Уравнение движения механической системы в обобщенных координатах

Обобщенные координаты системы в теоретической механике

Содержание:

Обобщенные координаты системы:

Голономными называют свя­зи, налагающие ограничения только на положение точек системы и, следовательно, выражающиеся конечными соотношениями между коор­динатами этих точек

Голономные связи

Связи, с которыми мы встречались при решении задач по статике, ограничивали свободу перемещения тел и не зависели от времени. Мы назвали связью ограничения, стесняющие движение материальной точки или ме­ханической системы, осуществляемые дру­гими материальными объектами. Под это определение подходят также и такие связи, которые ограничивают не только перемещения, но и скорости точек механической системы. Рассмотрим следующий пример.

Пример. 1-й случай.

Шар радиуса к может передвигаться (скользить и перекатываться по плоскости xOy); 2-й случай: шар может только перекатываться без скольжения по плоскости. В первом случае связь может быть выражена уравнением zс=r, которое не содержит производных от координат по времени и накладывает ограничение только на положение точки C (центра шара). Во втором случае на шар наложена связь, заключающаяся в том, что скорость точки касания равна пулю, а следовательно, уравнение связи должно выражать условие, чтобы равнялись нулю производные по времени

В первом случае движение шара подчинено голономной связи, а во втором — неголономной. Вообще, голономными, или конечными, связями называют связи, накладывающие ограничения только на положение материальных точек системы. Они выражаются аналитически конечными соотношениями между координатами точек системы, причем в эти соотношения может явно входить и время. Обратим внимание на тот факт, что, продифференцировав по времени такое уравнение, мы получим уравнение связи, содержащее явно проекции скоростей точек. Но это уравнение явится лишь следствием того уравнения, из которого оно было получено путем дифференцирования. Оно будет автоматически выполняться при удовлетворении голономной связи.

Следовательно, если уравнение связи содержит проекции скоростей точек, то отсюда еще не следует делать вывод, что связь не является голономной. Нужно предварительно исследовать, возможно ли проинтегрировать это уравнение и получить из него уравнение, не содержащее проекций скоростей точек. Если это можно, то связь является голономной, в противном случае связь называют неголономной, или неинтегрируемой. Если среди связей, наложенных на систему, имеется хоть одна неголономная связь, то систему называют неголономной. В дальнейшем мы будем рассматривать лишь голономные системы.

Обобщенными координатами системы называют независимые друг от друга величины, вполне и однозначно определяющие возможные положения системы в произвольно выбранное мгновение

Обобщенные координаты

Положение в пространстве свободной материальной точки определяется тремя координатами, независимыми друг от друга. Такая точка имеет три степени свободы. Для определения положения в мгновение t системы, состоящей из n свободных точек, необходимо 3 n координат. Если система не свободна, то связи, наложенные на систему, выражают некоторые зависимости между координатами ее точек, а поэтому число независимых друг от друга координат, определяющих положение в данное мгновение всех точек несвободной системы, меньше чем 3 n.

Пример:

Система состоит из двух точек А и В. Согласно связям, наложенным на эти точки другими материальными телами, точки А и В могут двигаться только в плоскости хОу и находиться на постоянном между собой расстоянии r. Связи голономные них уравнения

Из этого примера видно, что вместо декартовых координат за независимые можно выбирать другие, связанные с ними величины, даже и другой размерности (угол). Эти независимые параметры называют обобщенными координатами системы и обозначают буквой q. Так, в рассмотренном примере мы могли выбрать следующие обобщенные координаты: 1) q1 = xA, q2 = yA, q3=xB или 2) q1B, q2 = уB, q3=φ. Возможен, разумеется, и другой выбор трех обобщенных координат этой механической системы.

Следовательно, под обобщенными координатами системы мы понимаем независимые друг от друга величины, обычно имеющие размерность длины [q] =L 1 M 0 T 0 или угла [q] = L 0 M 0 T 0 и определяющие полностью и однозначно возможные положения системы в данное произвольно выбранное мгновение. Но встречаются случаи, когда обобщенные координаты имеют размерность площади или объема, или других геометрических или даже механических величин.

Декартовы координаты точек системы связаны с обобщенными координатами определенными уравнениями. Они являются функциями обобщенных координат и, возможно, времени. Так, если положение системы n точек определяется s обобщенными координатами (ql, q2, . q,), то эти уравнения в параметрической форме имеют вид:

(258)

Число степеней свободы голономной механической системы равно числу обобщенных координат

Если на систему наложены только голономные связи, то число обобщенных координат системы равно числу ее степеней свободы. Заметим, что к неголономным системам это правило не относится. В прикладной механике большое значение имеют полносвязные системы, т. е. механические системы с одной степенью свободы. К числу таких систем относится большинство механизмов. Чтобы определить положение полносвязной системы, достаточно одной обобщенной координаты.

Примеры:

Тело с двумя неподвижными точками имеет одну степень свободы: оно может поворачиваться вокруг неподвижной оси, проходящей через эти закрепленные точки. Для определения положения тела, занимаемого им в данное мгновение, нужна лишь одна обобщенная координата, например угол поворота φ.

Тело с одной неподвижной точкой имеет три степени свободы и его положение определяют тремя обобщенными координатами, например тремя углами Эйлера.

Кривошипно-ползунный механизм (рис. 238)—система с одной степенью свободы. Чтобы задать положение всех точек механизма, нет надобности задавать декартовы координаты всех точек, достаточно одной обобщенной координаты, например угла φ или дуги A0A. Одной обобщенной координатой и уравнениями связи положение механизма, занимаемое им в данное мгновение, определяется вполне и однозначно.

Регулятор Уатта имеет две степени свободы и для определения его положения нужно задать две независимые друг от друга величины, т. е. две обобщенные координаты, например угол (см. рис. 236) отклонения ручек от вертикали и угол поворота плоскости AOB вокруг оси Оу.

Обобщенные координаты, как и всякие координаты, характеризуют положение неподвижной системы или положение движущейся системы, занимаемое ею в данное мгновение. Чтобы охарактеризовать движение системы, надо выразить обобщенные координаты как непрерывные однозначные функции времени. Изменение каждой обобщенной координаты характеризует соответствующее изменение в положении системы. Так, в последнем из разобранных примеров (регулятор Уатта) изменение одной обобщенной координаты означает поворот системы вокруг вертикальной оси, а изменение другой обобщенной координаты выражает изменение наклона ручек к вертикальной оси.

