Уравнение движения самолета как твердого тела

УРАВНЕНИЯ ДВИЖЕНИЯ САМОЛЕТА

Применение общих принципов механики при изучении движения самолета имеет ряд особенностей, связанных с записью уравнений движения, выбором системы координат, методами упро­щения полученных уравнений и т. п. Эти особенности рассмотрены в данном разделе.

§ 1.1. ПРИМЕНЕНИЕ ОБЩИХ ПОЛОЖЕНИЙ МЕХАНИКИ К СОСТАВЛЕНИЮ УРАВНЕНИЙ ДВИЖЕНИЯ САМОЛЕТА

При изучении движения любого материального объекта необходимо прежде всего указать систему отсчета, относительно. которой наблюдается движение.

В механике. различают инерциальные и неинерциальные системы

Уравнения движения самолета относительно инерциальной си­стемы отсчета могут быть получены из основных теорем динамики твердого тела. Движение твердого тела описывается векторными; уравнениями ‘

dt

где Q и К — главный вектор и главный момент относительно центра

масс количества движения твердого тела; F и М — главный вектор и главный момент относительно центра масс внешних сил, действу­ющих иа твердое тело. ^

Самолет не является твердым телом и должен рассматриваться как система переменного состава. Для нее уравнения движения имеют вид уравнений (1.1) движения твёрдого тела, если представить* что в данный момент система затвердела, и к полученному фиктивному твердому телу приложены внешние силы, действующие на систему, реактивные силы, внутренние силы Кориолиса и вариационные силы (принцип затвердевания).

Внутренние кориолисовы силы инерции возникают из-за отно­сительного движения масс внутри твердой оболочки тела при ее вра­щении. Вариационные силы обусловлены нестационарностью дви­жения масс внутри твердой оболочки тела.

Принято объединять реактивную силу, статические силы от разности атмосферного давления и давления газов во входном ce­ll

чении воздухозаборника и в выходном сечении сопла и вариацион­ные силы, поскольку они непосредственно связаны с процессами, происходящими в двигательной установке. Полученную таким об­разом силу называют тягой двигателя и обозначают Р.

Внешние силы, не связанные с работой двигательной установки

и не включенные в тягу Р, и момент этих сил обозначим соответст-

венно FBH и МВИ.

С учетом принятого объединения сил векторные уравнения ко­личества движения и момента количества движения самолета в инер­циальной системе отсчета имеют вид

(1.2)

где Q и К — количество движения и момент количества движения относительно центра масс самолета как затвердевшей системы пере-

менного состава; Fm и Мш — главный вектор и главный момент

внешних сил, не связанных с работой двигательной установки; —► —>■ .

Р и Мр — тяга двигателей и момент тяги двигателей относительно

центра масс; FK0P и МКОр — главный вектор и главный момент относительно центра масс кориолисовых сил инерции.

Уравнение (1.2), Описывающее поступательное движение центра масс самолета, часто называют уравнением сил, а (1.3) описывающее вращательное или угловое движение вокруг центра масс — урав­нением моментов.

Пренебрегая скоростью и ускорением перемещения центра масс самолета относительно его корпуса, вычисляем производную от количества движения по времени согласно принципу затвердевания, как в случае твердого тела с постоянной массой где т — масса самолета; Vo — абсолютная скорость его центра масс.

Следует заметить, что в большинстве задач аэромеханики самолета можно пренебречь влиянием кориолисовых и вариационных сил и моментов, связанных с движением масс топлива и газа внутри са­молета. Поэтому в дальнейшем уравнения (1.2) и (1.3) будем запи­сывать в упрощенном виде:

(1.5)

Если рассматривают движение самолета относительно неинер­циальной системы отсчета, уравнения (1.5) и (1.6) должны быть из­менены. В этом случае при вычислении количества движения и

момента количества движения самолета рассматриваются скорости

V и сог относительно принятой системы отсчета. Правые части

уравнений (1.5) и (1.6) дополняются переносными Fe и кориолисо-

выми FK силами инерции и моментами этих сил Ме и Мк, связан­ными с переносным движением неинерциальной системы отсчета.

Таким образом, векторные уравнения движения самолета от­носительно неинерциальной системы отсчета получают, вид

В практических исследованиях векторные уравнения движения заменяют эквивалентной системой дифференциальных уравнений, являющихся проекциями векторных уравнений (1.5), (1.6) или (1.7), (1.8) на оси выбранной прямоугольной системы координат OXYZ. При этом соотношения, полученные Из векторного уравнения количества движения (уравнения сил), описывают поступательное движение центра масс самолета, а из уравнения момента количества движения (уравнения моментов) — вращательное, или угловое дви­жение вокруг центра масс.

