Уравнение движения точки по окружности равнозамедленное

Движение по окружности.

1.Равномерное движение по окружности

2.Угловая скорость вращательного движения.

5.Связь линейной скорости с угловой.

7.Равнопеременное движение по окружности.

8.Угловое ускорение в равнопеременном движении по окружности.

10.Закон равноускоренного движения по окружности.

11. Средняя угловая скорость в равноускоренном движении по окружности.

12.Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности.

1.Равномерное движение по окружности – движение, при котором материальная точка за равные интервалы времени проходит равные отрезки дуги окружности, т.е. точка движется по окружности с постоянной по модулю скоростью. В этом случае скорость равна отношению дуги окружности, пройденной точкой ко времени движения, т.е.

и называется линейной скоростью движения по окружности.

Как и в криволинейном движении вектор скорости направлен по касательной к окружности в направлении движения (Рис.25).

2. Угловая скорость в равномерном движении по окружности – отношение угла поворота радиуса ко времени поворота:

В равномерном движении по окружности угловая скорость постоянна. В системе СИ угловая скорость измеряется в(рад/c). Один радиан – рад это центральный угол, стягивающий дугу окружности длиной равной радиусу. Полный угол содержит радиан, т.е. за один оборот радиус поворачивается на угол радиан.

3. Период вращения – интервал времени Т, в течении которого материальная точка совершает один полный оборот. В системе СИ период измеряется в секундах.

4. Частота вращения – число оборотов , совершаемых за одну секунду. В системе СИ частота измеряется в герцах ( 1Гц = 1 ) . Один герц – частота, при которой за одну секунду совершается один оборот. Легко сообразить, что

Если за время t точка совершает n оборотов по окружности то .

Зная период и частоту вращения, угловую скорость можно вычислять по формуле:

или

5 Связь линейной скорости с угловой. Длина дуги окружности равна где центральный угол, выраженный в радианах, стягивающий дугу радиус окружности. Теперь линейную скорость запишем в виде

, где .

Часто бывает удобно использовать формулы: или Угловую скорость часто называют циклической частотой, а частоту линейной частотой.

6. Центростремительное ускорение. В равномерном движении по окружности модуль скорости остаётся неизменным , а направление её непрерывно меняется (Рис.26). Это значит, что тело, движущееся равномерно по окружности, испытывает ускорение, которое направлено к центру и называется центростремительным ускорением.

Пусть за промежуток времени прошло путь равный дуге окружности . Перенесём вектор , оставляя его параллельным самому себе, так чтобы его начало совпало с началом вектора в точке В. Модуль изменения скорости равен , а модуль центростремительного ускорения равен

На Рис.26 треугольники АОВ и ДВС равнобедренные и углы при вершинах О и В равны, как углы с взаимно перпендикулярными сторонами АО и ОВ Это значит, что треугольники АОВ и ДВС подобные. Следовательно Если то есть интервал времени принимает сколь угодно малые значения, то дугу можно приближенно считать равной хорде АВ, т.е. . Поэтому можем записать Учитывая, что ВД= , ОА=R получим Умножая обе части последнего равенства на , получим и далее выражение для модуля центростремительного ускорения в равномерном движении по окружности: . Учитывая, что получим две часто применяемые формулы:

, .

Итак, в равномерном движении по окружности центростремительное ускорение постоянно по модулю.

Легко сообразить, что в пределе при , угол . Это значит, что углы при основании ДС треугольника ДВС стремятся значению , а вектор изменения скорости становится перпендикулярным к вектору скорости , т.е. направлен по радиусу к центру окружности.

7. Равнопеременное движение по окружности – движение по окружности, при котором за равные интервалы времени угловая скорость изменяется на одну и ту же величину.

8. Угловое ускорение в равнопеременном движении по окружности – отношение изменения угловой скорости к интервалу времени , в течении которого это изменение произошло, т.е.

,

где начальное значение угловой скорости, конечное значение угловой скорости, угловое ускорение, в системе СИ измеряется в . Из последнего равенства получим формулы для вычисления угловой скорости

и , если .

Умножая обе части этих равенств на и учитывая, что , — тангенциальное ускорение, т.е. ускорение, направленное по касательной к окружности , получим формулы для вычисления линейной скорости:

и , если .

9. Тангенциальное ускорение численно равно изменению скорости в единицу времени и направлено вдоль касательной к окружности. Если >0, >0, то движение равноускоренное. Если

Дата добавления: 2015-08-08 ; просмотров: 17572 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Виды движения по окружности

Угловое движение можно условно разделить на два вида:

  1. Когда изменяется только направление вектора линейной скорости, а его длина не изменяется.
  2. Или, когда изменяются обе характеристики вектора линейной скорости.

Во втором случае, для описания движения будем применять более сложные формулы кинематики. Так как появится еще один вид ускорения.

Центростремительное (нормальное) ускорение есть всегда, когда есть движение по окружности, при этом не важно, меняется ли скорость тела по модулю, или не меняется.