Обобщенная скорость выражается первой производной от обобщенной координаты по времени

Обобщенная скорость

Для характеристики движения системы, определяемого обобщенной координатой qi=ql(t) не только в пространстве, но и во времени, возьмем первую производную от этой координаты по времени
(259)

Полученная величина является пространственно-временной характеристикой изменения одной из обобщенных координат. Ее называют обобщенной скоростью, соответствующей данной координате. Каждой обобщенной координате соответствует своя обобщенная скорость, поэтому число обобщенных скоростей в системе равно числу обобщенных координат.

Обобщенная координата обычно выражается длиной или углом, соответственно этому обобщенная скорость может иметь размерность либо скорости точки, либо угловой скорости тела.

Обобщенной силой называют скалярную величину, равную отношению суммы виртуальных работ всех сил системы при изменении только одной из обобщенных координат к вариации этой координаты

Обобщенная сила

Пусть положение механической системы в данное мгновение t определяется обобщенными координатами q1, q2, . qs. Дадим одной из координат qi мысленно бесконечно малое изменение δqi, сохранив для всех остальных обобщенных координат то значение, которое они в данное мгновение имеют. Вследствие изменения одной из обобщенных координат материальные точки системы получат мысленные бесконечно малые перемещения, а приложенные к этим точкам силы произведут виртуальную работу:

(221)

Сумма работ всех реакций на данном виртуальном перемещении равна нулю (так как связи предполагаем идеальными), поэтому написанная сумма выражает работу всех активных сил системы. Из уравнений (258) найдем вариации декартовых координат точек системы, соответствующих приращению δqi обобщенной координаты qi при фиксированном (неизменном) значении других обобщенных координат:

Эти вариации подставим в предыдущее выражение:

Эту сумму виртуальных работ всех сил (или, что то же, всех активных сил), приложенных к системе, при изменении только одной из обобщенных координат qi мы можем записать как произведение вариации bqi этой координаты на скалярную величину

(260)

называемую обобщенной силой, соответствующей координате qi.

Если мы дадим воображаемое приращение какой-либо другой из обобщенных координат этой системы при фиксированном значении всех остальных обобщенных координат, то совершенно аналогично получим выражение обобщенной силы, соответствующей этой второй обобщенной координате. Таким образом, в системе столько же обобщенных сил, сколько в ней обобщенных координат.

Размерность обобщенной силы равна размерности работы, поделенной на размерность обобщенной координаты, а эта последняя обычно имеет размерность длины или угла. Следовательно, обобщенная сила может иметь размерность силы или же размерность момента силы в зависимости от размерности соответствующей обобщенной координаты.

Задача №1

Определить обобщенную силу в регуляторе Уатта (рис. 236 на стр. 424), соответствующую обобщенной координате а. Точечные грузы А и В имеют одинаковый вес P кГ, вес муфты C равен P1 кГ, а стержни имеют одинаковую длину 1 мм.

Решение. Декартовы координаты точек приложения силы, как функции обобщенной координаты (параметра а), их вариации и виртуальные работы всех активных и инерционных сил определены при решении задачи № 188. Для вычисления обобщенной силы воспользуемся некоторыми полученными при решении задачи № 188 данными и составим сумму виртуальных работ только активных сил при вариации δα:

Разделив эту сумму виртуальных работ активных сил системы на δα, получим ответ.
Ответ. Q = —2l (P + P1) sin α kΓ∙ мм.

Разность производной по времени от обобщенного импульса и частной производной от кинетической энергии системы по обобщенной координате равна обобщенной силе:

Уравнения Лагранжа в обобщенных координатах

Выразим в обобщенных координатах проекции скоростей точек системы на оси декартовых координат. Для этого продифференцируем по времени соотношения (258). Имеем:

Возьмем теперь частные производные этих проекций скоростей по какой-либо одной обобщенной скорости qi:

(261)

Эти соотношения справедливы только для голономных систем, и мы воспользуемся ими для вывода дифференциальных уравнений движения таких систем в обобщенных координатах. Возьмем частные производные от (215′) кинетической энергии системы по обобщенной координате qi и по обобщенной скорости qi:

Производную от кинетической энергии по обобщенной скорости называемую обобщенным импульсом, мы представим в другом виде, для чего воспользуемся соотношениями (261):

Продифференцируем обобщенный импульс по времени:

Преобразуем первую сумму правой части этого равенства, приняв во внимание дифференциальные уравнения движения системы в форме (130): mkxk = Xk, mkyk = Yk, mkzk = Zk, вторую сумму, равную , перенесем влево:

В правой части имеем обобщенную силу системы, соответствующую координате qi. Обозначая, согласно (260), правую часть этого равенства через Qi, мы получим уравнения движения материальной системы в обобщенных координатах, называемые иначе уравнениями (второго рода) Лагранжа:

(262)

Случай существования силовой функции

Если к механической системе приложены только силы поля и существует силовая функция U, то, имея в виду равенства (238),

Или, так как U =— П, где П — потенциальная энергия (244),

Подставляя в уравнения Лагранжа вместо обобщенной силы Q ее выражение через потенциальную энергию, получим удобную форму уравнений Лагранжа для случая консервативной системы:

(263)

Иногда этому выражению придают еще более простой вид, пользуясь тем, что потенциальная энергия П не зависит от обобщенных скоростей и потому ; перенеся все члены в левую часть и прибавив , получим

(264)

называют функцией Лагранжа.

Задача №2

В планетарном механизме изображенном на рис. 146, а, определить угловое ускорение колеса l при следующих условиях.

Передаточное число = 12. К колесу l приложен постоянный момент сопротивления M1, а к рукоятке IV—постоянный вращающий момент М. Колеса l и 1 l считать однородными дисками одинаковой толщины и из одного и того же материала. Массой рукоятки IV пренебречь. Механизм находится в горизонтальной плоскости.