Систему координат OXYZ, используемую для записи векторных уравнений движения в проекциях, не сЛедует смешивать с системой координат О°Х‘)У020, используемрй Для отсчета векторов ускоре­ний, скоростей и перемещений’ (системой отсчета) рис. 1.1. Для системы OXYZ начало координат моікно помещать в произвольную, в том числе подвижную точку О, Нто нр сказывается на величине

проекций. Проекции некоторого вектора а (определенного относи­тельно системы отсчетаО^°К°20) на оси системы. OXYZ зависят только

от направления этих осей.* Проекции производной вектора а По вре­мени зависят, кроме того, от составляющих угловой сКорОсти а>хиг системы координат OXYZ относительно той же системы отсчета 0°X°Y°Z°:

Здесь ах, ау, аг — проекции а на оси системы OXYZ ах, ау, а1 —

их производные; юж, ау и coz — проекции угловой скорости

ЛЕКЦИЯ 3 ТЕМА: УРАВНЕНИЯ ДВИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА КАК ТВЕРДОГО ТЕЛА. ПРОДОЛЬНОЕ И БОКОВОЕ ДВИЖЕНИЕ

    Евгений Перхуров 5 лет назад Просмотров:

1 1 Направления подготовки: Авионика Аэронавигация Системная инженерия Бортовые системы управления Дисциплина: Курс, семестр, уч. год: 3, весенний, 11/1 Кафедра: 31 СУЛА Руководитель обучения: ассистент Копысов Олег Эдуардович ЛЕКЦИЯ 3 ТЕМА: УРАВНЕНИЯ ДВИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА КАК ТВЕРДОГО ТЕЛА. ПРОДОЛЬНОЕ И БОКОВОЕ ДВИЖЕНИЕ Движение ЛА, как твѐрдого тела в связанной системе координат описывается уравнениями Эйлера (шесть нелинейных дифференциальных уравнений второго порядка). Силы и моменты, входящие в эти уравнения, сложным образом зависят от высоты, скорости и режима полѐта и меняются во времени, г. к. изменяются условия полѐта, например из-за изменения массы и момента инерции ЛА в результате расхода топлива или сброса груза. При аналитическом исследовании процессов управления ЛА его уравнения движения, как правило, упрощают, рассматривая два независимые друг от друга движения: продольное и боковое. К продольному относят поступательные движения ЛА вдоль осей ОХ и ОY и вращательное движение вокруг оси O. К боковому движению относят поступательное вдоль оси O и вращательные движения вокруг осей ОХ и ОY. Продольное движение. Обобщенная математическая модель При продольном движении ЛА вектор V линейной скорости его центра масс находится в вертикальной плоскости. Внешние силы, действующие на ЛА: Р сила тяги двигателей, вектор которой направлен вдоль оси ОХ: Х а сила лобового сопротивления, вектор которой направлен против вектора V, т.е. в отрицательную сторону оси ОХ а Y а подъѐмная сила, вектор которой перпендикулярен вектору V mg вес ЛА (m масса ЛА, g ускорение свободного падения). Вращение ЛА в плоскости

2 Х а Y а возможно под действием момента М, действующего вокруг оси O а, который называется аэродинамическим моментом тангажа. В соответствии с рис. 3.1 имеют место кинематические соотношения:, (3.1) где ϑ угол тангажа θ угол наклона траектории движения центра масс (ЦМ) ЛА ω угловая скорость тангажа. Рисунок 3.1 Внешние силы, действующие на ЛА в продольном движении Вращательное движение ЛА вокруг оси O а описывается уравнением: I, (3.) где I момент инерции ЛА относительно оси O а М момент аэродинамических сил, который можно представить в виде: mba S V, (3.3) где т коэффициент момента b а — хорда крыла ρ плотность воздуха S площадь крыльев. Коэффициент т можно представлять состоящим из суммы трех слагаемых, два из которых зависят от статических параметров (α, V, δ в ) и определяют статический момент, а третий от динамических параметров ( ), и определяет демпфирующий момент.

