Уравнение движения в энергетической форме это

Уравнение движения в энергетической форме это

Динамическая модель машинного агрегата.

Прямая задача динамики машины, как отмечалось и ранее, является задачей анализа, задачей по определению закона движения механической системы под действием заданных внешних сил. При решении этой задачи параметры машинного агрегата и действующие на него внешние силы известны, необходимо определить закон движения: скорости и ускорения в функции времени или обобщенной координаты. Иначе эту задачу можно сформулировать так: заданы управляющие силы и силы внешнего сопротивления, определить обеспечиваемый ими закон движения машины. Обратная задача — это задача синтеза управления, когда задан требуемый закон движения машины и внешние силы сопротивления, а определяются управляющие силы. При решении задач динамики используются либо уравнения силового равновесия системы — метод кинетостатики, либо уравнения энергетического равновесия — закон сохранения энергии. Для идеальной механической системы, в которой не потерь энергии и звенья абсолютно жесткие, этот закон можно применять в виде теоремы о изменении кинетической энергии. Согласно этой теореме работа всех внешних сил действующих на систему расходуется только на изменение ее кинетической энергии. При этом потенциальные силы — силы веса рассматриваются как внешние

где D T — изменение кинетической энергии системы, T — текущее значение кинетической энергии системы, T нач -начальное значение кинетической энергии системы,
суммарная работа внешних сил, действующих на систему.

Рассмотрим сложную механическую систему (рис.6.1), состоящую из n подвижных звеньев из которых r — звеньев совершают вращательное движение, j — плоское, k — поступательное. Основная подвижность системы равна W=1 . На систему действуют: f — внешних сил и m — внешних моментов. Движение этой системы определяется изменением одной независимой обобщенной координаты. Такую систему при решении задач динамики можно заменить более простой динамической моделью. Положение звена этой модели определяется обобщенной координатой, а динамические параметры заменяются: инерционные — суммарным приведенным моментом инерции I пр å , силовые — суммарным приведенным моментом М пр å . Эти параметры динамической модели рассчитываются по критериям подобия модели и объекта, которые определяются соответственно из равенства правых и левых частей уравнений изменения кинетической энергии для модели и объекта, т.е.

— сумма работ всех внешних сил, действующих на систему,
— работа суммарного приведенного момента,
— сумма кинетических энергий звеньев системы,
— кинетическая энергия динамической модели.

Уравнения движения динамической модели

Уравнение движения динамической модели в интегральной форме.

Запишем для динамической модели теорему о изменении кинетической энергии

где

и уравнение движения динамической модели в интегральной или энергетической форме

Из этого уравнения после преобразований

получим формулу для расчета угловой скорости звена приведения.

Для машин работающих в режиме пуск-останов

формула принимает вид

Уравнение движения динамической модели в дифференциальной форме.

Продифференцируем полученное выше уравнение по обобщенной координате

где

После подстановки получим

уравнение движения динамической модели в дифференциальной форме.

Из этого уравнения после преобразований

получим формулу для расчета углового ускорения звена приведения.

Для механических систем в которых приведенный момент не зависит от положения звеньев механизма.

Определение параметров динамической модели машины (приведение сил и масс) .

Рассмотрим изображенную на рис. 6.1 механическую систему и ее динамическую модель. Запишем для них уравнение изменения кинетической энергии. Кинетическая энергия:

  • для механической системы
  • для модели

Суммарная работа внешних сил:

  • для механической системы
  • для модели

Модель будет энергетически эквивалентна рассматриваемой механической системе, если правые и левые части уравнений изменения кинетической энергии для модели и для системы будут соответственно равны. То есть для левых частей выполняется условие Т с = Т м , а для правых — A å c = A å м . Для того чтобы второе равенство выполнялось в течение всего диапазона изменения обобщенной координаты, необходимо обеспечить не равенство интегралов, а равенство подынтегральных выражений dA å c =dA å м . Подставляя в равенства, записанные ранее выражения для кинетических энергий и работ получим:

для левых частей

для правых частей

Из уравнения для левых частей получаем формулу для определения приведенного суммарного момента инерции динамической модели

Из уравнения для правых частей получаем формулу для определения приведенного суммарного момента динамической модели

Механические характеристики машин.

