Уравнение движения поршня в цилиндре

Движущее усилие и скорость поршня гидроцилиндра

Страницы работы

Содержание работы

28. Движущее усилие и скорость поршня гидроцилиндра

28.1. Предварительный расчет

Расчетное движущее усилие F на штоке, развиваемое давлением р жидкости на поршень (трением поршня и штока, а также противодавлением в нерабочей полости и силой инерции пренебрегаем), упрощенно определяется по формуле:

, Н

где S– рабочая (эффективная) площадь поршня.

Рабочая площадь Sпоршня для одноштокового гидроцилиндра с двумя рабочими полостями (рис. 7.1, а) определяется по формулам:

― при подаче жидкости в поршневую полость:

,

― при подаче жидкости в штоковую полость:

, где D и d – диаметры поршня и штока.

При равной подаче жидкости в поршневую и штоковую полости, скорости перемещения подвижной части цилиндра будут определяться (без учета утечек жидкости) из уравнения расхода Q жидкости, поступающей в цилиндр по формулам

; , υп 0,05 м/с) и хорошей смазке μ =0,05…0,08.

Если в качестве уплотнений штока и поршня применены резиновые манжеты или же манжеты уменьшенного сечения, то сила трения, создаваемая этими уплотнениями, составляет величины:

и , где D и d – уплотнительные диаметры, м;

b – ширина уплотнения, м;

k – удельное трение; при работе на минеральном масле k = 0,22 МПа.

Если в поршне для уплотнения применены металлические кольца, то сила трения определяется по формуле:

, где b – ширина кольца, м;

pк = 0,09…0,1 МПа – давление кольца на внутренней поверхности цилиндра;

f1 – коэффициент трения: при установившемся движении f1 =0,07, при разгоне f1 = 0,15).

Сила инерции Fин определяется по формуле:

где m – масса подвижных, частей, кг;

υcp – средняя скорость в момент разгона, м/с;

lp – путь, пройденный поршнем в период разгона, м;

Задаваясь общим временем перемещения поршня гидроцилиндра t и пройденным им расстоянием (ходом) l определяет среднюю скорость:

, где kt= 1,25 – коэффициент потери времени на разгон и торможение.

Общее время для перемещения поршня tсоставит величину

t = tp + ty +tт, где tp, ty,tт – время, затрачиваемое на разгон, установившееся движение и торможение, определяются по формулам

, ,

где ly,lт – путь, пройденный поршнем в период установившегося движения и торможения.

Сила противодавления рабочей жидкости Fс определяется давлением рабочей жидкости в полости слива pc.

При движениипоршня вправо : .

При движении поршня влево: .

28.3. КПД гидроцилиндров

Пусковой КПД гидроцилиндра представляет собой отношение полезной нагрузки к расчетной Fст:

.

Величиной пускового КПД ηп оцениваются затраты мощности при пуске и разгоне подвижных масс гидроцилиндра.

Эффективность работы гидроцилиндров может оцениваться по величине его полного КПД:

, где Nпол и Nзатр – мощность, отведенная от силового цилиндра и подведенная к нему;

– реальная скорость поршня;

Qт – подача рабочей жидкости на входе в гидроцилиндр;

pн – давление рабочей жидкости в напорной полости силового цилиндра.

Общий КПД гидроцилиндра может бить также вычислен по зависимости:

где = 0,85…0,97– механический КПД гидроцилиндра, которым учитываются потери мощности от трения движущихся масс; величина его зависит от конструкции гидроцилиндра и уплотнений и, прежде всего,, от качества обработки сопрягаемых деталей

– объемный КПД гидроцилиндра, которой определяется объемными потерями мощности (отношение действительной к теоретической расчетной скорости поршня).

Устройство автомобилей

Кинематика и динамика КШМ

Кривошипно-шатунный механизм (КШМ) является основным механизмом поршневого двигателя внутреннего сгорания (ДВС), который воспринимает и передает значительные по величине нагрузки. Поэтому расчет прочности КШМ имеет важное значение. В свою очередь расчеты многих деталей двигателя зависят от кинематики и динамики КШМ.
Кинематический анализ КШМ устанавливает законы движения его звеньев, в первую очередь поршня и шатуна.