3 3 Спроектируем силы, действующие на ЛА, на касательную к траектории полѐта (ось X) и на нормаль к ней (ось Y). Сумма проекций сил на касательную к траектории: dv m mv P cos X a mg sin. dt (3.4) При определении проекций сил на нормаль к траектории нужно иметь в виду, что при движении ЛА по искривленной траектории с радиусом кривизны r, на него действует центробежная сила инерции mv траектории), a ds = Vdt, то / mv mv mv d r. Так как r = ds/dθ (s длина дуги mv mv. r ds / d Vdt / d dt Следовательно, сумма проекций сил на нормаль к траектории: mv Y Psin mg cos. a (3.5) Сила тяги Р зависит от параметров двигателя, от внешних условий, характеризуемых скоростью полѐта V, высотой полѐта Н и параметра управления двигателем δ р, т. е. в общем виде Р = Р(V, Н, δ р ). Аэродинамические силы Х а и Y а зависят от угла атаки α, скорости полѐта V, плотности воздуха ρ и угла отклонения руля высоты δ в. Так как угол δ в практически не влияет на величины Х а и Y а, то этим влиянием пренебрегают и представляют их обычно в виде: где X a CxaS V Ya CyaS V, (3.6) C xa, C ya коэффициенты лобового сопротивления и подъемной силы, зависящие от угла атаки и скорости полета. Система нелинейных дифференциальных уравнений (3.), (3.4), (3.5) с учѐтом (3.1), (3.3), (3.6) является математической моделью продольного движения ЛА. Известно, что для пилотируемых ЛА самолетной схемы практически для всех компоновок и большинства режимов полета, собственное движение ЛА состоит из двух колебательных движений, отличающихся частотой и степенью затухания. Эти движения называются короткопериодическими и длиннопериодическими или фуго-

4 идными. Причиной возникновения короткопериодических движений является нарушение равновесия моментов вокруг оси O a, что приводит к вращению ЛА относительно ЦМ и изменению углов α и ϑ. Скорость невозмущѐнного линейного движения при этом практически не изменяется. Причиной возникновения длиннопериодических движений является нарушение внешних сил, действующих в продольной плоскости симметрии ЛА, следствием чего является изменение скорости его полета. 4 Линеаризованные уравнения продольного движения ЛА Применяя к уравнениям (3.), (3.4), (3.5) метод малых возмущений, могут быть получены линейные уравнения продольного движения ЛА. Предположим, что на исследуемом участке полета невозмущенное движение ЛА характеризуется постоянными силами X, Y, P, и параметрами V, α, ϑ, θ, H и ω z =, а параметры управления δ В, δ р также постоянны. Если исследуется участок полета, на котором параметры движения существенно меняются, его разбивают на несколько участков, на которых параметра движения можно считать постоянными. Уравнения невозмущѐнного движения ЛА на участке с постоянными параметрами следуют из уравнений (3.), (3.4), (3.5): P cos X mg sin Y P sin mg cos. Из первых двух уравнений системы следует отношение: P cos X tg, P sin Y (3.7) из которого можно заключить, что при P cos X ЛА летит горизонтально, при P cos X набирает высоту ( ), а при P cos X уменьшает высоту ( ).

5 Если в некоторый момент времени параметры движения и управления изменились на величины V. то соответствующие параметры P возмущѐнного движения принимают вид: V V V P P P. При изучении продольного углового движения ЛА в области малых изменений параметров движения первое уравнение системы (3.7) из рассмотрения можно исключить, т.к. оно представляет сумму проекций сил на ось ОХ a (рис. 3.1), не влияющих на угловое движение ЛА. При линеаризации второго уравнения системы (3.7) полагают, что проекция силы тяжести на ось OY a не оказывает влияния на угловое движение ЛА, и этой составляющей можно пренебречь. В результате известных процедур линеаризации могут быть получены простейшие уравнения продольного движения ЛА: mv Y I (3.8), где постоянные коэффициенты соответствуют исходному невозмущѐнному движению и определяются следующим образом: Y Y ( Pcos ) ( ) ( ) ( ). 5

