Уравнение движения тела теоретическая механика

Кинематика. Все определения, понятия, законы и теоремы

Определение кинематики

Кинематика точки

Способы задания движения точки

Существуют следующие способы задания движения точки:
1) векторный; 2) координатный; 3) естественный.

Векторный способ задания движения точки

При векторном способе задания движения точки, положение точки определяется ее радиус-вектором , проведенным из некоторого центра O . При этом, радиус-вектор является функцией от времени t .

Радиус-вектор – это вектор, проведенный от предварительно выбранного центра O к материальной точке M :
.
Годограф вектора – это линия, которую вычерчивает конец вектора при его изменении во времени. При этом начало вектора находится в определенной точке пространства и его положение не меняется со временем.

Таким образом, траектория точки является годографом ее радиус-вектора.

Координатный способ задания движения точки

При координатном способе задания движения точки, мы выбираем систему координат. Обычно это прямоугольная система, но можно выбрать любую другую: цилиндрическую, сферическую и т. п. Тогда положение точки в пространстве определяется тремя координатами. В прямоугольной системе, их обозначают, как правило, буквами x, y, z. Зависимости этих координат от времени определяют закон движения точки:
.

Если движение происходит в одной плоскости, то мы выбираем систему координат в этой плоскости. В результате получаем два уравнения движения:
.
Исключив из этих уравнений параметр t , можно определить траекторию движения в виде функции , или .

При прямолинейном движении, выбрав ось x системы координат вдоль линии движения, имеем одну зависимость . Эта зависимость называется законом прямолинейного движения точки.

Связь между координатным и векторным способами задания движения точки

Пусть x, y, z – координаты точки в прямоугольной системе координат. Тогда
,
где – единичные векторы, проведенные в направлениях координатных осей;
– модуль вектора ;
направляющие косинусы вектора . То есть это косинусы углов между вектором и осями координат.

Естественный способ задания движения точки

При естественном способе, система координат связана с траекторией движения точки. При этом мы считаем, что сама траектория нам известна. На этой траектории, мы выбираем положение неподвижного центра O . Тогда положение точки определяется длиной дуги s кривой, измеренной вдоль траектории от центра O до положения точки в момент времени t . Закон движения точки определяется как зависимость .

Дуговая координата s – это длина дуги траектории от некоторого неподвижного центра O до текущего положения точки. При этом в качестве центра O выбирается любая точка, принадлежащая траектории. Она является началом отсчета длины дуги s .

Переход от координатного способа к естественному выполняется по формулам:
;
.

Скорость точки

В прямоугольной системе координат, вектор скорости можно записать так:
.
Проекции скорости на оси координат (компоненты) равны производным координат по времени:
.
Модуль скорости: .
Направляющие косинусы: – это косинусы углов между вектором скорости и осями координат.

Равномерное движение точки – это движение, при котором модуль скорости остается постоянным.

Скорость при естественном способе задания движения

Вектор скорости направлен по касательной к траектории:
,
где – единичный вектор, направленный по касательной к траектории в сторону увеличения длины дуги s .
Абсолютная величина скорости равна абсолютной величине производной длины дуги траектории по времени:
.
Если , то движение происходит в сторону увеличения дуговой координаты s . Если , то дуговая координата уменьшается.

Удобно ввести алгебраическую величину скорости . Она равна проекции скорости на направление единичного вектора :
.
Это скалярная величина. В отличии от модуля скорости, она может иметь как положительное, так и отрицательное значение. Далее мы будем использовать следующие обозначения:
– это вектор скорости;
– его абсолютная величина;
– алгебраическая величина скорости – проекция скорости на направление вектора . При движение происходит в сторону увеличения дуговой координаты. При – в сторону уменьшения. Тогда
; .

Ускорение точки

Проекции ускорения на оси координат:
.
Модуль ускорения: .
Направляющие косинусы: .

Ускорение при естественном способе задания движения

При естественном способе задания движения, ускорение раскладывают на два взаимно перпендикулярных вектора: касательное (тангенциальное) к траектории, и нормальное (перпендикулярное) ускорение:
.
Модуль ускорения .

Касательное ускорение:
.
Здесь, как и для скорости, мы считаем, что – это скалярная величина, которая может принимать как положительные, так и отрицательные значения. Тогда
.
Продифференцировав модуль скорости по времени, получим:
.
Отсюда следует, что абсолютное значение производной модуля скорости по времени равно модулю касательного ускорения. Если угол между направлениями векторов ускорения и скорости острый, , то происходит увеличение скорости – ускоренное движение. Если угол тупой , то происходит уменьшение скорости – замедленное движение.

Нормальное ускорение перпендикулярно касательной к траектории и всегда направлено к центру кривизны:
.
Здесь – единичный вектор в направлении главной нормали траектории.
Пусть ρ – радиус кривизны траектории. Тогда модуль нормального ускорения
.

Вектор полного ускорения точки лежит в соприкасающейся плоскости к траектории. Поэтому его проекция на бинормаль равна нулю:
.

Скорость и ускорение точки в полярной системе координат

В полярной системе координат , положение точки M определяется по формулам:
.
Пусть – единичные векторы (орты), проведенные из точки M в сторону увеличения r и φ , соответственно. Тогда вектор скорости выражается через них по формуле:
.
Модуль скорости: ,
где – радиальная скорость; – поперечная скорость.

Ускорение точки
.
Радиальное ускорение: . Поперечное ускорение: . Модуль ускорения: .

Классификация движений точки

1) Прямолинейное равномерное движение.
. В этом случае скорость точки постоянна. Движение происходит по прямой, параллельной вектору скорости.

2) Криволинейное равномерное движение.
. Скорость точки постоянна по абсолютной величине, но движение происходит не по прямой, а по кривой.

3) Прямолинейное неравномерное движение.
. Скорость точки изменяется по абсолютной величине, но траектория прямолинейна.

4) Криволинейное неравномерное движение.
. Скорость точки меняется как по абсолютной величине, так и по направлению. Если направления векторов и совпадают, то это ускоренное движение. В противном случае – замедленное.

5) Равнопеременное криволинейное движение.
. Это частный случай криволинейного неравномерного движения. Здесь касательное ускорение постоянно. Алгебраическая величина скорости меняется по линейному закону: . Длина дуги траектории – по квадратичному: .

Кинематика твердого тела

Общие теоремы

Расстояния между любыми двумя точками абсолютно твердого тела не меняется в процессе его движения. Эти связи приводят к дополнительным ограничениям на скорости движения точек. В результате получаются уравнения, связывающие скорости и ускорения точек. Такие уравнения носят название формул Эйлера.

Формулы Эйлера
Скорости и ускорения двух точек A и B твердого тела с радиус-векторами и связаны соотношениями:
(Т1) ;
(Т2) .
Здесь – некоторый аксиальный вектор, который называется угловой скоростью;
– вектор углового ускорения.
Доказательство.

Это фундаментальные уравнения. Точку A , при такой форме записи, называют полюсом. Тогда движение твердого тела можно рассматривать как поступательное движение полюса и вращательное движение относительно него.

Отметим еще одну теорему, которую часто применяют в расчетах.

Теорема о проекциях скоростей двух точек твердого тела на прямую
Проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу:
.
Доказательство.