Типы КШМ

В поршневых ДВС применяются три типа КШМ:

  • центральный (аксиальный);
  • смешанный (дезаксиальный);
  • с прицепным шатуном.

В центральном КШМ ось цилиндра пересекается с осью коленчатого вала (рис. 1).
Угловая скорость рассчитывается по формуле

Важным конструктивным параметром КШМ является отношение радиуса кривошипа R к длине шатуна L :

Установлено, что с уменьшением λ (за счет увеличения длины шатуна L ) происходит снижение инерционных и нормальных сил. При этом увеличивается высота двигателя и его масса, поэтому в автомобильных двигателях принимают значение λ от 0,23 до 0,3.

В дезаксиальном КШМ (рис. 2) ось цилиндра не пересекает ось коленчатого вала и смещена относительно ее на расстояние а .
Дезаксиальные КШМ имеют некоторые преимущества в сравнении с центральными КШМ:

  • увеличенное расстояние между коленчатым и распределительным валами, в результате чего увеличивается пространство для перемещения нижней головки шатуна;
  • более равномерный износ цилиндров двигателя из-за уменьшения давления поршня на гильзу во время такта рабочего хода;
  • при одинаковых значениях R и λ у дезаксиального двигателя больше ход поршня, что способствует снижению содержания токсичных веществ в отработавших газах;
  • увеличенный рабочий объем двигателя.

КШМ с прицепным шатуном применяется на двигателях с большим числом цилиндров, когда хотят уменьшить длину двигателя (рис. 3).
Конструкция такого КШМ содержит главный шатун 12, соединенный непосредственно с шейкой коленчатого вала, и прицепной шатун 3, который соединен с главным шатуном посредством шарнира 11, расположенного на его головке. При этом поршни, соединенные с главным и прицепным шатуном имеют не одинаковый рабочий ход, Так, в V-образном двенадцатицилиндровом двигателе Д-12 разница в ходе поршней составляет 6,7 мм.

Кинематика центрального КШМ

При кинематическом анализе КШМ считается, что угловая скорость коленчатого вала постоянна. В задачу кинематического расчета входит определение перемещения поршня, скорости его движения и ускорения.

Перемещение поршня в зависимости от угла поворота кривошипа для двигателя с центральным КШМ рассчитывается по формуле:

x = R[1 – cos φ) + (λ/4)(1 — cos 2φ)] .

Перемещение поршня для каждого угла поворота коленчатого вала может быть определено графическим способом, который получил название метод Брикса.

Скорость поршня может быть определена, как производная уравнения (1) по времени. Максимальных значений скорость достигает при углах поворота коленчатого вала меньше 90˚ и больше 270˚. Точное значение этих углов зависит от величины λ .
Для λ от 0,2 до 0,3 максимальные скорости поршня соответствуют углам поворота коленчатого вала от 70˚ до 80˚ и от 280˚ до 287˚.

Средняя скорость поршня может быть определена по формулам:

Vср = Sn/30 = 2Rπn/30 = 2Rɷ/π ,

где S – ход поршня, м;
n – частота вращения коленчатого вала, об/мин;
R – радиус кривошипа, м;
ɷ — угловая скорость вращения коленчатого вала, с -1 .

Средняя скорость поршня в автомобильных двигателях находится в пределах от 8 до 15 м/с.

Значение максимальной скорости поршня с достаточной степенью точности может быть определено по формулам:

Ускорение поршня определяется, как первая производная скорости по времени или как вторая производная перемещения поршня по времени:

j = Rɷ2(cos φ + λcos 2φ) .

Ускорение достигает максимальных значений в верхней и нижней мертвых точках (ВМТ и НМТ), а в средней части хода поршня уменьшается до нуля. Максимальное ускорение поршня в автомобильных ДВС составляет 10000 м/с 2 .

