Уравнение движения равнозамедленного прямолинейного движения

Уравнение движения равнозамедленного прямолинейного движения

§ 25. Равнозамедленное движение. Формула пути

1. Понятие равнозамедленного движения. Формула пути.

Определение. Прямолинейное движение называется равнозамедленным , если за любые равные промежутки времени модуль скорости уменьшается на одну и ту же величину.

Это движение также является частным случаем движения с постоянным ускорением, поэтому любую задачу на это движение можно решать с помощью известных формул проекций скорости и координат движения с постоянным ускорением. Но иногда для более быстрого решения задач можно использовать формулы модуля скорости и пути.

Вначале найдём время, в течение которого тело движется равнозамедленно до остановки.

Получим теперь формулу модуля скорости равнозамедленного движения.

, где , то есть .

Из формулы координаты движения с постоянным ускорением можно получить формулу пути равнозамедленного движения.

, где .

2. График пути равнозамедленного движения.

Графиком пути при равнозамедленном движении является ветвь параболы; вершина параболы расположена в конце времени движения.

2а. Тело двигалось равнозамедленно, остановилось, а затем вновь начало двигаться (равноускоренно) в противоположном направлении: например, мяч, брошенный вертикально вверх.

График пути в этом случае будет выглядеть так.

Никакую часть этого материала ни в каких целях, включая образовательные и научные, нельзя без письменного разрешения владельца авторских прав дублировать в сети Интернет и воспроизводить в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая запись на магнитный или электронный носитель, вывод на печать, фотокопирование.

Равнозамедленное движение. Формула равнозамедленного движения. График равнозамедленного движения

Что такое равнозамедленное движение?

Равнозамедленное движение определение

Определение равнозамедленного движения:

Если укорение отрицательно, то модуль скорости равномерно уменьшается.

График скорости равнозамедленного движения

Пример графика скорости равнозамедленного движения, здесь начальная скорость равна 2 м/с, ускорение отрицательно и модуль его равен 0,3 м/с 2 :

(Этот график я построил с помощью построителя графиков. Выбрал в нём вид функции «Линейная: y = k * x + b» установил k = -0.3, b = 2 и нажал кнопку «Построить график».)

Чем больше отрицательное ускорение, тем быстрее будет падать скорость в нашем примере, т.е. если задать большее ускорение, то график круче пойдёт вниз.

Равнозамедленное движение формула

Формула скорости равнозамедленного движения (прямолинейного):

в этой формуле все величины являются скалярами, а не векторами.

Из формулы скорости равнозамедленного движения видно, что если увеличить ускорение, то быстрее будет падать скорость.

В момент времени t1 скорость падает до нуля, а после этого момента скорость нарастает, тело движется равноускоренно, но с отрицательной скоростью.

Равнопеременное движение

Рассмотрим прямолинейное движение тела вдоль оси (одномерный случай) и пусть при этом скорость тела изменяется.

Когда скорость изменяется, появляется ускорение. Ускорение, в свою очередь, тоже может меняться.

Если изменяется и ускорение, и скорость тела – движение сложное, например, колебательное;

Движение равнопеременное — если изменяется только скорость, а ускорение постоянное.

Термин «равнопеременное» применяют потому, что за одинаковые интервалы времени перемещение изменяется на одну и ту же величину.

При этом, если скорость увеличивается – движение называют равноускоренным, а если скорость уменьшается – равнозамедленным.

Примечание: Вместо слов «ускорение постоянное» можно произнести «ускорение не меняется», или «ускорение одно и то же».

Рекомендую предварительно ознакомиться с основными терминами для описания движения.

Будем выбирать направления для векторов скорости и ускорения относительно оси. Разберем несколько возможных вариантов.

Равноускоренное движение

Пусть при движении по прямой скорость тела увеличивается. Обратим внимание на перемещение тела.

Примечание: Движение равноускоренное, значит, за одинаковые интервалы времени перемещение будет увеличиваться на одну и ту же величину.

Этот факт иллюстрирует рисунок 1. Из рисунка видно: по сравнению с первой секундой, за вторую секунду пути перемещение увеличивается на небольшой отрезок, а за третью секунду – на два таких отрезка.

Считаем, что векторы скорости и ускорения сонаправлены с осью, вдоль которой движется тело (рис. 2).

Примечание: Скорость увеличивается, когда вектор ускорения сонаправлен с вектором скорости.

В начальный и в конечный моменты времени скорости будут различаться.

Формулы можно записать в скалярном виде, так как движение происходит вдоль одной прямой и направления векторов известны.

Связь между начальной и конечной скоростью выглядит так:

\[ v = v_ <0>+ a \cdot t \]

Уравнение движения выглядит так:

\[ S = v_ <0>\cdot t + a \cdot \frac <2>\]

\[ x – x_ <0>= v_ <0>\cdot t + a \cdot \frac <2>\]

Кроме уравнения движения теперь есть связь между скоростями. Поэтому, решая задачи, в которых скорость увеличивается, используем систему, состоящую из двух таких уравнений:

\[ \large \boxed < \beginv = v_ <0>+ a \cdot t \\ S = v_ <0>\cdot t + a \cdot \frac <2>\end > \]

Примечание: Перемещение тела можно вычислить, не обладая информацией о времени движения, зная только начальную и конечную скорость тела и его ускорение. Об этом подробно написано в статье о формуле пути без времени.