Далее приводится классификация видов движения тела и применение формул Эйлера в конкретных случаях.

Поступательное движение

При поступательном движении все точки тела имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения, их траектории конгруэнтны, а разность радиус-векторов любых двух точек равна вектору, который зависит от положений сравниваемых точек, но не зависит от времени.

При поступательном движении угловая скорость и угловое ускорение равны нулю:
. Тогда формулы Эйлера ⇑ принимают вид:
.

Вращательное движение вокруг неподвижной оси

Определение

При вращении все точки тела движутся в плоскостях, перпендикулярных оси вращения. Их траекториями являются окружности с центром на оси вращения. Положение тела определяется углом поворота φ относительно произвольным образом выбранного нулевого положения. Зависимость угла поворота от времени определяет закон вращательного движения или, что тоже самое, уравнение вращательного движения. Единицей измерения угла поворота является радиан, который считается безразмерной величиной.
180° = π радиан ⇒ 1 радиан = 180/π = 57,29578°.

Угловая скорость и ускорение

Вектор угловой скорости параллелен оси вращения. Его направление определяется правилом правого винта. Он не имеет точки приложения и применим ко всем точкам твердого тела, то есть ко всему телу в целом. Однако, для наглядности, вектор угловой скорости изображают на оси вращения.

Единицей измерения угловой скорости является 1 рад/с или, что тоже самое, 1/с = с –1 . В технике встречаются другие единицы измерения. Пусть n – число оборотов в минуту. Тогда 1 оборот = 2π радиан ; 1 минута = 60 с ; ;
n об/мин = n·2π/60 рад/с. Тогда
.

Угловое ускорение – это производная угловой скорости по времени:
.
Единицей измерения углового ускорения является рад/с 2 или, что тоже самое, с –2 .

Вектор углового ускорения также параллелен оси вращения. При ускоренном вращении он совпадает с направлением угловой скорости. При замедленном – имеет противоположное направление.

Частные случаи вращения тела

Равномерное вращение. Угловая скорость постоянна; угловое ускорение равно нулю: .
Равнопеременное вращение. Угловая скорость линейно меняется со временем; угловое ускорение постоянно: .

Скорости и ускорения точек вращающегося тела

Скорости точек любого твердого тела связаны формулой Эйлера ⇑. Для тела, вращающегося вокруг неподвижной оси, в качестве полюса удобно выбрать любую точку на оси вращения. Тогда скорость точки с радиус-вектором тела, вращающегося с угловой скоростью , определяются по формуле:
.
Здесь – радиус-вектор произвольной точки на оси вращения. Если ось вращения проходит через начало координат, то в качестве можно выбрать точку начала координат . Тогда
.
По правилам векторного произведения,
.
Здесь |CM| – расстояние от точки M до оси вращения (см. рисунок ⇓). Точка M движется по окружности радиуса |CM|. Вектор скорости направлен по касательной к этой окружности в сторону, которая задается направлением вектора угловой скорости.

При вычислении векторного произведения, полезно использовать следующие формулы:

.
Здесь – проекции угловой скорости на оси координат. Таким образом, проекции вектора скорости точки определяются так:
.
Если ось вращения совпадает с осью z, то , .


Скорость и ускорение точек твердого тела при вращении вокруг неподвижной оси Oz .

Ускорение точки определяется по формуле:
.

Вращательное ускорение:
;
.
Оно направлено по касательной к траектории и связано с изменением скорости точки по абсолютной величине.

Центростремительное (осестремительное) ускорение:

.
Оно направлено по главной нормали – к центру окружности и по абсолютной величине равно
,
где R – расстояние до оси вращения.

Модуль полного ускорения:
.
Угол β между векторами полного и центростремительного ускорений:
.

Плоское движение твердого тела

При плоском движении, все кинематические величины (перемещения, скорости и т.д.) имеют одинаковые значения для всех плоскостей, параллельных плоскости движения. Поэтому для описания плоского движения, нам достаточно рассмотреть движение любого сечения тела, или как говорят, плоской фигуры. Все результаты, полученные для одной плоской фигуры применимы и для других сечений, параллельных плоскости движения. Хотя плоская фигура имеет свои контуры и характерные точки, но мы считаем, что она не ограничена в размерах, поскольку ее размер может зависеть от выбора сечения. Кроме этого имеются некоторые точки, например мгновенный центр скоростей, которые служат только для проведения расчетов и могут находиться за пределами тела.

Для описания плоского движения, мы выбираем плоскую фигуру; проводим в ней двумерную систему координат x, y. Далее, произвольным образом выбираем точку A . Эту точку мы будем называть полюсом. Тогда положение тела однозначно определяется координатами точки A и углом поворота φ , относительно, произвольным образом выбранного направления, например оси x . При этом движение тела определяется тремя уравнениями, которые называют уравнениями плоского (или плоскопараллельного) движения тела:
.

Эти уравнения также называют уравнениями движения плоской фигуры. При таком описании, движение тела слагается из поступательного движения полюса A , и вращательного движения вокруг него. Поступательное движение зависит от выбора полюса, а угол поворота φ – нет.

Определение скоростей

Скорость точки B с радиус-вектором определяется по формуле Эйлера ⇑:
(П1) .
То есть скорость точки B тела равна векторной сумме скорости полюса A и относительной скорости . Относительное движение является вращением с угловой скоростью относительно оси, проходящей через полюс A перпендикулярно плоскости фигуры. Поскольку вектор угловой скорости перпендикулярен плоскости движения, то он перпендикулярен и вектору скорости. Тогда модуль относительной скорости равен произведению угловой скорости на расстояние от точки до полюса:
.

Мгновенный центр скоростей
Определения и свойства

Далее мы будем обозначать мгновенный центр скоростей буквой P . Для плоской фигуры – это точка. Для твердого тела – это ось, проходящая через точку P перпендикулярно плоскости движения. Эта ось может находиться за пределами тела.

Если плоская фигура движется непоступательно, то мгновенный центр скоростей всегда существует. Для поступательного движения, МЦС находится на бесконечности.

Приняв МЦС P в качестве полюса, получим значение вектора скорости произвольной точки B :
.
Поскольку движение плоское, то . Тогда модуль скорости точки B плоской фигуры равен произведению угловой скорости на расстояние до мгновенного центра скоростей:
.
Вектор скорости перпендикулярен отрезку, соединяющим точку с МЦС и направлен в сторону вращения плоской фигуры.

Скорости точек плоской фигуры пропорциональны их расстояниям до МЦС:
(Ц1) .

Модуль угловой скорости плоской фигуры равен отношению модуля скорости произвольной точки к ее расстоянию до мгновенного центра скоростей:
.

Теорема Шаля
Плоскую фигуру можно переместить из одного положения в любое другое положение одним поворотом этой фигуры вокруг некоторого неподвижного центра, который называют центром вращений, или осью вращений.

Мгновенный центр вращений – это центр вращений, определяемый согласно теореме Шаля, при бесконечно малом перемещении фигуры.

Если рассматривать перемещение плоской фигуры со временем, то мгновенный центр вращений совпадает с мгновенным центром скоростей.

Неподвижная центроида – это геометрическое место мгновенных центров скоростей, отмеченных на неподвижной плоскости.
Подвижная центроида – это геометрическое место мгновенных центров скоростей, отмеченных на плоской фигуре.