Решение. Механизм имеет одну степень свободы, следовательно, его положение можно определить одной обобщенной координатой, а его движение—одним уравнением Лагранжа. В данном случае за обобщенную координату удобно выбрать угол φ4 поворота рукоятки (φ4 = q). Тогда обобщенная скорость системы равна угловой скорости рукоятки (q = ω4). Выразим в обобщенной скорости кинетическую энергию системы, которая равна сумме кинетических энергий первого и второго колес.

Момент инерции первого колеса , его угловая скорость ω1= 12q и

Радиус второго колеса (см. задачу № 90) r2 = 5r1, следовательно, масса второго колеса в 25 раз больше массы первого, а его момент инерции в 625 раз больше. Скорость его центра равна q∙6r1, а его угловая скорость . Его кинетическую энергию определяем по формуле Кёнига:

Кинетическая энергия механизма

Чтобы подсчитать обобщенную силу, определим работу всех активных сил системы при вариации обобщенной координаты. Сообщим координате малое приращение δq, т. е. мысленно повернем рукоятку на угол δq4. Тогда первое колесо повернется на угол 12δq и произойдет работа

Эта работа равна работе Qδq обобщенной силы, следовательно, обобщенная сила в этой задаче имеет размерность момента силы и равна

Составим уравнение Лагранжа (262). Частная производная от кинетической энергии системы по обобщенной скорости

После дифференцирования по времени q заменится ‘q. Частная производная от кинетической энергии по обобщенной координате равна нулю. Следовательно,

Из этого уравнения непосредственно определяем ускорение ε = q рукоятки механизма при заданных моментах.

Ответ.

Задача №3

Решить задачу уравнением Лагранжа.

Решение. В этой задаче будем выражать L в м, T в сек, F в кГ. Система имеет одну степень свободы. За обобщенную координату q выберем угол поворота φ1 первого вала. Тогда обобщенной скоростью q системы будет угловая скорость первого вала. Угловая скорость второго вала равна . Кинетическая энергия системы

Вычислим величины, входящие в уравнение Лагранжа (262):

Напишем уравнение движения системы:

откуда =3,57 ceκ -2 и по передаточному отношению , т. е. ε2 = 5,36 ceκ -2 . Вращение равноускоренное, без начальной угловой скорости, следовательно, по (87):

Угловая скорость будет 120 об/мин, т. е. 4π сек -1 , откуда ; в мгновение второй вал будет повернут на угол . Чтобы определить соответствующее число оборотов вала, надо разделить угол поворота на 2л.
Ответ. Через 2,344 оборота.

Малые колебания системы

Движение, при котором точки системы перемещаются последовательно в ту и в другую сторону от некоторых средних своих положений, называют колебательным.

Во многих областях техники часто приходится рассматривать колебательные движения механических систем, т. е. такие движения, при которых точки системы перемещаются последовательно то в ту, то в другую сторону относительно их некоторого среднего положения. Сюда относят вибрации машин и их деталей, возникающие при различных условиях, вибрации инженерных сооружений и их отдельных элементов, а также автомобилей, судов, самолетов и пр.

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.

Колеблющиеся механические системы обычно являются консервативными, т. е. их колебания происходят в потенциальном поле, поэтому уравнения Лагранжа удобно писать в форме (263) и (264). Напомним, что в выражение потенциальной энергии входит произвольная постоянная С, несущественная для расчетов, так как в расчетах мы всегда встречаем не полную потенциальную энергию, а ее изменение. Но все же мы будем стараться так определить эту постоянную, чтобы потенциальная энергия системы при равновесном положении, т. е. при равенстве нулю обобщенных координат, тоже равнялась нулю. Тогда при отклонении системы от равновесного положения потенциальная энергия получается положительной, потому что равновесие йвляется устойчивым, а потенциальная энергия в этом положении (П = 0) согласно теореме Лежен Дирихле должна иметь минимум.

Рассмотрим несколько задач на малые колебания системы, причем для начала рассмотрим с позиций уравнений Лагранжа малые колебания физического маятника.

Задача №4

Определить малые колебания физического маятника без сопротивления на неподвижной оси (см. рис. 192 на стр. 334). Все данные по геометрии масс маятника считать заданными.

Решение. Задачу будем решать по (262). Направим оси декартовых координат как указано на чертеже (рис. 192). За обобщенную координату примем угол φ отклонения маятника от вертикали, т. е. будем отсчитывать обобщенную координату φ от положения устойчивого равновесия системы. Тогда обобщенная скорость (259)

Выразим кинетическую энергию через обобщенную координату

и вычислим производные, входящие в левую часть уравнения (262):

Для определения обобщенной силы подсчитаем виртуальную работу при изменении обобщенной координаты

И полученное выражение разделим на вариацию обобщенной координаты

Обобщенная сила имеет размерность момента силы, так как обобщенной координатой является угол.
После проделанных вычислений и внесения их в (262) уравнение Лагранжа принимает вид:

Это дифференциальное уравнение малых качаний физического маятника, выведенное другим способом, было проинтегрировано в § 45.

Ответ. Гармонические колебания с периодом

Задача №5

Определить период малых колебаний маятника, состоящего из шарика, принимаемого за точку M массой m1, укрепленного на конце невесомого стержня AM длины l. Точка А стержня находится в центре однородного диска массы m2 и радиуса r. Диск может катиться без скольжения по горизонтальному рельсу. Стержень и диск жестко скреплены между собой (рис. 239). Движение маятника происходит в вертикальной плоскости.


Рис. 239

Решение. Построим правую систему декартовых координат с началом в центре диска при положении устойчивого равновесия системы. Ось Oy направим вертикально вниз.

Определим связи, наложенные на систему. Диск может катиться по горизонтальному рельсу. Эта связь может быть выражена уравнением уА = 0.Но качение диска происходит без скольжения. Такую связь можно выразить условием, чтобы скорость υx точки касания диска равнялась нулю. Хотя связь наложена на скорость, но для диска, катящегося в своей плоскости, она является голономной (в отличие от катящегося по плоскости шара, рассмотренного выше). В самом деле, приняв центр диска за полюс и разложив плоское движение диска на переносное поступательное вместе с полюсом и относительное вращательное вокруг полюса, получим для точки касания:

υА — ωr = 0 или

Интегрируя, получаем второе уравнение связи
xA = rφ.
Следовательно, связь интегрируемая, т. е. голономная.