Равнозамедленное движение

Пусть теперь тело движется по прямой и его скорость уменьшается. Рассмотрим перемещение тела.

Примечание: Движение равнозамедленное, значит, за одинаковые интервалы времени перемещение будет уменьшаться. При чем, на одну и ту же величину.

На рисунке 3 представлено изменение перемещения. Видно, что по сравнению с первой секундой, за вторую секунду перемещение уменьшается на небольшой отрезок, а за третью секунду – на два таких отрезка.

Примечание: Скорость будет уменьшаться, когда вектор ускорения направлен противоположно вектору скорости.

Пусть вектор скорости сонаправлен с осью, вдоль которой движется тело, а вектор ускорения – направлен против этой оси.

В начале и в конце пути скорости будут различаться.

Формулы можно записывать в скалярном виде, так как движение происходит вдоль одной прямой. Будем использовать знаки проекций векторов на ось.

Связь между скоростями выглядит так:

\[ v = v_ <0>— a \cdot t \]

А уравнение движения имеет такой вид:

\[ S = v_ <0>\cdot t — a \cdot \frac <2>\]

Заменив перемещение разностью конечной и начальной координат \( S = x — x_<0>\), получим:

\[ x – x_ <0>= v_ <0>\cdot t — a \cdot \frac <2>\]

Значит, когда скорость уменьшается, для решения задач нужно использовать систему из двух таких уравнений:

\[ \large \boxed < \beginv = v_ <0>— a \cdot t \\ S = v_ <0>\cdot t — a \cdot \frac <2>\end > \]

Расшифруем теперь, к примеру, словосочетание «прямолинейное равнозамедленное движение» — это движение по прямой, ускорение есть, оно не меняется. Скорость тела уменьшается, так как вектор ускорения направлен противоположно вектору скорости.

Примечание: Перемещение замедляющегося тела можно вычислить не используя время. Потому, что существует запись формулы пути без времени для случая, когда скорость тела уменьшается.

Скорость направлена против оси, а ускорение – по оси

Дополнительно рассмотрим случай, когда скорость и ускорение направлены в противоположные стороны, ускорение – по оси, а скорость – против оси (рис. 5).

А если тело продолжит движение, то начнет двигаться в обратную сторону и модуль его скорости начнет увеличиваться. Поэтому, такое движение будет равноускоренным и будет сонаправленным с вектором ускорения.

Когда скорость направлена против оси, ее проекция на ось отрицательна и в уравнение она войдет со знаком минус. Ускорение же, напротив, совпадает с направлением оси, поэтому, войдет в уравнение со знаком «+».

Запишем связь между скоростями:

\[ v = — v_ <0>+ a \cdot t \]

Уравнение движения для рассмотренного случая имеет такой вид:

\[ x – x_ <0>= — v_ <0>\cdot t + a \cdot \frac <2>\]

Для выбранного направления векторов в итоге получим такую систему уравнений:

\[ \large \boxed < \beginv = — v_ <0>+ a \cdot t \\ x – x_ <0>= — v_ <0>\cdot t + a \cdot \frac <2>\end > \]

Решая задачи на движение, иногда вычисляют мгновенную и среднюю скорости.

Термины «мгновенная скорость» и «средняя скорость» применяют для случаев, когда скорость изменяется – то есть, для неравномерного движения.

Мгновенная скорость

Мгновенная скорость – это скорость тела в какое-то мгновение. Когда скорость тела меняется, то в различные мгновения (моменты времени) скорости будут различаться.

Мгновенную скорость v вычисляют, вместо символа t подставляя в формулу интересующее нас время:

\[ v = v_ <0>\pm a \cdot t \]

Знак ускорения зависит его направления.

Средняя скорость

Средняя скорость тела – скорость, с которой нужно двигаться равномерно, чтобы пройти тот же путь за то же время.

Другими словами, средняя скорость помогает понять, с какой постоянной скоростью могло бы двигаться тело, чтобы пройти весь пройденный путь за такое же время.

Примечания:

  1. Выражение «скорость постоянная» можно заменить словами «неизменная», «одна и та же».
  2. Вместо фразы «за такое же время» в учебниках напишут «за выделенный интервал времени».
  3. Если скорость изменяется, появляется ускорение.

Формула для расчета средней скорости:

\( S_<\text<весь>>(\text<м>) \) ​– полный путь, пройденный телом;

\( t_<\text<полное>> \left( c \right)\) – время, за которое тело прошло весь путь.


источники:

http://sbp-program.ru/shkolnaya-fizika/ravnozamedlennoe-dvijenie.htm

http://formulki.ru/mehanika/ravnoperemennoe-dvizhenie