Например, если колесо катится без проскальзывания по неподвижной прямой, то неподвижной центроидой является прямая, а подвижной – обод колеса.

Теорема Пуансо
При движении плоской фигуры, подвижная центроида катится без скольжения по неподвижной центроиде.

Определение положения МЦС

1) Если скорости и точек A и B не параллельны, то МЦС есть точка пересечения прямых, проведенных через эти точки, перпендикулярно векторам их скоростей.
2) Если векторы и не равны, параллельны и перпендикулярны прямой AB , то для определения МЦС необходимо знать модули и направления скоростей, и применить формулу (Ц1).
3) Если векторы и равны, то МЦС находится на бесконечности, .
4) Если тело катится без скольжения по неподвижной поверхности, то МЦС находится в точке соприкосновения тела и поверхности.

Определение ускорений

Дифференцируя уравнение Эйлера (П1) по времени, получаем ускорение точки B :
(П1) ;

.

Итак мы нашли ускорение произвольной точки B плоской фигуры. Этот результат можно представить в следующем виде:
.
То есть ускорение произвольной точки B плоской фигуры равно геометрической сумме ускорения полюса и ускорению этой точки относительно полюса , которое определяется по формулам вращательного движения относительно неподвижного центра A . То есть равно геометрической сумме вращательного и центростремительного ускорений:
.

Вращательное ускорение относительно полюса перпендикулярно отрезку AB , соединяющим точку с полюсом. Центростремительное относительное ускорение направлено от точки B к A . Поскольку угловое ускорение также перпендикулярно AB , то
.

Мгновенный центр ускорений

Чтобы построить точку Q нужно выполнить следующие действия.
1) Из полюса A построить вектор ускорения .
2) Из полюса A провести луч AQ под углом к вектору ускорения полюса так, чтобы направление поворота от к AQ совпадало с направлением углового ускорения ε .
3) На луче AQ построить точку Q на расстоянии от точки A .

Приняв точку Q в качестве полюса, получим ускорение произвольной точки B твердого тела:
,
где – единичный вектор касательной к окружности радиуса QB ; – единичный вектор, направленный от B к Q .

Модули ускорений точек плоской фигуры пропорциональны расстояниям от этих точек до мгновенного центра ускорений:
.
Векторы ускорений составляют с отрезками, соединяющими эти точки и мгновенный центр ускорений один и тот же угол
.
Мгновенный центр скоростей P и мгновенный центр ускорений Q являются различными точками плоской фигуры.

Сферическое движение твердого тела

При сферическом движении, точки тела движутся по сферическим поверхностям. Положение тела часто определяют с помощью трех углов ψ, θ, φ , которые называются углами Эйлера. Для этого вводят две системы координат – неподвижную , и подвижную Oxyz , связанную с телом. Связь между ними осуществляется следующим образом.
1) Поворачиваем неподвижную систему координат на угол ψ вокруг оси . Получаем систему .
2) Поворачиваем систему координат на угол θ вокруг оси ON . Получаем систему ONK′z .
3) Поворачиваем систему координат ONK′z на угол φ вокруг оси Oz . Получаем систему координат Oxyz , связанную с телом.
Ось ON называется линией узлов; ψ – угол прецессии; θ – угол нутации; φ – угол собственного вращения. При движении тела, эти углы являются функциями от времени:
.

Теорема Эйлера – Даламбера
Твердое тело, имеющее одну неподвижную точку, можно переместить из одного положения в любое другое поворотом вокруг некоторой оси, проходящей через неподвижную точку.

Следствие теоремы Эйлера – Даламбера
При сферическом движении твердого тела существует ось, на которой скорости точек равны нулю. Такая ось называется мгновенной осью вращения.


Угловое ускорение ε является касательной к годографу abc угловой скорости. P1, P2 – мгновенные оси вращения.

Угловая скорость тела параллельна мгновенной оси вращения. Для удобства ее вектор откладывают из неподвижной точки. При движении, угловая скорость изменяется как по абсолютной величине, так и по направлению. Конец вектора описывает годограф вектора угловой скорости.

Угловое ускорение – это скорость изменения угловой скорости:
.
Оно направлено по касательной к годографу вектора угловой скорости. При сферическом движении, в отличии от случаев вращения вокруг неподвижной оси и плоского движения, направление вектора углового ускорения может не совпадать с направлением вектора угловой скорости.

Скорости точек тела определяются по формуле Эйлера ⇑. В качестве полюса возьмем неподвижную точку O . Тогда для скорости произвольной точки с радиус-вектором имеем: . Если начало координат выбрать в точке O , то , тогда
.
Модуль скорости определяется по формуле:
,
где α – угол между векторами и ; h – расстояние от точки до мгновенной оси вращения.


Ускорение при сферическом движении твердого тела.

Ускорение точки определяется по формуле:
.
Вращательное ускорение направлено перпендикулярно плоскости, образованной векторами углового ускорения и радиус-вектором . Оно имеет модуль , где β – угол между векторами и ; – расстояние от точки до оси E, проведенной из неподвижного центра O параллельно вектору углового ускорения.

Центростремительное (осестремительное) ускорение направлено к мгновенной оси вращения P и перпендикулярно ей. По модулю оно равно .

Свободное движение твердого тела

Это самый общий случай движения твердого тела. Свободное тело имеет шесть степеней свободы. Для описания его движения, выберем произвольную точку A тела в качестве полюса. Далее вводим две системы координат – неподвижную OXYZ, и подвижную систему , начало которой в каждый момент времени совпадает с точкой A, а оси параллельны осям неподвижной системы OXYZ. Таким образом, система совершает поступательное движение относительно OXYZ. Тогда свободное движение твердого тела можно рассматривать как сложное движение, состоящее из поступательного движения по закону движения полюса A, и сферического движения в системе координат , с неподвижной точкой A.

Уравнения движения свободного твердого тела представляют собой шесть равенств:
.
Здесь ψ, θ, ϕ – углы Эйлера. Первые три уравнения определяют поступательную часть движения и зависят от выбора полюса. Последние три уравнения определяют сферическое движение, и от выбора полюса не зависят.

Скорость любой точки B тела равна векторной сумме скорости полюса и скорости этой точки при ее сферическом движении относительно полюса:
,
где – радиус-вектор, проведенный из точки A в точку B.

Ускорение точки свободного твердого тела равно векторной сумме ускорения полюса, центростремительного (осестремительного) ускорения точки и ее вращательного ускорения относительно полюса:
.

Сложное движение точки

Для описания сложного движения, мы выбираем неподвижную (основную) систему координат и подвижную . Будем считать, что подвижная система связана с некоторым движущимся твердым телом, относительно которого, в свою очередь движется точка. Например, человек, идущий в движущемся вагоне. Здесь неподвижная система координат – это система, связанная с рельсами и ландшафтом. Твердое тело – вагон. Точка – человек. Подвижная система координат – система, связанная с вагоном. Абсолютное движение – движение человека относительно рельс; относительное движение – движение человека относительно вагона; переносное движение – движение вагона относительно рельс.