Отношение хода поршня к диаметру цилиндра

Отношение хода поршня S к диаметру цилиндра D является одним из основных параметров, который определяет размеры и массу двигателя. В автомобильных двигателях значения S/D варьируют от 0,8 до 1,2. Двигатели, у которых S/D больше единицы, называют длинноходными, а у которых S/D меньше единицы – короткоходными. Данное соотношение непосредственно влияет на скорость поршня, а значит и на мощность двигателя.
С уменьшением значения S/D очевидны следующие преимущества:

  • уменьшается высота двигателя;
  • снижаются механические потери и износ деталей (за счет уменьшения средней скорости поршня);
  • улучшаются условия размещения клапанов ГРМ и создаются предпосылки для увеличения их размеров;
  • появляется возможность увеличения диаметров коренных и шатунных шеек, что повышает жесткость коленчатого вала.

Однако есть и отрицательные моменты:

  • увеличивается длина двигателя и длина коленчатого вала;
  • повышаются нагрузки на детали от сил давления газов и сил инерции;
  • уменьшается высота камеры сгорания и ухудшается ее форма, что в бензиновых двигателях способствует детонации, а в дизелях ухудшает качество смесеобразования.

При выборе значений S/D конструкторы учитывают назначение и конструктивные особенности двигателя. Так, для быстроходных двигателей целесообразно уменьшить значения S/D . Выгодно уменьшать это соотношение и для V-образных двигателей, где благодаря короткоходности можно получить оптимальные массовые и габаритные показатели.
Следует, также, учитывать, что силы, действующие в КШМ, в большей степени зависят от диаметра цилиндра, и в меньшей – от хода поршня.

Динамика КШМ

При работе двигателя в КШМ действуют силы и моменты, которые не только воздействуют на детали КШМ и другие узлы, но и вызывают неравномерность работы двигателя.
К таким силам относятся:

  • сила давления газов (уравновешивается в самом двигателе и на его опоры не передается);
  • сила инерции приложена к центру возвратно-поступательно движущихся масс и направлена вдоль оси цилиндра; эта сила воздействует на корпус двигателя через подшипники коленчатого вала, вызывая вибрацию двигателя на опорах в направлении оси цилиндра;
  • центробежная сила от вращающихся масс направлена по кривошипу в средней его плоскости, воздействуя через опоры коленчатого вала на корпус двигателя, вызывает колебания двигателя на опорах в направлении кривошипа.

Кроме того, возникают такие силы, как давление на поршень со стороны картера, и силы тяжести элементов КШМ, которые в расчетах не учитываются в виду относительно малой величины.

Все действующие в двигателе силы взаимодействуют с сопротивлением на коленчатом валу, силами трения и воспринимаются опорами двигателя.
В течение каждого рабочего цикла (720˚ – для четырехтактного и 360˚ – для двухтактного двигателей) силы, действующие в КШМ, непрерывно меняются по величине и направлению. Для установления характера изменения данных сил от угла поворота коленчатого вала их определяют через каждые 10˚ – 30˚ для определенных положений коленчатого вала.
Эти данные необходимы для устранения причин вибраций двигателя во время работы, т. е. для уравновешивания двигателя.

Уравновешивание двигателей

Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие силы и их моменты постоянны по величине или равны нулю.
Уравновешивание двигателей достигается подбором оптимального числа цилиндров, их расположения, порядка работы, выбором соответствующей схемы коленчатого вала, установкой противовесов на коленчатом валу (иногда — на специальных дополнительных валах), а также равенством масс подвижных деталей КШМ, балансировкой коленчатого вала и т. п.

Поршень в цилиндре колебательное движение

Поршень в цилиндре колебательное движение

2017-10-05
Расположенный горизонтально цилиндрический сосуд, заполненный идеальным газом, разделен поршнем, который может двигаться без трения. В равновесии поршень находится посредине цилиндра. При малых смещениях из положения равновесия поршень совершает колебания. Найти зависимость частоты этих колебаний от температуры, считая процесс изотермическим.