6 Рассмотрим аэродинамические моменты в уравнениях (3.8), определяющих короткопериодическое движение ЛА. При >, что обычно имеет место, момент называется моментом продольной статической устойчивости, который является следствием воздействия набегающего воздушного потока на хвостовое горизонтальное оперение, от размеров и формы которого главным образом и зависит. При невозмущѐнном движении ЛА угол атаки и аэродинамический момент относительно поперечной оси отсутствует. Восходящие или нисходящие потоки воздуха приводят к изменению угла атаки на величину например изменения центровки ЛА. Величина, который может измениться и из-за других причин, приводит к увеличению подъѐмной силы крыльев, следствием чего является изменение высоты полѐта ЛА, и к увеличению на Y подъѐмной силы горизонтального хвостового оперения, которая приложена в центре давления (ЦД) на плече L ГО, что и создаѐт момент Y L ГО, возвращающий ЛА к прежнему углу атаки, т.е. (рис. 3.). Таким образом, момент обеспечивает продольную устойчивость ЛА, если центр давления аэродинамических сил находится за центром масс ЛА в сторону хвостового оперения. Если ЦМ и ЦД совпадают, то 6 = (нейтральный ЛА), если ЦД находится впереди ЦМ, то 7 еѐ увеличение средствами аэродинамики приводит к увеличению воздействия на ЛА аэродинамических возмущений. 7 Рисунок 3. Определение момента продольной статической устойчивости Рисунок 3.3 Определение момента демпфирования тангажа Управляющий момент появляется при отклонении руля высоты хвостового горизонтального оперения, вследствие чего изменяется его угол атаки. Физическая картина воздействия этого момента на ЛА аналогична влиянию момента продольной статической устойчивости (статической устойчивости тангажа). На руль высоты, отклонѐнный от нейтрального положения на угол, действует аэродинамическая сила Y РВ, направленная перпендикулярно набегающему потоку воздуха и приложенная в ЦД рулевой поверхности (рис. 3.4), который, как правило, не совпадает с ее осью вращения (ОВ). Сила Y РВ относительно оси вращения создает так называемый шарнирный момент, который является основным нагрузочным моментом для привода, осуществляющего разворот руля высоты. В точке, соответствующей ОВ, можно приложить две противоположно направленных силы Y РВ, равных по модулю Y РВ.

8 8 Рисунок 3.4 Определение управляющего момента по высоте Тогда можно записать равенство, Y ‘ L Y ‘ l Y L из которого P P P P следует, что управляющий момент, приложенный к ЛА, состоит из суммы шарнирного момента, действующего относительно ОВ руля и момента силы Y РВ на плече L относительно ЦМ ЛА. Вернемся к уравнениям системы (3.8) и перепишем их в переменных приращений углов тангажа где и атаки : I mv ( ) Y F. Y (3.9), F Y возмущающие момент и сипа, действующие соответственно относительно оси O а и вдоль оси OY а. Уравнения системы (3.9) перепишем в виде: где a1 a a3 a a a a a 5 a F, 6 Y Y. a I I I 4 1, a 1 5, a6. I mv mv (3.1) (3.11) Постоянные коэффициенты в (3.11), соответствующие невозмущѐнному движению, определяются следующим образом:

9 m qsb m qsl m qsb Y c, yqs (3.1) где q V / скоростной напор b хорда крыла. 9 Боковое движение Аэродинамические силы и моменты, действующие на ЛА Боковое движение ЛА включает вращение вокруг продольной оси ОХ, нормальной оси ОY и линейное перемещение вдоль оси O. Рассмотрим основные аэродинамические силы и моменты, действующие на ЛА (рис. 3.5). Предположим, что вследствие какого-либо возмущения ЛА относительно нормальной системы координат ОХ g Y g g получил крен на угол γ, после чего возмущение исчезло. Угол γ определяет положение связанной системы координат ОХY, причѐм т. О совпадает с центром масс ЛА самолѐтной схемы. Плоскости крыльев относительно плоскости Х располагаются под углом φ. При положительном крене (на правое крыло) вдоль оси O появляется составляющая mg sin силы веса ЛА, под действием которой возникает скольжение ЛА со скоростью V VXtg ( V X продольная составляющая скорости V, β угол скольжения). Вследствие скольжения нарушается симметрия обтекания крыльев воздушным потоком. Для иллюстрации указанного обстоятельства на концах правого и левого крыльев построены треугольники воздушных скоростей ( V к составляющая скорости V набегающего воздушного потока вдоль крыльев V I — составляющая, перпендикулярная вектору скорости V ), из которых следует VI V tg. Так как скорости V 1 на правом и левом крыльях направлены в разные стороны, происходит изменение их углов атаки, что иллюстрируется построением треугольников скоростей на векторах скоростей V X и V I, из которых следует V / V. При этом на правом крыле имеет место положительное приращение I X угла атаки (+ ), а на другом отрицательное ( ).