Система имеет одну степень свободы, ее положение определяется одной обобщенной координатой, а ее движение — одним уравнением Лагранжа. За обобщенную координату можно взять, например, абсциссу xA центра диска или угол φ отклонения маятника от вертикали, но не надо брать за обобщенные координаты обе эти величины и составлять два уравнения Лагранжа по каждой из координат, потому что обобщенные координаты должны быть независимыми друг от друга величинами, а величины xA и φ являются зависимыми и связаны соотношением xA = rφ. Число уравнений Лагранжа равно числу степеней свободы. Выбор той или иной обобщенной координаты зависит от нас. Мы выберем φ. Выразим в этой обобщенной координате и обобщенной скорости φ кинетическую и потенциальную энергии системы. Определим сначала координаты шарика М, принимаемого за материальную точку, учитывая, что по уравнению связи xA = rφ:

x= rφ—l sin φ; y = l cosφ.

Продифференцировав по времени, найдем проекции скорости:

Определим квадрат полной скорости точки М:

υ 2 M = (r 2 + l 2 -2rl cos φ) φ 2

и кинетическую энергию точки М:

Кинетическую энергию диска определим по формуле Кёнига, учитывая, что xA = rφ:

Кинетическая энергия системы равна сумме кинетических энергий точки M и диска:

Потенциальная энергия определяется с точностью до произвольной постоянной (см. § 49) и этим обстоятельством следует воспользоваться так, чтобы в положении равновесия, при котором все обобщенные координаты равны нулю, потенциальная энергия также равнялась нулю. По теореме Дирихле, равновесие устойчиво, если около этого положения имеется область, в которой потенциальная энергия является определенно-положительной функцией обобщенных координат. Это имеет место в нашем случае:

П= m1gl (l — cos φ) (при φ = 0 П = 0; при φ ≠ О П > 0)

Функция Лагранжа L=T — П:

Подсчитаем величины, входящие в уравнение (264):

Колебания малые, и мы полагаем sin φ ≈ φ, cos φ ≈ 1 и пренебрегаем малыми величинами второго и высшего порядка, а также произведениями малых величин. Уравнение движения системы принимает вид:

Интегрируя, получим уравнение гармонических колебаний (см. §39). Конечно, частота этих колебаний не может зависеть только от масс, но зависит и от их распределения. Система представляет собой своеобразный физический маятник, и квадрат частоты свободных колебаний пропорционален статическому моменту веса и обратно пропорционален моменту инерции маятника относительно мгновенной оси.

Ответ.

Задача №6

Определить частоту свободный поперечных колебаний двухопорной балки, изображенной на рис. 240. На балке находится груз весом mg; расстояния от груза до опор балки равны а и b. Сечеиие и материал балки считать известными, весом балки пренебречь.


Рис. 240

Решение. Система имеет одну степень свободы. Построим декартовы координаты с началом в центре масс груза при равновесном положении системы и направим ось Oy вертикально вниз. За обобщенную координату системы примем ординату ус центра масс.

Выразим в обобщенной координате и обобщенной скорости кинетическую и потенциальную энергии системы. Массой балки пренебрегаем, и кинетическая энергия системы равна кинетической энергии груза при его поступательном движении:

Несколько сложнее определить потенциальную энергию, потому что система находится в потенциальном поле силы тяжести и в потенциальном поле упругости балки и полная потенциальная энергия П = П1 + П2. Потенциальная энергия системы в поле силы тяжести

Потенциальную энергию сил упругости найдем из разности двух частных ее значений: при прогибе (j+y) и при нулевом положении, при котором прогиб балки в месте расположения груза равен f:

Заметим, что при равновесном положении системы потенциальная энергия, согласно теореме Дирихле, должна иметь минимум, а потому ее производная

должна обратиться в нуль, если вместо у подставить нуль — его значение, соответствующее равновесному положению системы,

Следовательно, потенциальная энергия системы

Здесь с—коэффициент жесткости балки и, поскольку сечение и материал балки известны, может быть определен по формулам сопротивления материалов:

где E—модуль упругости материала, Jэ—экваториальный момент поперечного сечения балки.
Определим теперь члены уравнения (263):

После подстановки имеем

Это уравнение выражает малые колебания системы. Разделив «коэффициент жесткости» с на «коэффициент инерции» т, найдем квадрат частоты колебании системы, и для получения ответа остается только извлечь квадратный корень.

Ответ.

Малые колебания бифилярного подвеса

Задача №7

К концам М1 и М2 тонкого однородного стержня (рис. 241, а) массы m и длины 2α подвязаны две невесомые нити одинаковой длины l. Верхние концы N1 и N2 нитей неподвижно закреплены на горизонтальной прямой на расстоянии 2α друг от друга. Стержень повернули на малый угол вокруг центральной вертикальной оси и отпустили без начальной скорости. Исследовать малые колебания.


Рис. 241

Решение. При заданном движении будет изменяться высота центра масс стержня, но он не может отклоняться в сторону. Положение системы определяется высотой центра масс, углом поворота стержня вокруг вертикальной оси и углом отклонения нитей от вертикали. Но эти параметры зависят друг от друга, система имеет одну степень свободы, положение ее определяется одной обобщенной координатой, а движение —одним уравнением Лагранжа. Это уравнение удобно записать в форме (263), так как система находится в потенциальном поле тяжести и единственной активной силой системы является вес стержня.

За обобщенную координату нельзя выбрать высоту центра масс, потому что обобщенная координата должна однозначно определять положение системы, а каждому положению центра масс соответствуют два положения системы. Угол поворота стержня вокруг вертикальной оси можно принять за обобщенную координату, но удобнее в качестве таковой выбрать угол наклона нитей к вертикали, так как через этот угол легко выразить потенциальную энергию системы. Построим прямоугольную систем) координат, как показано на рисунке. Пусть в произвольное мгновение t угол поворота стержня был α, а угол наклона нитей О (рис. 241, б). Спроецируем стержень на плоскость хОу (рис. 241, в). Равнобедренный треугольник M»OM1 и прямоугольный треугольник N1M’M имеют равные стороны М’М = M1M»:

Эти два равенства позволяют выразить угол α в обобщенной координате :

Определим в обобщенной координате и положение центра масс:

zC = l — l cos

Переходим теперь к вычислению входящих в (263) кинетической и потенциальной энергии системы.
Кинетическую энергию определим по формуле Кёнига, но чтобы выразить ее в обобщенных координате и скорости, продифференцируем по времени выражения, полученные для zс и α:

Подставляя эти величины в (217) и учитывая, что стержень длиной 2a имеет момент инерции получим довольно сложное выражение:

При малых колебаниях можно положить cos 2 =l и sin 2 = 0:

Вычисляя потенциальную энергию П системы, так определим постоянную С, чтобы П обращалось в нуль при 0 = 0:

П = mgl (1 — cos ).