В положении равновесия давление $p$ на поршень слева и справа одинаково. Поскольку объем газа слева и справа одинаков, а температура $T$ постоянна, из уравнения Менделеева — Клапейрона

следует, что количество газа $\nu$ одинаково по обе стороны от поршня. Отметим, что химический состав газов может быть различным.


рис.1
Пусть поршень сместился из положения равновесия, например влево, на малую величину $x$, так что $Sx \ll V$, где $S$ — площадь поршня (рис. 1). Поскольку температура по условию не меняется, то

$(p + \Delta p_ )(V — Sx) = (p — \Delta p_ ) (V + Sx)$.

Раскрыв скобки и приведя подобные члены, получим

$( \Delta p_ + \Delta p_ ) V — ( \Delta p_ — \Delta p_ ) Sx = 2pSx$.

Второе слагаемое слева много меньше первого не только потому, что $Sx \ll V$, но и вследствие того, что множителем при $V$ стоит сумма двух близких величин $\Delta p_ $ и $\Delta p_ $, а множителем при $Sx$ — их разность. Пренебрегая вторым слагаемым, получаем

$\Delta p_ + \Delta p_ = \frac x$.

Результирующая сила, действующая на поршень, равна

Знак минус означает, что сила направлена в сторону, противоположную направлению смещения поршня, т. е. к положению равновесия. Под действием силы, пропорциональной смещению, поршень массой $M$ будет совершать гармонические колебания с частотой $\omega$, определяемой соотношением

При решении задачи мы молчаливо предполагали, что масса газа много меньше массы поршня, так что кинетической энергией макроскопического движения газа при колебаниях поршня можно пренебречь но сравнению с кинетической энергией поршня. Подумайте, где использовано это условие.

Выразив $p$ из уравнения Менделеева — Клапейрона (1), получим

Таким образом, частота колебаний поршня пропорциональна $\sqrt $, ибо коэффициент при $T$ в формуле (3) не зависит от температуры, если пренебречь тепловым расширением сосуда.

Подумайте теперь, какие условия должны выполняться, чтобы процесс действительно был изотермическим. Для того чтобы температура газа в процессе колебаний не изменялась, необходим хороший тепловой контакт с большим тепловым резервуаром — термостатом, имеющим постоянную температуру. Что значит хороший тепловой контакт? Это значит, что время установления термодинамического равновесия между газом в сосуде и термостатом должно быть много меньше периода колебаний поршня. Тогда можно считать, что газ в каждый момент имеет ту же температуру, что и термостат. Если, наоборот, период колебаний окажется много меньше времени установления термодинамического равновесия между газом и термостатом, то можно считать, что колебания поршня происходят практически без обмена теплотой с термостатом. В этом случае процесс можно считать адиабатическим, несмотря на отсутствие тепловой изоляции сосуда с поршнем. Оказывается, что зависимость частоты колебаний от температуры при этом будет такой же, как и в изотермическом случае, только коэффициент в формуле (3) умножится на число, большее единицы. Увеличение частоты колебаний при адиабатическом процессе можно объяснить, сравнивая $p-V$ — диаграммы изотермического и адиабатического процессов идеального газа.

Отметим, что приведенное решение в обоих случаях имеет смысл, только если время установления теплового равновесия в самом газе много меньше периода колебаний поршня, так как в противном случае вообще теряют смысл такие равновесные макроскопические характеристики газа, как давление и температура. Другими словами, по отношению к самому газу процесс должен быть квазистатическим.

1.1. Уравнение гармонических колебаний

В этом разделе мы покажем, что уравнения колебательного движения многих систем, в сущности, одинаковы, так что различные физические процессы могут быть описаны одними и теми же математическими формулами.

Пружинный маятник — это система, состоящая из шарика массой m, подвешенного на пружине длиной .

Рис. 1.2. К выводу уравнения движения для пружинного маятника

В положении равновесия (рис. 1.2) сила тяжести уравновешивается упругой силой :

где – статическое удлинение пружины. Направим ось x вниз и выберем начало отсчета так, что координата x = 0 соответствует положению неподвижного шарика в положении равновесия.