10 1 Рисунок 3.5 Определение моментов статической устойчивости крена и пути Соответственно подъемная сила правого крыла увеличится на ΔY, а левого уменьшится на ΔY. В результате относительно оси ОХ образуется момент поперечной статической устойчивости или момент статической устойчивости крена, первопричиной которого является скольжение и который обозначается в виде, х М где ( х ) х. Очевидно, что этот момент тем больше, чем больше изменение угла, величина которого в соответствии с приведенными выше соотношениями, может быть представлена в виде: VI Vtg Vxtgtg, V V V x x x откуда следует, что чем больше угол φ, тем больше момент поперечной устойчивости. Стреловидность крыльев в плане также приводит к появлению момента поперечной устойчивости. Изменение углов атаки приводит к изменению сил лобового сопротивления на крыльях: на правом крыле эта сила увеличится на величину ΔХ, а на левом умень-

11 шится на ΔХ. С появлением угла β возникает также сила Δ на вертикальном оперении. Следствием указанных сил является возникновение флюгерного момента, или момента статической устойчивости пути, который старается развернуть ЛА в сторону набегающего воздушного потока. Этот момент обеспечивает устойчивость по углу скольжения, стремясь так развернуть ЛА, чтобы установился угол скольжения, имевший место до возмущения. Момент статической устойчивости пути обозначается в виде, где ( М y ) y y. 11 Используя литературные источники, найти графические зависимости коэффициента продольного момента от угла атаки и отклонения руля высоты, зависимость коэффициентов С ха, С уа от угла атаки. Термины для занесения в тезаурус: продольное движение, боковое движение, коэффициент лобового сопротивления, коэффициент подъемной силы, невозмущенное движение летательного аппарата, момент статической устойчивости, шарнирный момент.

ОБЩИЕ СВЕДЕНИЯ ПО ДИНАМИКЕ ПОЛЕТА ВС

Динамика полета — это наука о законах движения летательных аппаратов (в данном случае — самолета). Основная задача динамики полета- выявление закона движения самолета под действием заданных сил и моментов (или определение системы сил и моментов, необходимой для реализации заданного закона движения). Другой весьма важной задачей динамики полета является определение закона движения самолета, обеспечивающего экстремальное (максимальное или минимальное) значение какого-либо параметра (максимальной дальности полета, минимального времени выхода заданную точку и т. п.). При изучении Курс основ динамики полета обычно делят на два раздела. В первом разделе изучают законы движения центра тяжести самолета, т. е. законы движения самолета как материальной точки. В этом случае силы, действующие на самолет, приложены в центре тяжести его, а моменты внешних сил уравновешены. Во втором разделе рассматривают движение самолета как твердого тела. При этом изучают общий случай движения тела с учетом, как перемещения центра тяжести, так и вращения относительно его под действием моментов внешних сил. В этом разделе исследуют моменты, приложенные к самолету, и характер движения его. Основные положения динамики полета самолета как науки были разработаны в работах Н. Е. Жуковского по аэродинамике и авиации. В работе «О парении птиц»(1891 г.) он анализирует условия выполнения полета и различные траектории движения при различных положениях центра тяжести. Среди рассмотренных траекторий была траектория вида «мертвой петли». Практические выводы, сделанные Н. Е. Жуковским, подтвердил П. Н. Нестеров, впервые в мире совершивший петлю в вертикальной плоскости («петля Нестерова»). В разработке методов расчета неустановившихся движений самолета большое значение имели работы одного из учеников Н. Е. Жуковского В. П. Ветчинкина «Динамика полета самолета» (1933 г.), а также В. С. Пышнова, А. Н. Журавченко, Б. Т. Горощенко и других советских ученых. Решению проблем динамики переменной массы посвящены труды К. Э. Циолковского и И. В. Мещерского.

СИЛЫ, ДЕЙСТВУЮЩИЕ НА САМОЛЕТ В ПОЛЕТЕ.ВИДЫ ДВИЖЕНИЯ САМОЛЕТА

Величина и направление скорости движения самолета зависят от величины и направления внешних сил, действующих на него. Эти силы являются результатом воздействия на самолет воздушной среды, массы воздуха, отбрасываемой двигателем, и массы Земли. В результате взаимодействия самолета с воздушной средой появляются аэродинамические силы. Воздух, отбрасываемый двигателем, вызывает появление силы тяги. Сила веса самолета есть результат действия на него массы Земли.

