Уравнение движения материальной точки затухающие колебания

Уравнение движения материальной точки затухающие колебания

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Добротность

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r — коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β — коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

— дифференциальное уравнение затухающих колебаний.

— у равнение затухающих колебаний.

ω – частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А0 и φ0 — произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ — время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень­шилась в е раз. Логарифмический декремент затухания — постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

— дифференциальное уравнение вынуж­денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ — по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

(3)

(4)

Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи­ческой системы, называется резонансом.

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

При ω→0 все кривые приходят к значению — статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие «солнышко» за счет изменения положения центра тяжести система.(То же в «лодочках».) См. §61 .т. 1 Савельев И.В.

Уравнение движения материальной точки затухающие колебания

Глава 13. Динамика точки.

13.5. Свободные затухающие колебания.

13.5.1. Решение дифференциального уравнения затухающих колебаний материальной точки имеет вид x = е -0,2t (С1 cos3t + C2 sin3t). Опре­делить постоянную интегрирования С1, если в момент времени to = 0 координата точки х0 = 0,2 м. (Ответ 0,2)

13.5.2. Решение дифференциального уравнения затухающих колебаний материальной точки имеет вид х = е -0,5t (С1 cos 3t + С2 sin 3t). Опре­делить постоянную интегрирования С2, если постоянная интегрирова­ния C1 = 1,5 и в момент времени t0 = 0 скорость точки v0 = 0. (Ответ 0,25)

13.5.3. Дифференциальное уравнение движения материальной точки имеет вид mх + 4х + 2х = 0. Найти максимальное значение массы точ­ки, при котором движение будет апериодическим. (Ответ 2)

13.5.4. Груз подвешен к пружине с коэффициентом жесткости с = 200 Н/м и движется по прямой согласно уравнению y = Ae -0,9t sin(5t + а). Определить массу груза. (Ответ 7,75)

13.5.5. На материальную точку массой m = 6 кг, которая находится в колебательном движении, действует сила сопротивления R = —μv. Определить коэффициент если закон движения точки имеет вид х = Ae -0,1t sin(7t + а) (Ответ 1,2)

13.5.6. Груз массой m = 2 кг прикреплен к пружине, коэффициент жест­кости которой с = 30 Н/м, и выведен из состояния равновесия. Опре­делить, находится ли точка в колебательном движении, если сила сопротивления движению R = — 0,1v. (Ответ Да)

13.5.7. Дифференциальное уравнение движения материальной точки имеет вид 2х + 2х + 50х = 0. Найти минимальное значение коэффици­ента μ сопротивления среды, при котором движение будет апериодическим. (Ответ 20)

13.5.8. Определить, находится ли материальная точка в колебательном движении, если дифференциальное уравнение движения имеет вид х +2x + 2х = 0. (Ответ Да)

13.5.9. Дифференциальное уравнение движения материальной точки имеет вид 3х + 12х + сх = 0. Найти максимальное значение коэф­фициента жесткости с, при котором движение будет апериодичес­ким. (12)

13.5.10. Определить, находится ли материальная точка в колебательном движении, если дифференциальное уравнение движения имеет вид х + 5х + 5х = 0. (Ответ Нет)

13.5.11. На материальную точку массой m = 10 кг, которая находится в колебательном движении, действует сила сопротивления R = —μv. Определить коэффициент μ, если период затухающих колебаний T1 = 2 с, а отношение последующего максимального отклонения точки к предыдущему в ту же сторону равно 0,85. (Ответ 1,63)

13.5.12. Дифференциальное уравнение движения материальной точки име­ет вид 3х + μx + 48х = 0. Найти наименьшее значение коэффициента μ сопротивления среды, при котором движение системы будет апериодическим. (Ответ 24)

13.5.13. Решение дифференциального уравнения затухающих колебаний тела имеет вид х = Ае -0,8t sin(4t + а). Определить коэффициент жест­кости пружины, к которой прикреплено тело, если его масса m = 10 кг. (Ответ 166)

13.5.14. Дифференциальное уравнение движения материальной точки имеет вид 5х + 20х + сх = 0. Найти наибольшее значение коэф­фициента жесткости с, при котором движение точки будет апериодическим. (Ответ 20)

13.5.15. Затухающие колебания материальной точки описываются уравне­нием х = Аe -0,2t sin(0,5t + а). Определить угловую частоту свободных колебаний этой точки в случае, если силы сопротивления отсутствуют (Ответ 0,539)

13.5.16. Дифференциальное уравнение колебательного движения мате­риальной точки имеет вид х + 8х + 25х = 0. Найти угловую частоту затухающих колебаний. (Ответ 3)

13.5.17. Груз массой m = 2 кг подвешен к пружине с коэффициентом жесткости с = 30 Н/м и находится в колебательном движении. Опре­делить угловую частоту затухающих колебаний, если сила сопротивления движению груза R = 4v. (Ответ 3,74)

13.5.18. Уравнение движения материальной точки имеет вид х = е -0.05t (0,3 cos4t + 0,5 sin4t). Для того чтобы выразить уравнение движе­ния в виде х = А е -nt sin (k1t + а), определить величину А. (Ответ 0,583)

13.5.19. Дифференциальное уравнение колебательного движения матери­альной точки имеет вид х + 6х + 50х = 0. Определить период затуха­ющих колебаний. (Ответ 0,981)