Абсолютная скорость (ускорение) точки – это скорость (ускорение) точки в неподвижной системе координат.
Переносная скорость (ускорение) точки – это скорость (ускорение) той точки подвижной системы координат, в которой, в данный момент времени, находится точка, совершающая сложное движение.
Относительная скорость (ускорение) точки – это скорость (ускорение) точки относительно подвижной системы координат.

Теорема о сложении скоростей
При составном движении абсолютная скорость точки равна векторной сумме переносной и относительной скоростей:
.
Модуль абсолютной скорости: .
Эту теорему также называют правилом параллелограмма или треугольника скоростей.

Теорема Кориолиса о сложении ускорений
При составном движении, абсолютное ускорение точки равно векторной сумме переносного , относительного и кориолисова (поворотного) ускорений:
,
где – ускорение Кориолиса (кориолисово ускорение); – угловая скорость вращения подвижной системы координат.

Кориолисово ускорение также называют поворотным ускорением. Оно характеризует изменение направления относительной скорости точки, вызванное вращением подвижной системы координат. Если переносное движение является поступательным, то , кориолисово ускорение равно нулю.

Сложное движение твердого тела

Теперь рассмотрим сложное движение твердого тела – то есть такое движение, при котором твердое тело движется относительно некоторой системы координат , которая, в свою очередь движется относительно неподвижной системы координат . Такое движение часто называют сложением движений. Пусть A – произвольная точка тела, которую мы выберем в качестве полюса. Тогда скорость произвольной точки B тела относительно подвижной системы координат определяется по формуле:
.
В свою очередь, подвижную систему координат также можно рассматривать как твердое тело. Тогда скорость точки B при переносном движении:
.
Применяя теорему о сложении скоростей, найдем скорость точки B относительно неподвижной системы отсчета:
.
Отсюда следует, что скорость полюса относительно неподвижной системы координат равна векторной сумме скоростей полюса при переносном и относительном движениях:
.
Угловая скорость равна векторной сумме угловых скоростей:
.

Рассмотрим частные случаи сложного движения твердого тела.

Сложение двух поступательных движений

При сложении двух поступательных движений, . Тогда . Результирующее движение также является поступательным. Скорость результирующего движения равна сумме скоростей составляющих движений:
.

Сложение вращательных движений вокруг пересекающихся осей

При сложении двух вращательных движений вокруг пересекающихся осей, результирующее движение также является вращательным. При этом ось вращения проходит через точку пересечения осей параллельно вектору абсолютной угловой скорости:
.
Если оси вращения изменяются со временем, то все сказанное выше имеет место для мгновенных осей вращения.

Аналогично предыдущему, при сложении нескольких вращательных движений вокруг пересекающихся осей, результирующее движение также является вращательным. Ось результирующего вращения проходит через точку пересечения осей параллельно вектору абсолютной угловой скорости:
.

Сферическое движение

Как было указано ранее, при сферическом движении, положение тела можно задать с помощью углов Эйлера. Они определяются последовательными переходами от неподвижной системы координат к системе координат , связанной с телом: . Такие переходы можно рассматривать как сложное движение, состоящее из серии вращений ⇑. При этом каждая последующая система координат является повернутой относительно предыдущей на соответствующий угол: ψ, θ, φ , изменяющиеся со временем. Дифференцируя эти углы по времени, получаем угловые скорости вращений систем координат, которые имеют следующие названия:
угловая скорость прецессии; – угловая скорость нутации; – угловая скорость собственного вращения.


Связь угловых скоростей с углами Эйлера.

Векторы этих угловых скоростей направлены, соответственно, вдоль осей . Тогда вектор угловой скорости тела относительно неподвижной системы координат равен сумме угловых скоростей:
.
Его модуль:
.
Проекции вектора угловой скорости на оси подвижной системы координат Oxyz определяются с помощью кинематических уравнений Эйлера, которые имеют следующий вид:
;
;
.

Сложение вращений вокруг 2-х параллельных осей

Направления вращений совпадают

Если направления вращений совпадают, то угловая скорость, при абсолютном движении, равна сумме модулей угловых скоростей переносного и относительного движений: . Направление вектора совпадает с направлениями векторов и . Движение является плоскопараллельным. Мгновенная ось вращений проходит через точку C (см. рисунок), находящуюся между осями вращений. При этом
;
.

Вращения противоположны

В этом случае, угловая скорость, при абсолютном движении, равна модулю разности абсолютных значений угловых скоростей: , а направление совпадает с направлением наибольшей по абсолютной величине угловой скорости. Движение также является плоскопараллельным. Мгновенная ось вращений проходит через точку C (см. рисунок) так, что ось с наибольшей угловой скоростью оказывается между остальными осями. При этом
;
.

Пара вращений

Пара вращений – это такое сложное движение твердого тела, при котором угловые скорости противоположны по направлению и равны их абсолютные значения: . В этом случае тело совершает поступательное (или мгновенное поступательное движение). Скорости всех точек тела равны . Мгновенная ось вращения находится на бесконечности. Примером такого движения является движение педалей велосипеда относительно рамы.

Сложение поступательного и вращательного движений

Поступательное движение перпендикулярно оси вращения

Если скорость поступательного движения перпендикулярна оси вращения, то это плоскопараллельное движение. Оно имеет мгновенную ось вращения, находящуюся на расстоянии от оси и удаленную от нее в сторону, перпендикулярно вектору .

Винтовое движение

Если скорости и постоянны, то шаг винта также постоянен и определяется по формуле: . При постоянных скоростях и , траекторией любой точки, не лежащей на оси винта, является винтовая линия. При этом скорость точки направлена по касательной к винтовой линии и имеет абсолютное значение , где r – расстояние до оси вращения; – скорость вращательного движения, перпендикулярная оси винта.

Поступательное движение под произвольным углом к оси вращения

Здесь скорость поступательного движения можно разложить на две составляющие – параллельную и перпендикулярную оси вращения . Рассматривая движение в плоскости, перпендикулярной оси вращения, мы можем найти мгновенный центр скоростей P . Он находится на расстоянии от оси . Прибавив сюда скорость , получим винтовое движение с осью . Если скорости меняются со временем, то ось будет мгновенной винтовой осью, а все движение можно рассматривать как состоящее из серии мгновенных винтовых движений вокруг непрерывно изменяющихся винтовых осей. Такое движение называется мгновенно–винтовым движением.

Использованная литература:
А. А. Яблонский, В.М. Никифорова. Курс теоретической механики, часть 1, статика, кинематика. Москва, «Высшая школа», 1966.
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Автор: Олег Одинцов . Опубликовано: 17-08-2015 Изменено: 29-01-2020

Теоретическая механика. В помощь студенту

Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.

Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.

Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.

Статика твердого тела

Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.