Таким образом, на летящий самолет действуют силы веса G, аэродинамическая R и тяги Р двигателя (см. рисунок ниже). Сила веса G приложена в центре тяжести самолета и направлена по радиусу к центру тяжести Земли. Аэродинамическая сила R приложена в центре давления. В общем случае она может быть заменена тремя составляющими: подъемной силой Y, силой лобового сопротивления К и боковой силой Z. Сила Y направлена перпендикулярно к вектору скорости, сила X — по касательной к траектории движения, а боковая сила Z — по нормали к плоскости сил Y и X. Силы Y и X лежат в плоскости симметрии самолета.

Сила тяги двигателя Р, как правило, действует в плоскости симметрии самолета. Она может иметь две составляющие: Рх — проекция на касательную к траектории движения и Ру — проекция на нормаль к траектории (см.рисунок ниже).

Ввиду малого значения составляющей Ру принимают, что сила тяги Р направлена по касательной к траектории движения самолета.

В первом разделе динамики полета принимают моменты всех сил относительно центра тяжести самолета уравновешенными. Поэтому все внешние силы можно приложить в центре тяжести самолета. В дальнейшем будут рассмотрены различные виды движений самолета под действием внешних сил R, Р и G, приложенных в его центре тяжести. Все силы, направленные параллельно вектору скорости, называются продольными, а перпендикулярно к вектору скорости — поперечными. Сила веса G может быть или продольной (отвесное пикирование), или поперечной (горизонтальный полет),или иметь продольные и поперечные составляющие (планирование, подъем самолета). Сила тяги может тоже иметь как продольную, так и поперечную составляющую (Рх и Ру).В каждый момент самолет при движении имеет вполне определенные величину и направление скорости. Если направление скорости со временем не изменяется, то полет самолета будет прямолинейным, в противном случае — криволинейным. Если при этом сохраняется величина скорости, то движение самолета будет равномерным. При увеличении скорости движение самолета будет ускоренным, при уменьшении — замедленным. Движение самолета с положительным ускорением называется разгоном, а с отрицательным ускорением — торможением. Следует заметить, что величина и направление скорости еще не дают полной характеристики полета. Поэтому чаще полет самолета характеризуется понятием «режим полета». Под режимом полета самолета понимают не только величину и направление скорости, но и высоту полета, характер траектории, ускорение и другие параметры движения. Ранее указывалось, что вид движения самолета определяется величиной и направлением равнодействующих продольных и поперечных сил. Если равнодействующая продольных сил направлена вперед, то движение самолета ускоренное. Сама сила является ускоряющей. Если эта сила направлена назад, то движение самолета будет замедленным (торможение) Таким образом, продольные силы влияют на изменение величины скорости движения самолета

Так как равнодействующая поперечных сил R направлена вдоль радиуса кривизны траектории, то она является центростремительной силой. Эта сила искривляет траекторию движения в сторону своего действия. Векторы скорости V и поперечной силы Rп могут лежать в одной плоскости (плоскость криволинейного

движения) и в разных плоскостях. В последнем случае траектория движения будет пространственной (спираль, боевой разворот и другие виды движения).

УРАВНЕНИЯ ДВИЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ САМОЛЕТА

Из механики известно, что движение свободного тела в пространстве можно представить состоящим из поступательного движения его центра тяжести и вращения тела относительно центра тяжести. В первом разделе динамики самолета рассматривается только движение центра тяжести. Поэтому уравнения, связывающие внешние силы с ускорениями, которые они сообщают самолету, составляются только для движения его центра тяжести (центра масс). Эти уравнения назвали уравнениями движения центра тяжести самолета. Они используются для определения количественных характеристик полета самолета и их качественного анализа.

Любое движение центра тяжести самолета можно разложить на движения его по трем взаимно перпендикулярным осям. Так как движение самолета рассматривается относительно воздушной среды, то уравнения движения центра тяжести изучаются относительно так называемой поточной или скоростной системы координат. За начало координат в этой системе принимают центр тяжести самолета (точка О). Ось Ох направляют по вектору скорости (по касательной к траектории движения). Ось Оу располагают в вертикальной плоскости перпендикулярно к вектору скорости, а ось Oz — перпендикулярно к плоскости хОу. Положительное направление осей показано на рисунке.