13.5.20. Дифференциальное уравнение колебательного движения матери­альной точки имеет вид х + 8х + 25х = 0. Найти период затухающих колебаний. (Ответ 2,09)

13.5.21. Колебательное движение материальной точки задано уравнением x = 0,7e -0,4t sin(1,5t +0,6). Определить период свободных колебаний точки в том случае, когда силы сопротивления отсутствуют.
(Ответ 4,05)

13.5.22. Колебательное движение материальной точки описывается урав­нением у = 6e -0,3t sin(8t + 0,3) Определить период затухающих колебаний точки. (Ответ 0,785)

13.5.23. Дифференциальное уравнение затухающих колебаний имеет вид х + 0,6x + 16х = 0. Определить отношение последующего максималь­ного отклонения точки к предыдущему в ту же сторону. (Ответ 0,624)

13.5.24. Затухающие колебания материальной точки описываются урав­нением х = 0,12е -0,1t sin(18t + 0,2). Определить отношение последу­ющего максимального отклонения точки к предыдущему в ту же сторону. (Ответ 0,966)

13.5.25. Дифференциальное уравнение колебательного движения матери­альной точки имеет вид х + 4х + 20х = 0. Найти логарифмический декремент колебаний, рассматривая максимальные отклонения после полупериода колебаний. (Ответ 1,57)

Сборник коротких задач по теоретической механике.
Кепе О.Э.

Книга состоит из 1757 заданий которые предназначены для бысторого
контроля знаний на занятиях и зачетах а также для допуска к экзамену.
Задачи имеют ответы.

Издательство «Высшая школа» 1989 Москва

Также решение задач Кепе можно скачать здесь:
Мобильное приложение для Андроид:

Затухающие колебания материальной точки

Рассмотрим первый вариант движения точки, при котором n -nt )·(C1·cos(( )·t) + C2·sin(( )·t));

Y = a·(e -nt )·sin(( )·t + β),

где С1, С2, a, β – постоянные интегрирования, определяемые по начальным условиям движения.

Эти выражения называют уравнениями затухающих колебаний материальной точки.

Пусть начальными условиями движения являются: t0 = 0; Y0; . В этих условиях первый вид решения дифференциального уравнения + 2n· + k 2 ·Y = 0 выражается формулой

Y = (e -nt )·(Y0·cos(( )·t) +

+ ·sin(( )·t)).

Постоянную величину называют циклической частотой затухающих колебаний k * , величину которой определяют по формуле

k * = .

Величина k * определяет число полных колебаний за промежуток времени, равный 2π = 6,28 с. Тогда имеем

Y = (e -nt )·(Y0·cos(k * ·t) + (( + n·Y0)/k * )·sin(k * ·t)).

Как правило, для практических расчётов используют второй вид общего решения дифференциального уравнения движения точки.

Y = (e -nt )·sin(k * ·t + β),

где (k * ·t + β) – фаза затухающих колебаний; β – начальная фаза; a – постоянная интегрирования.

Для определения постоянных интегрирования a и β используют следующую совокупность формул:

а =

tg(β) = (Y0·k * )/( );

cos(β) = ( )/(а·k * ).

Для характеристики затухающих колебаний используют понятие «период затухающих колебаний Т * ».

Период затухающих колебаний – промежуток времени между двумя последовательными прохождениями точки в одном направлении через положение покоя.

Период затухающих колебаний ( = 2π/k * ) больше периода свободных колебаний (T = 2π/k) точки.

На рис. 2.5 приведён общий вид графика затухающих колебаний.

На рис. 2.5 использованы начальные условия движения точки, приведённые на рис. 2.4. График затухающих колебаний располагается в зоне, ограниченной двумя кривыми линиями, описываемыми математическими выражениями: Y = а·e — nt ; Y = – а·e — nt .

Для характеристики затухающих колебаний используют также понятие «амплитуда аi затухающих колебаний».

Амплитуда затухающих колебаний – величина наибольшего отклонения точки в ту или другую сторону от положения статического равновесия в течение каждого колебания.

Из рис. 2.5 видно, что амплитуда затухающих колебаний переменна. При этом последующая амплитуда аi+1 меньше предыдущей амплитуды аi. Это уменьшение характеризуется отношением

Число e – nT */2 называют декрементом колебаний; натуральный логарифм этого числа (ln(e – nT */2 )), т. е. величину – nT * /2, называют логарифмическим декрементом.

Зная предыдущее значение аi амплитуды, последующее значение аi+1 находят по формуле

Следует отметить, что в некоторых учебниках коэффициент n сопротивления среды называют коэффициентом затухания.

Практика показывает, что затухание колебаний происходит очень быстро даже при малом сопротивлении. Так, например, при n = 0,05·k имеем Т * = 1,00125·Т, e – nT * = 0,7301, т. е. период Т * затухающих колебаний отличается от периода Т свободных колебаний лишь на 0,125 %, а амплитуда аi за время одного полного колебания уменьшается на 0,27 своей величины, и после 10 полных колебаний становится равной 0,043 своего первоначального значения.

Таким образом, основное влияние сопротивления на свободные колебания материальной точки выражается в уменьшении амплитуды колебаний с течением времени, т. е. в затухании колебаний.

Затухающие колебания называют также колебаниями с малым сопротивлением внешней среды.


источники:

http://www.zachet.ca/termech/kepe/kepe_d5.php

http://helpiks.org/3-65387.html