    Основные понятия и законы статики

  • Абсолютно твердое тело (твердое тело, тело) – это материальное тело, расстояние между любыми точками в котором не изменяется.
  • Материальная точка – это тело, размерами которого по условиям задачи можно пренебречь.
  • Свободное тело – это тело, на перемещение которого не наложено никаких ограничений.
  • Несвободное (связанное) тело – это тело, на перемещение которого наложены ограничения.
  • Связи – это тела, препятствующие перемещению рассматриваемого объекта (тела или системы тел).
  • Реакция связи — это сила, характеризующая действие связи на твердое тело. Если считать силу, с которой твердое тело действует на связь, действием, то реакция связи является противодействием. При этом сила — действие приложена к связи, а реакция связи приложена к твердому телу.
  • Механическая система – это совокупность взаимосвязанных между собой тел или материальных точек.
  • Твердое тело можно рассматривать как механическую систему, положения и расстояние между точками которой не изменяются.
  • Сила – это векторная величина, характеризующая механическое действие одного материального тела на другое.
    Сила как вектор характеризуется точкой приложения, направлением действия и абсолютным значением. Единица измерения модуля силы – Ньютон.
  • Линия действия силы – это прямая, вдоль которой направлен вектор силы.
  • Сосредоточенная сила – сила, приложенная в одной точке.
  • Распределенные силы (распределенная нагрузка) – это силы, действующие на все точки объема, поверхности или длины тела.
    Распределенная нагрузка задается силой, действующей на единицу объема (поверхности, длины).
    Размерность распределенной нагрузки – Н/м 3 (Н/м 2 , Н/м).
  • Внешняя сила – это сила, действующая со стороны тела, не принадлежащего рассматриваемой механической системе.
  • Внутренняя сила – это сила, действующая на материальную точку механической системы со стороны другой материальной точки, принадлежащей рассматриваемой системе.
  • Система сил – это совокупность сил, действующих на механическую систему.
  • Плоская система сил – это система сил, линии действия которых лежат в одной плоскости.
  • Пространственная система сил – это система сил, линии действия которых не лежат в одной плоскости.
  • Система сходящихся сил – это система сил, линии действия которых пересекаются в одной точке.
  • Произвольная система сил – это система сил, линии действия которых не пересекаются в одной точке.
  • Эквивалентные системы сил – это такие системы сил, замена которых одна на другую не изменяет механического состояния тела.
    Принятое обозначение: .
  • Равновесие – это состояние, при котором тело при действии сил остается неподвижным или движется равномерно прямолинейно.
  • Уравновешенная система сил – это система сил, которая будучи приложена к свободному твердому телу не изменяет его механического состояния (не выводит из равновесия).
    .
  • Равнодействующая сила – это сила, действие которой на тело эквивалентно действию системы сил.
    .
  • Момент силы – это величина, характеризующая вращающую способность силы.
  • Пара сил – это система двух параллельных равных по модулю противоположно направленных сил.
    Принятое обозначение: .
    Под действием пары сил тело будет совершать вращательное движение.
  • Проекция силы на ось – это отрезок, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой оси.
    Проекция положительна, если направление отрезка совпадает с положительным направлением оси.
  • Проекция силы на плоскость – это вектор на плоскости, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой плоскости.
  • Закон 1 (закон инерции). Изолированная материальная точка находится в покое либо движется равномерно и прямолинейно.
    Равномерное и прямолинейное движение материальной точки является движением по инерции. Под состоянием равновесия материальной точки и твердого тела понимают не только состояние покоя, но и движение по инерции. Для твердого тела существуют различные виды движения по инерции, например равномерное вращение твердого тела вокруг неподвижной оси.
  • Закон 2. Твердое тело находится в равновесии под действием двух сил только в том случае, если эти силы равны по модулю и направлены в противоположные стороны по общей линии действия.
    Эти две силы называются уравновешивающимися.
    Вообще силы называются уравновешивающимися, если твердое тело, к которому приложены эти силы, находится в покое.
  • Закон 3. Не нарушая состояния (слово «состояние» здесь означает состояние движения или покоя) твердого тела, можно добавлять и отбрасывать уравновешивающиеся силы.
    Следствие. Не нарушая состояния твердого тела, силу можно переносить по ее линии действия в любую точку тела.
    Две системы сил называются эквивалентными, если одну из них можно заменить другой, не нарушая состояния твердого тела.
  • Закон 4. Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке, равна по модулю диагонали параллелограмма, построенного на этих силах, и направлена вдоль этой
    диагонали.
    По модулю равнодействующая равна:
  • Закон 5 (закон равенства действия и противодействия). Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены в противоположные стороны по одной прямой.
    Следует иметь в виду, что действие — сила, приложенная к телу Б, и противодействие — сила, приложенная к телу А, не уравновешиваются, так как они приложены к разным телам.
  • Закон 6 (закон отвердевания). Равновесие нетвердого тела не нарушается при его затвердевании.
    Не следует при этом забывать, что условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но недостаточными для соответствующего нетвердого тела.
  • Закон 7 (закон освобождаемости от связей). Несвободное твердое тело можно рассматривать как свободное, если его мысленно освободить от связей, заменив действие связей соответствующими реакциями связей.
    • Связи и их реакции

    • Гладкая поверхность ограничивает перемещение по нормали к поверхности опоры. Реакция направлена перпендикулярно поверхности.
    • Шарнирная подвижная опора ограничивает перемещение тела по нормали к опорной плоскости. Реакция направлена по нормали к поверхности опоры.
    • Шарнирная неподвижная опора противодействует любому перемещению в плоскости, перпендикулярной оси вращения.
    • Шарнирный невесомый стержень противодействует перемещению тела вдоль линии стержня. Реакция будет направлена вдоль линии стержня.
    • Глухая заделка противодействует любому перемещению и вращению в плоскости. Ее действие можно заменить силой, представленной в виде двух составляющих и парой сил с моментом.
      Момент силы относительно точки

    • Абсолютное значение момента равно произведению модуля силы на кратчайшее расстояние h от центра вращения до линии действия силы. Расстояние h называют плечом силы.
    • Момент считают положительным, если сила стремится вращать плечо h против хода часовой стрелки и отрицательным при вращении по ходу часовой стрелки.
    • Свойства момента силы относительно точки:
      1) Момент силы не изменится при переносе точки приложения силы вдоль линии действия силы.
      2) Момент силы равен нулю, если линия действия силы проходит через точку приложения силы.
      3) Момент равнодействующей силы относительно точки равен сумме моментов слагаемых сил относительно этой точки.
      ,
      где
      Момент силы относительно оси

    • Момент силы относительно оси — это момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.
      Момент считается положительным, если с положительного конца оси поворот, который сила стремится совершить, виден происходящим против хода часовой стрелки, и отрицательным – если по ходу часовой стрелки.
    • Чтобы найти момент силы относительно оси, нужно:
      1) Провести плоскость перпендикулярную оси z.
      2) Спроецировать силу на эту плоскость и вычислить величину проекции .
      3) Провести плечо h из точки пересечения оси с плоскостью на линию действия проекции силы и вычислить его длину.
      4) Найти произведение этого плеча и проекции силы с соответствующим знаком.
    • Свойства момента силы относительно оси.
      Момент силы относительно оси равен нулю, если:
      1) , то есть сила параллельна оси.
      2) h=0, то есть линия действия силы пересекает ось.
      Момент пары сил

    • Момент пары сил равен произведению одной силы на кратчайшее расстояние между линиями действия сил пары, которое называется плечом пары (пара сил оказывает на тело вращающее действие)
      ,
      где: — силы, составляющие пару;
      h — плечо пары.
      Момент пары считают положительным, если силы стремятся вращать плечо против хода часовой стрелки.
    • Свойства пары сил.
      1) Сумма проекций сил пары на любую ось равна нулю.
      2) Не изменяя момента пары можно одновременно соответственно изменять значение сил и плечо пары.
      3) Пару можно переносить в плоскости ее действия при этом действие пары на тело не изменится.
      Преобразование сходящейся системы сил