Если теперь оттянуть шарик от положения равновесия на расстояние x, то полное удлинение пружины станет равным . По закону Гука проекция результирующей силы на ось ОХ будет тогда равна

Знак минус означает, что сила стремится уменьшить отклонение от положения равновесия. Полученное выражение соответствует упругой силе слабо деформированной пружины.

Запишем теперь уравнение второго закона Ньютона:

Его можно также представить в виде:

Математический маятник

Математический маятник это идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Будем характеризовать отклонение маятника от положения равновесия углом , который образует нить с вертикалью (рис. 1.3).

Рис. 1.3. К выводу уравнения движения математического маятника

При отклонении маятника от положения равновесия на материальную точку массой m действуют сила тяжести и сила натяжения нити . Соответственно, уравнение движения этой материальной точки имеет вид

.

Проецируя его на направления нормали и касательной к траектории (окружности радиуса ), получаем

Модуль скорости равен , учитывая, что при движении точки к положению равновесия угол убывает, а скорость точки растет, напишем

.

Тогда второе из написанных выше уравнений движения приобретает вид

При малых отклонениях маятника от вертикали, когда ,

Физический маятник

Физический маятник это протяженное колеблющееся тело, закрепленное на оси. Его размеры таковы, что его невозможно рассматривать как материальную точку.

Пример физического маятника приведен на рис. 1.4.

Рис. 1.4. К выводу уравнения движения физического маятника

При отклонении маятника от положения равновесия на угол возникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен

где m – масса маятника, а l – расстояние 0C между точкой подвеса и центром масс C маятника.

Рассматривая как вектор, связанный с направлением поворота правилом правого винта, противоположность знаков и можно объяснить тем, что векторы и направлены в противоположные стороны. Обозначив момент инерции маятника относительно оси, проходящей через точку подвеса, как I, для маятника можно записать основное уравнение динамики вращательного движения:

Ограничимся рассмотрением малых отклонений от положения равновесия:

В этом случае уравнение колебаний принимает вид:

В случае, когда физический маятник можно представить как материальную точку, колеблющуюся на нити длиной l, момент инерции равен

и мы приходим к уравнению (1.6) движения математического маятника.

Колебания поршня в сосуде с идеальным газом

Рассмотрим цилиндр с площадью поперечного сечения , в который вставлен поршень массы (рис. 1.5). Под поршнем в цилиндре идеальный газ с показателем адиабаты , над поршнем воздух с постоянным (атмосферным) давлением . Поршень может двигаться в цилиндре вверх и вниз без трения. Будем считать, что в равновесии объем идеального газа под поршнем равен и изменения объема газа, обусловленные движением поршня, происходят адиабатно, то есть без теплообмена со стенками цилиндра и поршнем.

Рис. 1.5. Колебания поршня, закрывающего сосуд с идеальным газом

В состоянии равновесия давление в газе под поршнем складывается из атмосферного давления и давления , оказываемого поршнем. Обозначим это результирующее давление :

Переместим поршень на расстояние x вверх. Объем сосуда увеличится и станет равным

Соответственно уменьшится давление. В силу предположения об отсутствии теплообмена, новое давление в газе можно найти из уравнения адиабаты Пуассона

Здесь — показатель адиабаты, зависящий от числа степеней свободы молекул газа.

При малых колебаниях, когда изменение объема газа много меньше его «равновесной» величины , то есть когда

выражение (1.11) можно разложить в ряд Тейлора:

На поршень действуют три силы: сила атмосферного давления , сила давления газа под поршнем и сила тяжести . Знаки сил соответствуют выбору положительного направления оси x вверх. Используя (1.10) и (1.12), находим для равнодействующей этих сил:

Используя (1.13), уравнение движения поршня


источники:

http://k-a-t.ru/PM.01_mdk.01.01/5_dvs_teoria1/index.shtml

http://medwegonok.ru/porshen-v-tsilindre-kolebatelnoe-dvizhenie/