Как видно из этого равенства, при = 0 потенциальная энергия системы имеет минимум, что, по теореме Дирихле (см. § 49), означает устойчивое равновесие. Разложим cos в ряд. Тогда

Отбросив все члены выше второго порядка, получим приближенно

Теперь вычислим члены уравнения Лагранжа:

Подставляя в (263), получим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Решение его нам хорошо известно. Оно выражает малые колебания системы, период которых:

Заметим, что если к стержню присоединить тело с неизвестным моментом инерции и из опыта определить период τ1 колебания бифилярного подвеса вместе с телом, то можно определить момент инерции тела.

Ответ. Малые колебания с периодом

Колебания системы с двумя степенями свободы

Малые колебания системы с двумя степенями свободы являются линейным наложением двух главных колебаний

Малые колебания системы с двумя степенями свободы около положения устойчивого равновесия, описываемые изменением обобщенных координат, представляют собой линейные наложения двух так называемых главных, пли собственных, колебаний системы. В каждом из главных колебаний между амплитудами имеется постоянное соотношение, зависящее от параметров системы, но не зависящее от начальных данных. Каждому из главных колебаний соответствует своя собственная частота, в общем случае отличная от частоты другого собственного колебания системы, и фаза. Колебание системы с двумя или с большим числом степеней свободы, представляющее линейное наложение гармонических колебаний, обычно является сложным и может оказаться даже не периодическим. Поэтому выражения частота или период колебаний для системы, у которой число степеней свободы больше единицы, имеет смысл только по отношению к отдельным главным колебаниям системы. В системе с двумя степенями свободы нетрудно так подобрать начальные данные, чтобы какое-либо одно из двух главных колебаний отсутствовало, тогда можно наблюдать оставшееся главное колебание системы.

Решим задачу на малые колебания системы с двумя степенями свободы.

Двойной математический маятник

Задача №8

Две материальные точки M1 массы m1 и M2 массы m2 (рис. 242) связаны невесомой нерастяжимой нитью длины l2, а точка M1 связана, кроме того, такой же идеальной нитью длины l1 с неподвижной точкой О. Определить собственные частоты малых колебаний системы в вертикальной плоскости xOy 2 .


Рис. 242

Решение. По условию, маятник движется в одной вертикальной плоскости; система имеет две степени свободы и движение описывается двумя уравнениями Лагранжа. Система находится в потенциальном поле тяжести и никаких активных сил, кроме сил тяжести, на систему не действует, поэтому уравнения Лагранжа напишем в виде (263).

Выберем за обобщенные координаты углы О и φ наклона нитей к вертикали и выразим через них декартовы координаты точек

Продифференцировав по времени, возведя в квадрат и складывая, найдем квадраты скоростей точек:

Теперь легко вычислить кинетическую энергию T системы:

Определяя потенциальную энергию П, выберем так произвольную постоянную С, чтобы при равновесии системы П равнялось нулю:

Пусть произвольная постоянная C означает потенциальную энергию системы при = φ=180 o , т. е. положим

Теперь потенциальная энергия системы при любых значениях обобщенных координат выражается равенством

При = φ = 0 величина П равна нулю, при остальных значениях П > 0, т. е. П является определенно положительной функцией обобщенных координат.

Подсчитаем члены уравнений (263) Лагранжа:

Подставляя эти величины в уравнения (263), получим следующие точные уравнения движения системы:

Ограничимся малыми колебаниями системы и заменим косинусы единицей, а синусы малых углов — углами. Пренебрежем членами, содержащими квадраты или произведение скоростей, и для упрощения записи обозначим m2:m1 = μ. Уравнения примут вид:

Второе уравнение позволяет упростить первое:

Частные решения этой системы уравнений мы будем искать в виде

т. е. в предположении, что обе обобщенные координаты изменяются гармонически, с одинаковыми частотами и фазами, но с разными амплитудами. Подставляя значения углов и их вторых производных в дифференциальные уравнения и сокращая на sin (kt + α), найдем

Эта система двух уравнений, линейных относительно B1 и B2, может иметь отличные от нуля решения, если определитель системы равен нулю:

В теории колебаний это уравнение называют вековым уравнением, или уравнением частот, так как оно позволяет определить частоты главных колебаний системы. При условиях нашей задачи это решение записано в ответе. Оба периода главных колебаний различны между собой и зависят от отношения μ масс точек и от длины l1 и l2 нитей. Один из периодов близок к периоду качаний математического маятника длины l2, другой — к периоду маятника длины l1. Изменяя длину одного из маятников, мы можем период соответствующего главного колебания сделать больше или меньше периода второго главного колебания, однако мы не смогли бы добиться, чтобы оба главных периода качания двойного маятника были бы в точности одинаковы. Этот парадокс был открыт Стоксом и объясняется тем, что написанное выше уравнение частот не имеет одинаковых корней, при которых возможны устойчивые колебания двойного маятника.

Ответ.

Задача №9

В условии задачи вместо жесткого соединения невесомого стержня МЛ с диском сделано шарнирное соединение в точке Л, остальные условия не изменены (рис. 243).