    • Равнодействующая двух сходящихся сил находится на основании аксиомы о параллелограмме сил.
      Геометрическая сумма любого числа сходящихся сил может быть определена путем последовательного сложения двух сил – способ векторного многоугольника.
      Вывод: система сходящихся сил () приводится к одной равнодействующей силе .
    • Аналитически равнодействующая сила может быть определена через ее проекции на оси координат:

      Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось: , или в общем виде
      С учетом равнодействующая определяется выражением:
      .
    • Направление вектора равнодействующей определяется косинусами углов между вектором и осями x, y, z:
      Преобразование произвольной системы сил

    • Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится.
      В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов — суммарным моментом.
      Суммарный вектор — это главный вектор системы сил.
      Суммарный момент — это главный момент системы сил.
      Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору и главному моменту системы сил.
    • Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат:
      ,
      Условия равновесия систем сил

    • Равновесие системы сходящихся сил
      Действие системы сходящихся сил эквивалентно действию одной равнодействующей силы.
      Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю .
      Из формулы следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю:
    • Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю:
      Равновесие произвольной системы сил.

    • Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия:
      .
    • Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю:
    • Для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы сумма проекций главного вектора на оси X,Y, и алгебраическая сумма моментов сил относительно центра О были равны нулю:

    Кинематика

    Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.

      Основные понятия кинематики

  • Закон движения точки (тела) – это зависимость положения точки (тела) в пространстве от времени.
  • Траектория точки – это геометрическое место положений точки в пространстве при ее движении.
  • Скорость точки (тела) – это характеристика изменения во времени положения точки (тела) в пространстве.
  • Ускорение точки (тела) – это характеристика изменения во времени скорости точки (тела).
    • Способы задания движения точки

    • Задать движение точки — значит задать изменение ее положения по отношению к выбранной системе отсчета. Существуют три основные системы отсчета: векторная, координатная, естественная.
    • В векторной системе положение точки относительно начала отсчета задается радиус-вектором.
      Закон движения: .
    • В системе координат OXYZ положение точки задается тремя координатами X, Y, Z.
      Закон движения: x = x(t), y = y(t); z = z(t).
    • В естественной системе отсчета положение точки задается расстоянием S от начала отсчета до этой точки вдоль траектории.
      Закон движения: .
      Движение точки, при естественном способе задания движения, определено если известны:
      1) Траектория движения.
      2) Начало и направление отсчета дуговой координаты.
      3) Уравнение движения.
      При естественном способе задания движения, в отличии от других способов, используются подвижные координатные оси, движущиеся вместе с точкой по траектории. Такими осями являются:
      Касательная (τ) – направлена в сторону возрастания дуговой координаты по касательной к траектории.
      Главная нормаль (n) – направлена в сторону вогнутости кривой.
      Бинормаль (b) – направлена перпендикулярно к осям τ, n.
      Определение кинематических характеристик точки

    • Траектория точки
      В векторной системе отсчета траектория описывается выражением: .
      В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f(x,y) — в пространстве, или y = f(x) – в плоскости.
      В естественной системе отсчета траектория задается заранее.
    • Определение скорости точки в векторной системе координат
      При задании движения точки в векторной системе координат отношение перемещения к интервалу времени называют средним значением скорости на этом интервале времени: .
      Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости): .
      Вектор средней скорости направлен вдоль вектора в сторону движения точки, вектор мгновенной скорости направлен по касательной к траектории в сторону движения точки.
      Вывод:скорость точки – векторная величина, равная производной от закона движения по времени.
      Свойство производной:производная от какой либо величины по времени определяет скорость изменения этой величины.
    • Определение скорости точки в координатной системе отсчета
      Скорости изменения координат точки:
      .
      Модуль полной скорости точки при прямоугольной системе координат будет равен:
      .
      Направление вектора скорости определяется косинусами направляющих углов:
      ,
      где — углы между вектором скорости и осями координат.
    • Определение скорости точки в естественной системе отсчета
      Скорость точки в естественной системе отсчета определяется как производная от закона движения точки: .
      Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях определяется только одной проекцией .
      Ускорение точки

    • По определению ускорение характеризует изменение скорости, то есть скорость изменения скорости.
    • Ускорения точки в векторной системе отсчета
      На основании свойства производной:
      .
      Вектор скорости может изменяться по модулю и направлению.
      Вектор ускорения направлен по линии приращения вектора скорости, т. е. в сторону искривления траектории.
    • Ускорение точки в координатной системе отсчета
      Ускорение изменения координат точки равно производной по времени от скоростей изменения этих координат:
      .
      Полное ускорение в прямоугольной системе координат будет определяться выражением:
      .
      Направляющие косинусы вектора ускорения:
      .
    • Ускорение точки в естественной системе отсчета Приращение вектора скорости можно разложить на составляющие, параллельные осям естественной системы координат:
      .
      Разделив левую и правую части равенства на dt, получим:
      ,
      где — тангенциальное ускорение;
      — нормальное ускорение;
      R — радиус кривизны траектории в окрестности точки.
      Кинематика твердого тела

    • В кинематике твердых тел решаются две основные задачи:
      1) задание движения и определение кинематических характеристик тела в целом;
      2) определение кинематических характеристик точек тела.
    • Поступательное движение твердого тела
      Поступательное движение — это движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению.
      Теорема:при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения.
      Вывод:поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.
    • Вращательное движение твердого тела вокруг неподвижной оси
      Вращательное движение твердого тела вокруг неподвижной оси — это движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.
      Положение тела определяется углом поворота . Единица измерения угла – радиан. (Радиан — центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит радиана.)
      Закон вращательного движения тела вокруг неподвижной оси .
      Угловую скорость и угловое ускорение тела определим методом дифференцирования:
      — угловая скорость, рад/с;
      — угловое ускорение, рад/с².
      Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точку М, то точка М будет описывать вокруг точки С окружность радиуса R. За время dt происходит элементарный поворот на угол , при этом точка М совершит перемещение вдоль траектории на расстояние .
      Модуль линейной скорости:
      .
      Ускорение точки М при известной траектории определяется по его составляющим :
      ,
      где .
      В итоге, получаем формулы
      тангенциальное ускорение: ;
      нормальное ускорение: .
      Плоско-параллельное движение твердого тела

    • Плоско-параллельное движение твердого тела — это движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости.
      Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений:
      1) поступательного и вращательного;
      2) вращательного относительно подвижного (мгновенного) центра.
    • В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса.
      В качестве полюса может быть принята любая точка сечения.
      Уравнения движения запишутся в виде:
      .
      Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.

    • Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P.
      В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения:
      .
      Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.
      .
    • Положение мгновенного центра вращения может быть определено на основании следующих свойств:
      1) вектор скорости точки перпендикулярен радиусу;
      2) модуль скорости точки пропорционален расстоянию от точки до центра вращения ();
      3) скорость в центре вращения равна нулю.
    • Теорема:проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены.
      Доказательство: расстояние АВ изменяться не может, следовательно, не может быть больше или меньше .
      Вывод:.
      Сложное движение точки

    • Относительное движение — это движение точки относительно подвижной системы.
      Переносное движение — это движение точки вместе с подвижной системой.
      Абсолютное движение — это движение точки относительно неподвижной системы.
      Соответственно называют скорости и ускорения:
      — относительные;
      — переносные;
      — абсолютные.
    • Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (согласно теореме о сложении скоростей):
      .
      Абсолютное значение скорости определяется по теореме косинусов:
      .
    • Ускорение по правилу параллелограмма определяется только при поступательном переносном движении
      .
      .
    • При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.
      ,
      где .
      Кориолисово ускорение численно равно:
      ,
      где – угол между векторами и .
      Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор спроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

    Динамика

    Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.

      Основные понятия динамики

  • Инерционность — это свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.
  • Масса — это количественная мера инерционности тела. Единица измерения массы — килограмм (кг).
  • Материальная точка — это тело, обладающее массой, размерами которого при решении данной задачи пренебрегают.
  • Центр масс механической системы — геометрическая точка, координаты которой определяются формулами:

    где mk, xk, yk, zk — масса и координаты k-той точки механической системы, m — масса системы.
    В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.
  • Момент инерции материального тела относительно оси – это количественная мера инертности при вращательном движении.
    Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси:
    .
    Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек:
  • Сила инерции материальной точки — это векторная величина, равная по модулю произведению массы точки на модуль ускорения и направленная противоположно вектору ускорения:
  • Сила инерции материального тела — это векторная величина, равная по модулю произведению массы тела на модуль ускорения центра масс тела и направленная противоположно вектору ускорения центра масс: ,
    где — ускорение центра масс тела.
  • Элементарный импульс силы — это векторная величина , равная произведению вектора силы на бесконечно малый промежуток времени dt:
    .
    Полный импульс силы за Δt равен интегралу от элементарных импульсов:
    .
  • Элементарная работа силы — это скалярная величина dA, равная скалярному произведению вектора силы на бесконечно малое перемещение .
    Скалярное произведение векторов равно произведению их модулей на косинус угла между направлениями векторов:
    ,
    где α — угол между направлениями векторов перемещения и силы.
  • Работа силы на конечном перемещении точки её приложения равна интегралу от элементарной работы, взятому по перемещению:
    .
    Единица измерения работы — Джоуль (1 Дж = 1 Н·м).
  • Количество движения материальной точки — это векторная величина , равная произведению массы m на её скорость :
    .
  • Количество движения механической системы равно векторной сумме количества движения её точек.
    или
    ,
    где m — масса механической системы, — вектор скорости центра масс системы.
  • Кинетическая энергия материальной точки — это скалярная величина Т, равная половине произведения массы точки на квадрат её скорости:
    .
  • Кинетическая энергия механической системы равна сумме кинетических энергий всех её точек:
    .
    • Аксиомы динамики

    • Первая аксиома — это закон инерции.
      Если на свободную материальную точку не действуют никакие силы или действует уравновешенная система сил, то точка будет находиться в состоянии покоя или равномерного прямолинейного движения.
    • Вторая аксиома — закон пропорциональности ускорения.
      Ускорение, сообщаемое материальной точке действующей на неё силой, пропорционально этой силе и по направлению совпадает с направлением силы: — это основной закон динамики.
    • Третья аксиома — это закон противодействия.
      Силы, с которыми действуют друг на друга две материальные точки, равны по модулю и направлены вдоль прямой, соединяющей эти точки, в противоположные стороны:
      .
    • Четвертая аксиома — закон независимости действия сил.
      При действии на материальную точку системы сил полное ускорение этой точки равно геометрической сумме ускорений от действия каждой силы:
      Дифференциальные уравнения динамики

    • Дифференциальные уравнения движения точки связывают ускорение точки с действующими на нее силами. Фактически дифференциальные уравнения являются записью основного закона динамики в явной дифференциальной форме.
      Для абсолютного движения точки (движение в инерциальной системе отсчета) дифференциальное уравнение имеет вид:
      .
    • Векторное уравнение может быть записано в проекциях на оси прямоугольной инерциальной системы координат:
    • При известной траектория движения точки уравнение может быть записано в проекциях на оси естественной системы координат:

      С учетом того, что ,
      где — тангенциальное ускорение;
      — нормальное ускорение,
      уравнения примут вид:
      Общие теоремы динамики

    • Общие теоремы динамики устанавливают зависимость между мерами механического движения и механического взаимодействия. Выводы теорем являются результатом тождественного преобразования основного закона динамики.
    • Теорема об изменении количества движения: изменение количества движения материальной точки (механической системы) за конечный промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени — для материальной точки;
      — для механической системы.
    • Теорема об изменении кинетической энергии: изменение кинетической энергии точки (механической системы) при её перемещении равно сумме работ всех действующих внешних сил на этом перемещении — для материальной точки;
      — для механической системы.
    • Кинетическая энергия механической системы определяется в соответствии с , при этом для твердых тел выведены следующие зависимости:
      — при поступательном движении тела;
      — при вращательном движении тела;
      — при плоско-параллельном движении тела.
    • Момент инерции цилиндра относительно его оси:
      .
    • Момент инерции стержня относительно оси z:
      .
    • Момент инерции прямоугольной пластины относительно осей х и y: .
    • Момент инерции шара определяется по формуле:
      .
    • Работа силы тяжести:
      ,
      где P — сила тяжести;
      h — изменение положения тела по вертикали.
    • Работа силы при вращательном движении тела
      ,
      где M — момент силы,
      w — угловая скорость тела.
      Следует иметь в виду, что работа, как скалярная величина, может быть положительной или отрицательной. Работа будет положительной если направление действия силы совпадает с направлением движения.
      Принцип Даламбера

    • Формулировка принципа Даламбера: если в любой момент времени к действующим на точку силам присоединить силы инерции, то полученная система сил будет уравновешенной:
      .
    • Для механической системы:
      .

    Примеры решения задач

    Решение примеров по теме: «Статика твердого тела»

    Пример 1. Условия равновесия


    Висящий на нити, под углом в сорок пять градусов к гладкой стене шар весом в десять Ньютон, находится в состоянии равновесия (рис. а). Необходимо определить давление однородного шара на гладкую стенку и натяжение нити.

    Дано: P = 10 Н; α = 45°
    Найти: N, T — ?

    Решение.
    Отбрасываем связи, а их действие на шар заменяем реакциями.
    Реакция стенки N направлена перпендикулярно стенке (от точки касания С к центру шара О), реакция нити Т — вдоль нити от точки А к точке В.
    Тем самым выявляется полная система сил, приложенных к покоящемуся шару.

    Это система сил, сходящихся в центре О шара, и состоящая из веса шара Р (активная сила), реакции стенки N и реакции нити Т (рис. б).

    Реакции N и Т по величине неизвестны. Для их определения следует воспользоваться условиями равновесия (в той или иной форме — геометрической, аналитической).

    При геометрическом способе решения строится замкнутый многоугольник сил и используются соотношения школьной геометрии (теорема синусов, теорема косинусов, теорема Пифагора и т.д.).

    В данном случае это замкнутый силовой треугольник (рис. в), из которого получаем:

    После подстановки в формулы числовых значений, получим:
    .

    Ответ: .