Движение по окружности с постоянной по модулю скоростью

Пусть тело движется по окружности, но при этом длина вектора линейной скорости не меняется (рис. 1).

\[\left|\vec \right| = const\]

На рисунке 1 указаны: а) – вид сбоку, б) вид сверху, вектор угловой скорости направлен к нам перпендикулярно рисунку.

Скорость будет меняться только по направлению от точки к точке, потому, что на тело действует центростремительная сила \(\displaystyle \vec>>\) , тело обладает центростремительным \(\displaystyle \vec>>\) (нормальным) ускорением.

Кроме линейной, тело обладает угловой скоростью. Если линейная скорость не изменяется по модулю, то длина вектора угловой скорости не меняется.

На рисунке 1а изображен вектор угловой скорости \(\displaystyle \vec<\omega>\), на рисунке 1б вектор угловой скорости направлен к нам перпендикулярно плоскости рисунка. Направление, в котором тело движется по окружности, указано синей стрелкой.

Тангенциальное ускорение – когда модуль скорости меняется

Тело может увеличивать или уменьшать свою скорость, когда движется по окружности.

В таком случае, дополнительно к нормальному ускорению возникает тангенциальное \(\displaystyle \vec>\) ускорение.

Тангенциальное ускорение играет роль линейного ускорения при прямолинейном движении тела. Вектор \(\displaystyle \vec>\) направлен параллельно вектору \(\displaystyle \vec\) скорости.

Подобно движению по прямой, вектор ускорения – это первая производная скорости по времени, или вторая производная перемещения по времени.

Когда векторы скорости \(\vec\) и ускорения \(\vec>\) сонаправлены (рис. 2), линейная и угловая скорости возрастают.

А когда ускорение \(\vec>\) направлено противоположно (рис. 3) вектору скорости \(\vec\), угловая и линейная скорости уменьшаются.

С линейной скоростью \(\vec\) связана угловая \(\vec<\omega>\) скорость.

Из рисунков 2, 3 следует: когда появляется тангенциальное ускорение, меняется и угловая скорость. Значит, тангенциальное ускорение \(\vec>\) появляется совместно с угловым \(\vec<\beta>\) ускорением и между ними есть связь.

Связь между тангенциальным и угловым ускорением выглядит аналогично связи между линейной и угловой скоростью.

В векторном виде

В скалярном виде

\[ \large \boxed < a_<\tau>= \beta \cdot R >\]

\(\displaystyle \vec <\beta>\left( \frac<\text<рад>>>\right)\) – угловое ускорение;

\(\displaystyle \vec< a_<\tau>> \left( \frac<\text<м>>>\right)\) – тангенциальное ускорение;

\(R \left( \text<м>\right)\) – радиус окружности.

Равноускоренное движение по окружности

Угловая скорость увеличивается (рис. 2), когда угловое ускорение сонаправлено с вектором угловой скорости. Когда движение происходит с постоянным ускорением, его называют равноускоренным.

Для решения задач на равноускоренное движение по окружности, поступаем аналогично равноускоренному движению по прямой. Применяем систему из двух уравнений:

\[ \large \boxed < \begin\omega = \omega _ <0>+ \beta \cdot t \\ \displaystyle \varphi = \omega_ <0>\cdot t + \beta \cdot \frac <2>\end > \]

Первое уравнение системы – это связь между начальной \(\omega_ <0>\) и конечной \(\omega \) скоростью. Второе уравнение – это уравнение движения.

Равнозамедленное движение по окружности

Когда векторы \(\vec<\beta>\) и \(\vec<\omega>\) направлены в противоположные стороны, угловая скорость \(\vec<\omega>\) уменьшается (рис. 3).

Для решения задач кинематики, в которых угловая скорость уменьшается и, движение равнозамедленное, используем систему, состоящую из таких уравнений:

\[ \large \boxed < \begin\omega = \omega _ <0>— \beta \cdot t \\ \displaystyle \varphi = \omega_ <0>\cdot t — \beta \cdot \frac <2>\end > \]

Общее ускорение при движении по окружности

Пусть точка движется по окружности и линейная \(\vec\) скорость ее изменяется по модулю. При этом, точка обладает двумя видами ускорения — нормальным и тангенциальным. Эти виды ускорения обозначают символом \(\vec\).

Примечание: Любое ускорение, обозначаемое символом «a», измеряется в метрах, деленных на секунду в квадрате.

Направление вектора общего ускорения указано на рисунке 4а, а для равнозамедленного – на рисунке 4б.

Так как векторы \(\vec>\) и \(\vec>\) всегда перпендикулярны, длину вектора общего ускорения \(\vec\) можно найти из теоремы Пифагора:

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле


источники:

http://formulki.ru/mehanika/vidy-dvizheniya-po-okruzhnosti

http://fizmat.by/kursy/kinematika/okruzhnost