Рис. 243

Решение. В отличие от системы, рассмотренной в задаче № 195, здесь система имеет две степени свободы и движение ее может быть описано двумя уравнениями Лагранжа. За обобщенные координаты примем независимые величины φ и хА. При подсчете кинетической энергии скорость точки А мы уже не можем определять как rφ, а должны писать хА. Выражение потенциальной энергии остается прежним и функция Лагранжа имеет вид

Вычислим члены уравнений Лагранжа:


Напишем оба уравнения Лагранжа:

Мы ищем период малых колебаний системы, поэтому, допустив применяемые в подобных случаях упрощения, перепишем эти уравнения в таком виде:

Определяя из первого уравнения и подставляя во второе, получим

Множитель, стоящий перед обобщенной координатой, выражает частоту колебаний.
Ответ. Период малых колебаний маятника

Задача №10

Составить дифференциальные уравнения свободных вертикальных колебаний автомобиля, происходящих параллельно плоскости его симметрии, если масса приведенной в колебание системы pa⅞ιιa т, а момент инерции относительно поперечной оси, проходящей через центр масс, равен .

Решение. На рис. 244 вверху изображен автомобиль, а внизу его динамическая схема. Деформации кузова пренебрежимо малы по сравнению с осадкой опор, поэтому в динамической схеме мы считаем раму совершенно жесткой. Кроме того, мы полагаем, что горизонтальные колебания системы невозможны.


Рис. 244

Построим оси декартовых координат с началом в центре масс при равновесном положении системы, направив ось ординат по вертикали вниз. Система обладает двумя степенями свободы и за обобщенные координаты ql и q2 примем ординату центра масс и угол наклона рамы к горизонтальной плоскости.
Кинетическую энергию системы определим по формуле Кёнига:

Для определения потенциальной энергии заметим, что если рама автомобиля опустится на q1 и при этом наклонится на q2, то задняя опора сожмется на q1+ αq2, а передняя на q1+ bq2. Учитывая жесткости рессор и пиевматиков, обозначим через c1 и c2 приведенные жесткости задней и передней подвески автомобиля. Тогда потенциальную энергию системы определим аналогично тому, как это было сделано в примере § 49:

Подставляя найденные значения T и П в уравнения Лагранжа, получим ответ.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Сложение двух сил
  • Разложение силы на две составляющие
  • Определение равнодействующей сходящихся сил
  • Равновесие сходящихся сил
  • Количество движения
  • Момент количества движения
  • Мощность и работа силы
  • Потенциальная энергия

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ

Ростовский государственный университет

П. Г. Иваночкин, Т. Я. Кожевникова, А. П. Сычев

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Методические указания к выполнению

расчетно-графической работы Д7 по теоретической механике

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы. Методические указания к выполнению расчетно-графической работы Д-7 по теоретической механике /П. Г. Иваночкин, Т. Я. Кожевникова, А. П. Сычев; Ростовский госуниверситет путей сообщения. Ростов-на-Дону, 2000, 19 с.

Кратко излагается теоретический материал, приводятся примеры решения типовых задач. Даны варианты к расчетно-графической работе Д7.

Одобрены к изданию кафедрой теоретической механики РГУПС и предназначены студентам механических специальностей.

Ил. 2 Библиогр.: 4 назв.

Рецензенты: канд. физ.-мат. наук, доц. А. И. Задорожный (РГУ); канд. техн. наук, доц. В. Г. Вильданов (РГУПС)

Иваночкин Павел Григорьевич

Сычев Александр Павлович

Методические указания к выполнению

Расчетно-графических работ Д7 по теоретической механике

Подписано в печать______2000г. Формат 60х84/16.

Бумага офсетная. Печать офсетная. Усл. печ. л 0,93.

Уч.-изд. л. 0,88. Тираж ____. Изд. № 000. Заказ № ____.

Ростовский государственный университет путей сообщения.

Ризография АСУ РГУПС. Лицензия ПДЛ №65-10 от 08.08.99г.

Адрес университета: 344038, г. Ростов н/Д, пл. им. Ростовского стрелкового полка народного ополчения,2

Ó Ростовский государственный университет путей сообщения, 2000

1. Общие указания

2. Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

3. Условие задачи Д7

4. Указания к решению задачи

5. Примеры решения типовых задач

6. Данные к вариантам задания Д7

7. Схемы к вариантам задания Д7

В первой части методических указаний содержатся краткие сведения из теории и примеры решения задания Д7, входящего в курсовую работу по теоретической механике.

В приложении I студент выбирает свой вариант по номеру рисунка согласно цифре, под которой его фамилия стоит в учебном журнале. Исходные данные берутся из таблицы (приложение 2). Номер строки в ней для каждой группы назначает преподаватель.

Оформление отчета

Расчетно-графическая работа оформляется в такой последовательности:

— условие задачи с рисунком;

На отдельном листе нужно полностью переписать условие задачи и выполнить относящийся к ней рисунок. Он должен быть выполнен четко, аккуратно, карандашом. В работе надо оставлять поля для замечаний консультанта.

Решение каждой задачи следует сопровождать пояснениями, то есть надо указывать, какие теоремы, формулы или уравнения применяются для решения. Чертежи, выполняемые в процессе решения задачи, должны соответствовать конфигурации системы в рассматриваемый момент времени, на них должны изображаться все векторы (силы, ускорения). Формулы сначала надо написать в общем виде (буквенном), а затем подставлять числовые значения, рядом указывать единицы измерения. В конце расчета дается сводная таблица полученных результатов.

Порядок приема и сдачи индивидуального задания

I. Срок сдачи индивидуального задания указывается консультантом (руководителем практических занятий).

II. При защите расчетно-графической работы студент должен пояснить ход ее выполнения, ответить на все поставленные вопросы и в отдельных случаях решить предложенные ему примеры.

III. Работа, небрежно выполненная и содержащая орфографические ошибки, не принимается.

Задание не засчитывается, если указанные требования не выполнены!

Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Краткие сведения из теории к заданию

Уравнения Лагранжа второго рода представляют собой систему уравнений динамики в обобщенных координатах. Использование их является универсальным методом получения системы дифференциальных уравнений, описывающих движение любой механической системы

Обобщенными координатами системы называется совокупность независимых параметров, которые при наименьшем числе однозначно определяют положение механической системы.

В последующем обобщенные координаты обозначаются q1, q1,…, qN или qj(j=1,2,…,N). Производные по времени от обобщенных координат называются обобщенными скоростями . Число N независимых обобщенных координат голономной системы равно числу ее степеней свободы.

Уравнения Лагранжа второго рода имеют вид

где Т — кинетическая энергия системы;

Qj — обобщенная сила, соответствующая j-той обобщенной координате.