    Решение примеров по теме: «Кинематика»

    Пример 2. Уравнение траектории точки

    Дано:
    Движение точки задано уравнениями ;
    (x, у — в сантиметрах, t — в секундах).
    Найти: уравнение траектории точки в координатной форме.

    Решение. Для определения уравнения траектории из уравнений движения исключаем время t. Для этого из первого уравнения выражаем и подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:
    .

    Опуская промежуточные выражения, получаем уравнение траектории:
    .

    Уравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке (0, 4). Траекторией служит кусок этой параболы, заключенный между точками с координатами (-2, -4) и (2, -4).

    Ответ: .

    Решение примеров по теме: «Динамика»

    Пример 3. Основной закон динамики точки

    Свободная материальная точка, масса которой десять килограмм, движется прямолинейно с ускорением пол метра в секунду в квадрате. Определить силу, приложенную к точке.

    Дано: m = 10 кг; a = 0,5 м/с 2 .
    Найти: F — ?

    Решение.
    Согласно основному закону динамики: .

    Подставив значения в формулу, получим:

    Ответ: сила, сообщающая массе, равной 10 кг,
    ускорение 0,5 м/с 2 , равна 5 Н.

    В помощь студенту
      Формулы, правила, законы, теоремы, уравнения, примеры решения задач

    Список литературы:
    Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах.
    Буторин Л.В., Бусыгина Е.Б. Теоретическая механика. Учебно-практическое пособие.

    iSopromat.ru

    Краткий курс теоретической механики предназначен для студентов технических ВУЗов очной, заочной и дистанционной форм обучения. Здесь в доступной форме изложена теория по всем разделам теормеха.

    Теоретические выкладки сопровождаются примерами решения задач по соответствующим темам

    Кинематика

    1. Кинематика точки
      1. Способы задания движения точки
        1. Векторный
        2. Координатный
        3. Естественный
      2. Скорость точки
      3. Ускорение точки
      4. Определение скорости и ускорения точки при координатном способе задания движения
      5. Естественная система координат
      6. Определение скорости и ускорения при естественном способе задания движения
    2. Кинематика твердого тела
      1. Задачи кинематики твердого тела
      2. Поступательное движение твердого тела
      3. Вращательное движение твердого тела
        1. Скорость и ускорение точек вращающегося тела
        2. Векторные выражения скорости и ускорения точек вращающегося тела
        3. Передаточное число механизма
      4. Плоское движение (ППД) твердого тела
        1. Скорости точек при ППД
        2. Теорема о скоростях точек при плоском движении
        3. Следствие из теоремы о скоростях точек в ППД
        4. Мгновенный центр скоростей
        5. Ускорения точек в ППД
        6. Теорема об ускорении точек в ППД
        7. Мгновенный центр ускорений
      5. Сложное движение точки
        1. Основные понятия и определения
        2. Скорость точки в сложном движении
        3. Ускорение точки в сложном движении. Ускорение Кориолиса
      6. Сферическое движение
        1. Сферическое движение и способы его задания
        2. Теорема о конечном перемещении твердого тела, имеющего одну неподвижную точку
        3. Угловая скорость и угловое ускорение при вращении тела вокруг неподвижной точки
        4. Скорости и ускорения точек при вращении тела вокруг неподвижной точки

    Статика

    1. Основные понятия и определения
      1. Аксиомы статики
      2. Связи и их реакции
      3. Проекция силы на ось
      4. Момент силы
      5. Плечо силы
      6. Момент силы относительно точки
      7. Теорема Вариньона
      8. Момент силы относительно оси
      9. Пара сил
      10. Распределенные нагрузки
    2. Равновесие системы
      1. Уравнения равновесия системы сил
    3. Cистема сходящихся сил
      1. Равновесие системы сходящихся сил
        1. Система сходящихся сил. Приведение к равнодействующей и ее вычисление
        2. Условия равновесия системы сходящихся сил
      2. Равновесие пространственной системы сходящихся сил
    4. Исследование равновесия тела под действием произвольной плоской системы сил
      1. Произвольная плоская система сил
      2. Равновесие произвольной плоской системы сил
        1. Первая форма условия равновесия
        2. Вторая форма условия равновесия (теорема о трех моментах)
        3. Третья форма условия равновесия
    5. Составные и соединенные конструкции
      1. Равновесие составных конструкций под действием плоской системы сил
    6. Равновесие твердого тела при наличии трения
      1. Сила трения
      2. Сила трения скольжения
      3. Сила трения качения
    7. Произвольная пространственная система сил
      1. Равновесие произвольной пространственной системы сил
      2. Момент относительно точки
      3. Момент относительно оси
      4. Связь момента силы относительно оси с моментом силы относительно точки
      5. Условия равновесия произвольной пространственной системы сил
    8. Центр тяжести
      1. Центр параллельных сил
      2. Центр тяжести
      3. Способы определения координат центра тяжести
      4. Центры тяжести простейших фигур

    Динамика

    1. Законы динамики
      1. Первый закон Ньютона (закон инерции)
      2. Второй закон Ньютона
      3. Третий закон Ньютона (закон равенства действия и противодействия)
      4. Четвертый закон Ньютона (закон независимости действия сил)
    2. Динамика точки
      1. Дифференциальные уравнения движения точки
      2. Интегрирование дифференциальных уравнений движения
    3. Динамика материальной точки
      1. Первая основная задача динамики
      2. Вторая основная задача динамики
      3. Дифференциальные уравнения относительного движения материальной точки
    4. Движение механической системы
      1. Связи
      2. Классификация сил
      3. Принцип Даламбера
      4. Принцип возможных перемещений
      5. Общее уравнение динамики
      6. Принцип Даламбера для материальной точки
      7. Принцип Даламбера для механической системы
      8. Приведение сил инерции точек твердого тела к центру масс
      9. Возможные перемещения
      10. Принцип виртуальных перемещений
      11. Принцип Даламбера-Лагранжа
      12. Обобщенные координаты
      13. Обобщенные силы
      14. Общее уравнение динамики в обобщенных силах
      15. Уравнения Лагранжа второго рода
      16. Кинетический потенциал
      17. Циклические координаты
      18. Уравнения Лагранжа второго рода для системы с одной степенью свободы
      19. Уравнения Лагранжа второго рода для системы с двумя степенями свободы
    5. Масса механической системы
      1. Кинетическая энергия
      2. Работа силы
      3. Теорема об изменении кинетической энергии
      4. Закон сохранения механической энергии
      5. Механическая система
      6. Центр масс механической системы
      7. Теорема о движении центра масс механической системы
      8. Теорема об изменении количества движения материальной точки
      9. Теорема об изменении количества движения механической системы
      10. Теорема об изменении момента количества движения (кинетического момента) материальной точки
      11. Теорема об изменении момента количества движения (кинетического момента) механической системы
      12. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси
    6. Теория удара
      1. Ньютоновская теория удара
      2. Прямой удар
      3. Центральный удар
      4. Центр удара

    Уважаемые студенты!
    На нашем сайте можно получить помощь по техническим и другим предметам:
    ✔ Решение задач и контрольных
    ✔ Выполнение учебных работ
    ✔ Помощь на экзаменах


    источники:

    http://electrichelp.ru/teoreticheskaya-mexanika-v-pomoshh-studentu/

    http://isopromat.ru/teormeh/kratkaja-teoria