полных колебаний, совершённых телом за 1с, называют частотой колебаний.

=

[ ] = 1 Гц (герц)

Механические колебания груза на пружине и шарика на нити – это движение, при котором смещение зависит от времени по закону синуса или косинуса. А такие колебания называют гармоническими.

Давайте, ребята, вспомним из математики, чему равен период функции косинус?

Учащиеся. Период функции косинус равен 2 .

Учитель. Правильно. Число полных колебаний, совершённых за 2 секунд, называют циклической частотой.

=

[ ] = 1 рад/с

Колебательное движение, так же как и движение равномерное и равноускоренное, имеет своё уравнение движения. Запишем его для периодического изменения координаты

x = X cos t

Теперь ещё раз обратимся к модели тела, подвешенного к нити. Её можно назвать математическим маятником. Математический маятник – это система, состоящая из материальной точки, подвешенной на тонкой нерастяжимой нити. Почему в нашем случае тело – шарик – мы считаем материальной точкой?

Учащиеся. Диаметр шара на много меньше длины нити.

Учитель. Какая физическая величина заставляет маятник совершать движения?

Учитель. Давайте с вами вспомним, какие силы действуют на тело, подвешенное к нити, при выведении его из положения равновесия? Воспользуемся рисунком.

Учащиеся. На шарик действует сила упругости или сила натяжения нити, направленная вдоль нити вверх, и сила тяжести, направленная перпендикулярно вниз. А приводит в движение систему их равнодействующая, которая направлена в сторону возвращения тела в положение равновесия.

Учитель. Формула периода математического маятника

Т = 2

На последующих уроках нами будет получено вывод этой формулы.

Мы видим, что период математического маятника зависит от длины нити маятника и от величины g . Что же это за величина?

Учащиеся. Это ускорение свободного падения, которое равно 9,8 м/с .

Учитель. Итак, в процессе беседы мы с вами познакомились с новым видом движения – механические колебания. Вы не забыли, ребята, отразить результат нашей с вами работы на полученных вами ладонях? На последующих уроках вы больше расширите знания по этой теме, а сегодня мы должны с вами закрепить те знания, которые вы получили.

IV . Закрепление нового материала.

Учитель. Ребята , давайте выберем исследовательскую группу, которая будет работать над экспериментальным заданием. Теперь попросим вас занять места за столом и приступить к работе над поставленным перед вами вопросом: как период колебаний зависит от амплитуды? Прежде чем ответить на этот вопрос , наши исследователи должны поставить эксперимент, обработать его данные и сделать выводы, заполняя соответствующий лист-отчёт о своей работе. Пожалуйста, займите свои места и приступайте к работе. Через 5-6 минут вы ознакомите нас с полученным результатом в виде вывода.

А вас, ребята, я попрошу обратиться к поурочной карточке. Прочтите, пожалуйста, задачу №1.

Задача №1. Математический маятник длиной 99,5 см за одну минуту совершил 30 полных колебаний. Определите период колебаний маятника и ускорение свободного падения в том месте, где находится маятник.

Дано СИ Решение

l = 99,5см 0,995м Т=

t = 1мин 60 сек T = 2 c ек

N =30 Т = 2 Т = 4 g = , или

Т — ?

g — ? g = 9,81 м/с

Ответ: 2с; 9,81 м/с .

Задача №2. Из приведённых ниже примеров выберите примеры свободных колебаний и вынужденных: движение пилы при распиливании дров; колебание игрушки-неваляшки; движение гитарной струны; движение ветки под действием ветра; движение иголки в швейной машинке.

Учитель. А теперь давайте послушаем выводы, к которым пришла наша исследовательская группа после поиска ответа на вопрос: как период колебаний зависит от амплитуды?

Член исследовательской группы: измеряя период колебаний при разных амплитудах, мы пришли к выводу, что при малом угле отклонения период колебаний практически не зависит от амплитуды.