Кинетическая энергия системы равна сумме кинетических энергий всех объектов, образующих систему.

Кинетическая энергия твердого тела определяется по формулам:

— при поступательном движении

,

– скорость центра масс тела;

,

Jz – момент инерции тела относительно оси вращения;

w — угловая скорость вращения;

— при плоскопараллельном движении

,

Jzc – момент инерции тела относительно оси, проходящей через центр масс, перпендикулярно плоскости движения.

Величина называется j-той обобщенной силой.

Если вычислить сумму элементарных работ активных сил, действующих на точки системы на возможном перемещении системы, то соответствующая формула может быть представлена в виде

поэтому часто обобщенные системы определяют как коэффициенты, стоящие в выражении суммы элементарных работ активных сил при соответствующих обобщенных возможных перемещениях.

Для определения обобщенной силы, соответствующей j-той обобщенной координате, необходимо этой координате сообщить приращение , оставляя все остальные обобщенные координаты без изменений; вычислить сумму элементарных работ всех сил, действующих на систему, на этом перемещении и полученную работу разделить на приращение обобщенной координаты

При вычислении работы сил используются следующие формулы:

— работа сил тяжести

,

h – изменение высоты между начальным и конечным положениями

— работа силы трения

— работа постоянной силы на прямолинейном перемещении

,

a — угол между направлением силы и направлением перемещения

— работа сил, приложенных к вращающемуся телу

,

Mz(F) – момент силы относительно оси вращения;

j — угол поворота тела

Методика составления уравнений Лагранжа второго рода

Составление уравнений Лагранжа второго рода производится в следующем порядке:

1) определяется число степеней свободы заданной механической системы;

2) выбираются независимые обобщенные координаты, число которых равно числу степеней свободы;

3) вычисляется кинетическая энергия Т рассматриваемой системы, которая выражается через обобщенные скорости;

4) находятся частные производные кинетической энергии по обобщенным скоростям, т. е.

затем вычисляются их производные по времени

5) определяются частные производные кинетической энергии по обобщенным координатам

6) находятся обобщенные силы Q1, Q2,…QN соответствующие выбранным обобщенным координатам;

7) полученные в п. п. 4-6 результаты подставляются в уравнения Лагранжа.

Условие задачи Д-7

Механическая система состоит из ступенчатых шкивов 1 и 2 весом Р1 и Р2 с радиусами R1=R, r1=0,4R и R2=R, r2=0,8R (массу каждого шкива считать равномерно распределенной по его внешнему ободу); грузов или сплошных однородных цилиндрических катков 3, 4, 5, веса которых Р3, Р4, Р5 соответственно. Тела системы соединены нитями, намотанными на шкивы и невесомые блоки. Участки нити параллельны соответствующим плоскостям. Грузы скользят по плоскостям без трения, а катки катятся без скольжения. Система движения в вертикальной плоскости под действием сил тяжести, кроме того, на одно из тел действует постоянная сила F, а на шкивы 1 или 2 при их вращении действуют постоянные моменты сил сопротивления М1 и М2.

Определить величину, указанную в таблице в столбце «Найти», где e1 и e2 — угловые ускорения шкивов 1 и 2, аС3, аС4, аС5 — ускорения грузов или центров масс соответствующих катков. (Если необходимо определить e1 или e2 принять R=0,25м).

Указания к решению задачи

Для исследования движения системы нужно составить уравнение Лагранжа 2-го рода. Во всех вариантах система имеет одну степень свободы, и еe положение определяется одной обобщенной координатой q. Уравнение Лагранжа — это дифференциальное уравнение 2-го порядка относительно обобщенной координаты.

(1)

Если нужно найти ускорение a3C или a4C грузов 3,4 или ускорение a5C центра масс С катка 5, то за обобщенную координату целесообразно принять перемещение х центра масс этих тел, тогда — обобщенная скорость и уравнение примет вид:

(2)

Если же нужно определить угловое ускорение e1 или e2 одного из шкивов, то за обобщенную координату нужно принять угол поворота шкива, т. е. и уравнение будет иметь вид:

(3)

Для составления уравнения (2) или (3) нужно вычислить кинетическую энергию Т системы, выразив её через обобщенную скорость ( или ) и обобщенную координату q (x или j). Затем нужно найти обобщенную силу Qx или Qj, для определения которой нужно сообщить системе возможное (малое) перемещение ( или ) и вычислить сумму элементарных работ всех сил на этом перемещении. Элементарные перемещения всех тел нужно выразить через dx или dj , тогда получим: или , т. е. коэффициенты при dx или dj в выражении dА и будут обобщенными силами.

Примечание: в варианте №21 шкивы 1, 2 и в варианте №25 шкив 2 считать однородными цилиндрами.

Примеры решения типовых задач

Дано: Р1=12Р, Р2=8Р, Р3=2Р, Р4=12Р, Р5=6Р, F=3P, M=3PR

(Р-в Н, R-в м.), R1=0,3R, r1=0,2R, R2=0,2R, r2=0,1R.

1. Система имеет одну степень свободы. За обобщенную координату возьмем перемещение груза 4 (q=x).

Предположим, груз 4 опускается. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы:

(2)

Шкивы 1 и 2 вращаются вокруг неподвижной оси, грузы 3 и 4 движутся поступательно, а каток 5 движется плоскопараллельно.

(3)

(4)

3. Скорости n3 и nс, угловые скорости w1, w2 и w5 выразим через обобщенную скорость

(5)

Подставляя значения (4) и (5) в равенства (3), а затем в (2), получим:

Найдем частные производные от Т по х и :

(7)

4. Определим обобщенную силу . На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , и момент пары силы М(сила работы не совершает, т. к. груз 3 движется по горизонтали).

Сообщим системе возможное перемещение dх груза 4 в направлении его движения и покажем перемещения остальных тел: груза 3-dх3, центра масс С катка 5-dхс, а для шкивов углы поворота dj1 и dj2. Вычислим сумму элементарных работ сил тяжести , , силы и момента пары сил М на этих перемещениях.

Коэффициент при dх в выражении dА будет обобщенной силой Qх.

5. Найденные величины (7) и (8) подставим в уравнение (1).