Система координат подвижная, перемещается вместе с самолетом, однако система не позволяет построить траекторию движения, а отражает лишь связь ускорения с внешними силами. При рассмотрении вопросов, связанных с вращением самолета относительно его центра тяжести, удобнее пользоваться так называемой связанной системой координат. Эта система позволяет любое вращательное движение заменить вращением относительно трех взаимно перпендикулярных осей, проходящих через центр тяжести (см. рисунок):

— продольная ось самолета Ох, расположенная в плоскости симметрии самолета параллельно корневой (центральной) хорде крыла;

— путевая, или вертикальная, ось самолета Оу, расположенная в плоскости симметрии самолета и перпендикулярная к продольной оси;

— поперечная ось самолета Oz, перпендикулярная к плоскости хОу.

Моменты внешних сил относительно оси Ох называются поперечными Мх, относительно оси Оz – путевыми Му и относительно оси Oz — продольными Mz.

Угол γ у поворота самолета относительно оси Ох называется углом крена. Угол β поворота самолета относительно оси Оу называется углом рыскания. И, наконец, угол поворота самолета относительно оси Oz называется углом атаки. Положительное направление вращения определяется по правилу «буравчика», ввинчиваемого по положительному направлению той или иной оси (по направлению движения часовой стрелки). Связанная система координат используется при изучении вопросов балансировки, устойчивости и управляемости самолета. Выразим уравнения движения центра тяжести самолета в скоростной (поточной) системе координат. Обозначим проекции равнодействующей внешних сил на оси координат соответственно через Fx, Fy и, проекции ускорений — через ji, jy и jz и массу самолета через mс-та . Тогда второе уравнение механики F= mс-та j проекциях на оси координат выразится в следующем виде:

Ускорение , направленное по касательной к траектории движения, называют тангенциальным или продольным. Оно характеризует только изменение величины скорости. При > 0 происходит разгон самолета, при Х), или замедленным (Р 2 ,

r — радиус кривизны траектории, м.

Предыдущее равенство можно преобразовать в следующее:

,

Из этой формулы следует, что при больших скоростях в горизонтальном полете подъемная сила меньше веса самолета. При скорости V = подъемная сила горизонтального полета равна нулю. Эта скорость получила название первой космической скорости. Самолет в данном случае будет двигаться по траектории искусственного спутника Земли. Первая космическая скорость для земных условий составляет 7900 м/сек. Если полет самолета происходит с небольшими скоростями, подъемная сила мало отличается от веса самолета. Так, например, при скорости полета V = 2500 км/час подъемная сила меньше веса самолета всего на 1%. Это позволяет при анализе горизонтального полета современных самолетов считать, что Y=G.

Потребная скорость горизонтального полета

При горизонтальном полете на данном угле атаки должно быть выполнено равенство Y=G. Известно, что каждому углу атаки соответствует вполне определенное значение cy. Для обеспечения равенства Y = G данному углу атаки должна соответствовать и вполне определенная величина скорости на заданной высоте полета. Скорость полета, необходимая для создания подъемной силы, равной весу самолета на данном угле атаки, называется п о т р е б н о й с к о р о с т ь ю г о р и з о н т а л ь н о г о п о л е т а.

Потребная скорость горизонтального полета зависит от угла атаки полета, т. е. су, от высоты полета, т. е. , и от удельной нагрузки на крыло . С ростом углов атаки до α = αкр увеличивается коэффициент су. Потребная скорость горизонтального полета при этом уменьшается. На критическом угле атаки, при котором cу = cуmax потребная скорость горизонтального полета достигает минимального значения. Эта скорость получила название м и н и м а л ь н о т е о р е т и ч е с к о й .

Практически полет на критических углах атаки не производится. При полете на α = αкр из-за сильного срыва воздушного потока с крыла, возможно сваливание самолета на крыло или на нос. Приближение к критическому углу атаки обнаруживается в полете по тряске самолета. После начала тряски угол атаки увеличивать опасно.

С целью обеспечения безопасности полета наибольшая допустимая величина су должна быть меньше cуmax. Скорость полета, когда коэффициент подъемной силы cу равен коэффициенту подъемной силы при тряске cу доп называется м и н и м а л ь н о д о п у с т и м о й.

За минимально допустимую скорость иногда принимают так называемую с к о р о с т ь с в а л и в а н и я или с р ы в а . Скорость, при которой происходит непроизвольное сваливание самолета на крыло или на нос, называется скоростью сваливания или скоростью срыва.

Так же, чем больше удельная нагрузка на крыло, тем больше потребная скорость горизонтального полета. У современных самолетов несущие способности крыльев малые, а удельные нагрузки на крыло повышенные (500-600 кГ/м 2 ). Поэтому потребные минимальные скорости горизонтального полета их имеют большое значение (200-300 км/час). С подъемом на высоту из-за

уменьшения массовой плотности воздуха ρ потребная скорость горизонтального полета увеличивается.