Учитель. Эту особенность колебаний маятника открыл 19-летний Галилей, наблюдая за тем, как раскачиваются в соборе светильники, подвешенные на нитях одинаковой длины. Наручных часов тогда не было и юный Галилей пришёл к решению, которое для многих поколений будет служить образцом блеска и остроумия человеческой мысли: он сравнил колебания маятника с частотой биения собственного сердца! И на основе этого замечательного свойства колеблющихся тел Христиан Гюйгенс в 1657 году создал первые маятниковые часы с регулярным ходом.

V . Рефлексия. Домашнее задание.

Учитель. На заключительном этапе урока хочу поведать вам одну легенду.

Давным-давно в древнем Китае жил очень умный, но гордый мандарин (это чин). Весь его день состоял из разговоров о его уме. Так шли дни и годы.

Но однажды прошёл по всей стране слух, что недалеко от границы появился мудрец, умнее всех на свете. Дошёл слух и до мандарина. Рассердился он – кто может называть какого-то бродягу самым умным человеком в мире. Но виду о своём негодовании не подал и пригласил мудреца к себе во дворец. Сам он надумал обдурить мудреца: «Я возьму в руки бабочку, спрячу её за спину и спрошу, что у меня в руках – живое или мёртвое? И если он скажет, что живое – я раздавлю бабочку, а если мёртвое – я выпущу её…»

И вот наступил день встречи. В богатом зале собралось много людей, всем хотелось послушать словесный поединок умнейших. Мандарин сидел на высоком троне, держал за спиной бабочку и с нетерпением ждал прихода гостя. Наконец двери открылись и в зал вошёл худощавый человек. Он подошёл к мандарину, поздоровался и сказал, что готов ответить на любые его вопросы. И тогда мандарин спросил: «Скажи-ка мне, что я держу в руках – живое или мёртвое?» Мудрец немного подумал, усмехнулся и ответил: «Всё в твоих руках».

Так же и для вас, ребята, всё в ваших руках! Сегодня вы плодотворно работали и благодаря этому стали ещё на ступеньку умнее и ладони, полученные в начале урока, могут что-то написать, решить или поставить опыт по данной теме. Спасибо вам за сотрудничество и активную работу на уроке.

Комментарий и выставление оценок за урок. Ладони прикрепляются на доску.

Делается вывод о результате записях на ладонях.

Рассматривается вопрос применения колебательного движения в быту, технике и жизни людей.

Домашнее задание и его комментарий: § 12, 13, 14; упражнение 10 № 1, 2; знать опорный конспект.

1. Математический маятник длиной 99,5 см за одну минуту совершил 30 полных колебаний. Определите период колебаний маятника и ускорение свободного падения в том месте, где он находится.

2. Из приведенных выше примеров выберите примеры свободных и вынужденных колебаний: движение пилы при распиливании дров; колебание игрушки-неваляшки; движение гитарных струны; движение ветки под действием ветра; движение иголки в швейной машинке.

Формулы математического маятника

Определение и формулы математического маятника

Математический маятник — это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Уравнение движения математического маятника

Математический маятник — классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

где $\varphi $ — угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $\varphi (t):$

где $\alpha $ — начальная фаза колебаний; $<\varphi >_0$ — амплитуда колебаний; $<\omega >_0$ — циклическая частота.

Колебания гармонического осциллятора — это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

Период колебаний математического маятника ($T$) в этом случае равен:

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

где $E_k$ — кинетическая энергия маятника; $E_p$ — потенциальная энергия маятника; $v$ — скорость движения маятника; $x$ — линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол — смещение связан с $x$ как:

Максимальное значение потенциальной энергии математического маятника равно:

Максимальная величина кинетической энергии:

где $h_m$ — максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m=<\omega >_0x_m$ — максимальная скорость.

Примеры задач с решением

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

Из уравнения (1.1) найдем искомую высоту:

Ответ. $h=\frac<2g>$

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1\ м$, совершает колебания с периодом равным $T=2\ с$? Считайте колебания математического маятника малыми.\textit<>

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

Выразим из нее ускорение:

Проведем вычисления ускорения силы тяжести:

Ответ. $g=9,87\ \frac<м><с^2>$


источники:

http://infourok.ru/material.html?mid=2344

http://www.webmath.ru/poleznoe/fizika/fizika_149_formuly_matematicheskogo_majatnika.php