Отсюда находим:

Ответ:

Дано: Р1=2Р, Р2=0, Р3=3Р, Р4=0, Р5=4Р, F=12Р, М1=0,3РR, М2=0

R1=R, R2=R, r1=0,4R, r2=0,8R, R=0,25м, a=60°, b=30°

Найти: e2 – угловое ускорение второго шкива

1. Система имеет одну степень свободы. За обобщенную координату возьмем угол поворота шкива 2 (q=j). Предположим, что шкив вращается против часовой стрелки. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы

(2)

Грузы 3 и 4 движутся поступательно, следовательно

Шкивы 1 и 2 вращаются вокруг неподвижных осей, следовательно

Каток 5 движется плоскопараллельно

3. Скорости V3, V4, VС, угловые скорости w1, w5 выразим через обобщенную скорость

Из рисунка видно, что

(точка Р касания катка и наклонной плоскости является мгновенным центром скоростей катка)

Подставим найденные выражения в формулу кинетической энергии системы

4. Определим обобщенную силу Qj. На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , , и моменты пары сил М1 и М2 (силы и приложенные к осям вращения шкивов работы не совершают).

Сообщим системе возможное перемещение соответствующее повороту шкива 2 на угол против часовой стрелки и покажем перемещения остальных тел: груза 3 — , груза 4 — , центра масс С кат-ка 5 — , а для шкива 1 – угол поворота .

Вычислим сумму элементарных работ указанных активных сил (силы тяжести сила и пара сил с моментом М) на выбранном возможном перемещении системы

,

Вычислим обобщенную силу Q по формуле

Подставляя все полученные выражения в уравнение Лагранжа получим его в виде

УРАВНЕНИЯ ЛАГРАНЖА 2 РОДА. ОБОБЩЁННЫЕ КООРДИНАТЫ, СКОРОСТИ И СИЛЫ

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

УРАВНЕНИЯ ЛАГРАНЖА II РОДА.

ОБОБЩЁННЫЕ КООРДИНАТЫ,
СКОРОСТИ И СИЛЫ.
ЛЕКЦИИ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ.
Динамика

Определять положение любой точки механической системы
Научиться описывать движение механической системы с несколькими степенями свободы

Цель введения обобщенных координат, скоростей и сил
2

Обобщенные координаты
Обобщенные координаты – это независимые между собой параметры любой размерности, однозначно определяющие положение механической системы в пространстве.
3
ОБОБЩЕННЫЕ КООРДИНАТЫ

ПОНЯТИЕ СТЕПЕНИ СВОБОДЫ
Число независимых между собой возможных перемещений МС называется числом степеней свободы системы.
4
У механической системы с голономными связями число обобщенных координат совпадает с числом её степеней свободы
Обобщенные координаты

В несвободной механической системе декартовых координат ее точек должны удовлетворять уравнениям связей, поэтому независимыми среди них будут только координат.
5
Если бы система была свободной, то все декартовых координат ее точек были бы независимыми.
КОЛИЧЕСТВО СТЕПЕНЕЙ СВОБОДЫ
Обобщенные координаты
1
2

6
КОЛИЧЕСТВО СТЕПЕНЕЙ СВОБОДЫ
Обобщенные координаты
У свободного твёрдого тела 6 степеней свободы:
3 поступательных вдоль осей координат и 3 вращательных вокруг этих осей.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ТОЧЕК МС
Тогда радиус-векторы всех точек системы можно определить как функцию обобщенных координат
Обобщенные координаты будем обозначать буквой —
7
Обобщенные координаты

ОБОБЩЁННЫЕ СКОРОСТИ
Обобщенные скорости
8
При движении системы её обобщённые координаты будут меняться со временем по закону

— кинематическое уравнение движения в обобщённых координатах.

Размерность обобщённой скорости зависит от размерности соответствующей обобщённой координаты.
Производные от обобщённых координат по времени называются обобщёнными скоростями

ОБОБЩЁННЫЕ СИЛЫ
Обобщенные силы
9
Рассмотрим МС, состоящую из n материальных точек, на которые действуют силы
Пусть система имеет S степеней свободы и ее положение определяется обобщенными координатами
Сообщим системе такое независимое возможное перемещение, при котором координата получает приращение а остальные координаты не изменяются.
Тогда каждый из радиус-векторов точек системы получит элементарное приращение

ОБОБЩЁННЫЕ СИЛЫ
Обобщенные силы
10
Поскольку изменяется только координата , то вычисляется как частный дифференциал
Тогда вычислим сумму элементарных работ всех действующих сил на рассматриваемом перемещении.

ОБОБЩЁННЫЕ СИЛЫ
Обобщенные силы
11
— обобщённая сила, соответствующая координате

12
Обобщённые силы – это величины, равные коэффициентам при приращениях обобщённых
координат в выражении полной элементарной работы
действующих на систему сил.
Размерность обобщённой силы равна размерности работы, деленной на размерность соответствующей обобщённой координаты.
Обобщенные силы
Если системе сообщить такое возможное перемещение, при котором одновременно меняются все обобщенные координаты, то сумма элементарных работ приложенных сил на этом перемещении равна:

13
Обобщенные силы
ПРИМЕР (ДВОЙНОЙ МАЯТНИК)

13
Обобщенные силы
ПРИМЕР (ДВОЙНОЙ МАЯТНИК)

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 114 человек из 43 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 233 человека из 54 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 352 человека из 63 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 578 848 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 07.12.2020
  • 100
  • 0
  • 27.10.2020
  • 72
  • 0
  • 23.10.2020
  • 86
  • 0
  • 16.10.2020
  • 78
  • 0
  • 04.10.2020
  • 93
  • 0
  • 22.09.2020
  • 375
  • 28
  • 09.08.2020
  • 121
  • 0
  • 21.07.2020
  • 66
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 04.09.2020 362
  • PPTX 281.9 кбайт
  • 3 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Раджабова Патимат Рамазановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 1 месяц
  • Подписчики: 0
  • Всего просмотров: 22544
  • Всего материалов: 226

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Минобрнауки создаст для вузов рекомендации по поддержке молодых семей

Время чтения: 1 минута

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://pandia.ru/text/80/291/23590.php

http://infourok.ru/uravneniya-lagranzha-2-roda-obobshyonnye-koordinaty-skorosti-i-sily-4767404.html