Потребная тяга горизонтального полета

Из условия постоянства скорости в горизонтальном полете следует, что должно быть равенство силы тяги Р и силы лобового сопротивления X.

Тяга, необходимая для уравновешивания лобового сопротивления самолета при полете на данной скорости (угле атаки), называется п о т р е б н о й т я г о й г о р и з о н т а л ь н о г о п о л е т а Рг.п..

Выясним факторы, влияющие на потребную тягу горизонтального полета. Каждому углу атаки полета соответствует вполне определенное аэродинамическое качество самолета.

Максимальное качество самолета соответствует наивыгоднейшему углу атаки. На этом угле атаки потребная тяга минимальна. На меньших и больших углах атаки потребная тяга будет больше. Так как каждому углу атаки соответствует определенная скорость (число М), то потребная тяга зависит от скорости (числа М) полета.

Разберем характер зависимости потребной тяги горизонтального полета от скорости для определенного веса самолета и высоты полета. С ростом скорости полета угол атаки становится меньше. Качество самолета до α = αнаив увеличивается, а на больших углах атаки уменьшается. Поэтому потребная тяга с ростом скорости, до скорости, соответствующей α = αнаив уменьшается, а при больших скоростях увеличивается. На рисунке представлен график, показывающий зависимость потребной тяги горизонтального полета от скорости, который назвали кривой Жуковского. Потребная тяга горизонтального полета зависит так­же от веса самолета и высоты полета. При полете на данном угле атаки с ростом веса самолета потребная тяга увеличивается.

Физически это означает, что для горизонтального полета более тяжелого самолета требуется большая подъемная сила. Это достигается увеличением потребной скорости. При увеличении последней растет сила лобового сопротивления X и как результат потребная тяга горизонтального полета. Это приводит к смещению всех точек кривой потребной тяги в сторону больших скоростей и тяг.

С увеличением высоты при постоянном угле атаки потребная скорость горизонтального полета увеличивается, а потребная тяга остается постоянной.

С подъемом на высоту вследствие уменьшения скорости звука увеличивается число М. Оно может оказаться больше Мкр. При полетах на М > Мкр возникает волновой кризис, появляется волновое сопротивление. Аэродинамическое качество самолета при том же су будет уменьшаться. Это приводит к интенсивному росту потребной тяги на V > Vкр.

ВЗЛЕТ И ПОСАДКА

Динамика полета как раздел аэромеханики рассматривает вопросы, связанные с реализацией различных траекторий полета самолета, которые определяются техническим заданием на проектирование. Для самолетов различного назначения различна и так называемая номенклатура режимов полета, однако для всех самолетов общими являются режимы взлета и посадки.

Взлет — это ускоренное движение самолета с момента страгивания на линии старта до момента одновременного достижения регламентируемых в техническом задании высоты и безопасной скорости взлета, обеспечивающих безопасность полета на участке начального набора высоты.

В конце разбега самолет достигает скорости отрыва, при которой можно безопасно оторвать самолет от земли и продолжать взлет. На высоте Н = 400 м уже должны быть убраны шасси, взлетно-посадочная механизация, двигатели переведены на режим крейсерского полета и самолет начинает полет по маршруту.

Взлет самолета состоит из следующих этапов: разбега, отрыва и разгона с подъемом.

Разбегом самолета называется ускоренное движение его по земле (воде), необходимое для набора скорости, при которой происходит безопасный отрыв. Разбег является равноускоренным движением самолета.

Минимальная скорость безопасного отделения самолета от земли (воды) называется скоростью отрыва.

Разгон с подъемом есть ускоренный прямолинейный полет с малым углом подъема до безопасной высоты 25 м.

Момент отделения самолета от земли (воды) называют отрывом

Расстояние от начала разбега до набора высоты 25 м называется взлетной дистанцией.

Расстояние от начала разбега до отрыва называется длиной разбега. Она определяет длину взлетно-посадочной полосы.

Основными характеристиками взлета являются

· длина взлетной дистанции.

На самолет при разбеге действуют сила веса G, аэродинамические силы X и Y, тяга силовой установки Р.


источники:

http://docplayer.com/30363550-Lekciya-3-tema-uravneniya-dvizheniya-letatelnogo-apparata-kak-tverdogo-tela-prodolnoe-i-bokovoe-dvizhenie.html

http://allrefrs.ru/3-35755.html