Уравнение движения системы материальных точек закон сохранения импульса

Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

Теория к заданию 3 из ЕГЭ по физике

Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

где, $<υ_1>↖<→>$ и $<υ_2>↖<→>$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

Здесь $↖<→>—↖<→>=∆p↖<→>$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

Выражение $∆p↖<→>=F↖<→>∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы. Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖<→>=F↖<→>∆t$ называется уравнением движения тела. Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_<12>$ и $F_<21>$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы $↖<→>$ и $↖<→>$. Для каждого тела можно записать уравнение $∆p↖<→>=F↖<→>∆t$. Сложив левые и правые части этих уравнений, получим:

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — $<∆p_<сист>>↖<→>$.С учетом этого равенство $<∆p_1>↖<→>+<∆p_2>↖<→>=(↖<→>+↖<→>)∆t$ можно записать:

где $F↖<→>$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Закон сохранения импульса

Из уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_

υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_<газ>·υ_<газ>$ выброшенных газов:

Отсюда следует, что скорость ракеты

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=(>/)·υ_<газ>$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

где $F$ — сила, действующая на тело, $∆r↖<→>$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖<→>$ и $∆r↖<→>$.

Работа — величина скалярная. Если $α 0$, а если $90° А_п$, КПД всегда меньше $1$ (или $

Законы изменения (сохранения) импульса и энергии для системы материальных точек

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На прошлом уроке мы вывели второй закон Ньютона для систем материальных точек. На этом уроке мы узнаем, что одна из форм записи этого закона является законом сохранения импульса для систем материальных точек. Также введём понятие энергии системы материальных точек и рассмотрим закон сохранения (изменения) энергии такой системы.

Закон сохранения импульса

Для вывода закона сохранения импульса рассмотрим некоторые понятия.

Механической системой называется совокупность материальных точек (тел), рассматриваемых как единое целое.

Внутренние силы – силы взаимодействия между материальными точками механической системы.

Внешние силы– силы, с которыми на материальные точки системы действуют внешние тела.

Замкнутой (изолированной) системой называется механическая система тел, на которую не действуют внешние силы.

Если имеется механическая система, состоящая из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т.е. геометрическая сумма внутренних сил равна нулю.

Вывод закона сохранения импульса

Рассмотрим механическую систему, состоящую из n тел, масса и скорости которых, соответственно, равны m1 , m2 , …, mnи.

Пусть: –равнодействующие внутренних сил,

действующих на каждое из этих тел, а

– равнодействующие внешних сил.

Запишем второй закон Ньютона для каждого из n тел механической системы:

Складывая эти уравнения почленно, получим:

, но, так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю , то:

,

но т.к.

, или ,

где импульс системы.

Таким образом, производная по времени от импульса механической системы равна геометрической сумме внешних сил, действующих на систему. В случае отсутствия внешних сил – а именно так и есть в замкнутой механической системе производная по времени от импульса системы равна нулю. Это означает, что импульс замкнутой механической системы не изменяется, т.е. он постоянен:

или

Последнее выражение и является законом сохранения импульса в замкнутой механической системе.

6. Центр масс системы материальных точек

и – масса и радиус-вектор i-той материальной точки; — n – число материальных точек в системе; — – масса системы.

Центром масс (центр инерции) системы материальных точек является воображаемая точка С, положение которой характеризует распределение массы этой системы. Ее радиус-вектор определяется:

, где:

Частный случай: Если радиус-векторы проведены из центра масс С (обозначим их ), то , следовательно .

Таким образом, центр масс – это геометрическая точка, для которой сумма произведений масс всех материальных точек, образующих механическую систему, на их радиусы-векторы, проведенные из этой точки, равны нулю.

В случае непрерывного распределения массы в системе, радиус-вектор центра масс:

Закон движения центра масс:

Таким образом, центр инерции механической системы движется как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная главному вектору внешних сил, приложенных к системе.

Если рассматриваемая система – твердое тело, которое движется поступательно, то скорости vi всех точек тела и его центра инерции vc одинаковы и равны v скорости тела; соответственно ускорение тела а = ас , и основное уравнение динамики имеет вид:

Этот закон показывает, что для изменения скорости ц.м. системы необходимо, чтобы на систему подействовала внешняя сила. Внутренние силы взаимодействия частей системы могут вызвать изменение скоростей этих частей (например, разрыв снаряда на несколько осколков), но они не могут повлиять на суммарный импульс системы и скорость ее центра масс.

Из закона движения центра масс следует, что скорость ц.м. замкнутой механической системы не изменяется с течением времени. Т.е. центр масс замкнутой системы либо покоится, либо движется с постоянной скоростью относительно инерциальной системы отсчета.

Строго говоря, замкнутых систем в природе нет, хотя бы уже потому, что на все тела действуют силы тяготения. Однако в практических целях для простоты расчетов некоторые механические системы можно считать замкнутыми, если силы взаимодействия частей такой системы во много раз больше внешних сил.

При небольших допущениях можно считать Солнечную систему замкнутой.

7. Движение тел переменной массы. Формула Мещерского

Примером тел переменной массы может служить вращающаяся катушка с кабелем, масса которой увеличивается или уменьшается в зависимости от того, наматывается на нее кабель или сматывается.

Типичным примером движения тел переменной массы может служить полет ракеты на активном участке траектории, т.к. в процессе работы ее двигателя топливо сгорает, а продукты сгорания выбрасываются через сопло. Масса ракеты, таким образом, постепенно уменьшается.

Изменение импульса тела переменной массы за время dt :

,

где — импульс тела в момент времени ,

— импульс тела в начальный момент времени t, тогда

.

здесь: m и v – масса и скорость тела в момент времени t;

dm и dv – их изменения за малый промежуток времени dt;

v1 – скорость отделяющихся частиц.

Если частицы отделяются, то их общая масса dm


источники:

http://interneturok.ru/lesson/physics/10-klass/bmehanika-sistemy-telb/zakony-izmeneniya-sohraneniya-impulsa-i-energii-dlya-sistemy-materialnyh-tochek

http://helpiks.org/1-105580.html