Механической характеристикой машины называется зависимость силы или момента на выходном валу или рабочем органе машины от скорости или перемещения точки или звена ее приложения.

Рассмотрим примеры механических характеристик различных машин.


    Двигатели внутреннего сгорания (ДВС):

    четырехтактный ДВСРис 6.2

Индикаторная диаграмма — графическое изображение зависимости давления в цилиндре поршневой машины от хода поршня.
двухтактный ДВС

Рис 6.3

Электродвигатели

    асинхронный электродвигатель переменного тока На диаграмме: М дп — пусковой момент; М дн — номинальный крутящий момент; М дк или М дmax — критический или максимальный момент; w дн — номинальная круговая частота вращения вала двигателя; w дхх или w дс — частота вращения вала двигателя холостого хода или синхронная. Уравнение статической характеристики асинхронного электродвигателя на линеаризованном участке устойчивой части

    где М д — движущий момент на валу двигателя,

    w д — круговая частота вала двигателя ,

    Статическая характеристика асинхронного двигателя, выражающая зависимость нагрузки от скольжения, определяется формулой Клосса

    Рис 6.4
  • двигатель постоянного тока с независимым возбуждением

Рис 6.5

Уравнение статической характеристики для двигателя постоянного тока с независимым возбуждением

где k = М дн ( w дхх — w дн ).

В электрических параметрах характеристика записывается в следующем виде

где k M = M дн /I ян — коэффициент момента, k w = (U ян — R ян Ч I ян ) / w дн — коэффициент противоэлектродвижущей силы, U я — напряжение в цепи якоря, R я — сопротивление цепи якоря
Рабочие машины

    поршневой насос


поршневой компрессор

Рис 6.7

Линии bc и ad — линии сжатия и расширения газа (воздуха) определяются параметрами газа (объемом, давлением и температурой) и в общем виде описываются уравнением политропы p × V n = const , где n — показатель политропы ( 1 n 0 ).
строгальный станок

Рис 6.8

Механические характеристики определяют внешние силы и моменты, действующие на входные и выходные звенья, рассматриваемой механической системы со стороны взаимодействующих с ней внешних систем и окружающей среды. Характеристики определяются экспериментально, по результатам экспериментов получают регрессионные эмпирические модели, которые в дальнейшем используются при проведении динамических расчетов машин и механизмов.

Пример на определение параметров динамической модели (на приведение сил и масс ).

Дано: Кинематическая схема механизма поршневого насоса( l i , j i ) , М д , F c , m i , I Si ;

Рис 6.8
Рис 6.9

1. Определение сил веса G i = m i × g.

2.Определение кинематических передаточных функций.

Простой и наглядный метод определения передаточных функций — графоаналитический метод планов возможных скоростей. При этом в произвольном масштабе строятся планы скоростей для рада положений цикла движения механизма. По отрезкам плана скоростей рассчитываются соответствующие передаточные функции по следующим формулам ( для машины, схема которой изображена на рис.6.8 ):

Передаточные функции:

По этим формулам строятся цикловые диаграммы передаточных функций для рассматриваемого механизма ( см. рис. 6.10 ).

3. Определение суммарного приведенного момента М пр å

Для определения суммарного приведенного момента необходимо просуммировать приведенные моменты от всех внешних сил, действующих на рассматриваемую систему. Приведенный момент от силы равен скалярному произведению вектора силы на вектор передаточной функции точки ее приложения, от момента — произведению момента на передаточное отношение от звена приложения момента к звену приведения. На рассматриваемую систему действуют силы веса звеньев G i , сила сопротивления F с и движущий момент М д . Приведенный момент от этих сил рассчитывается по формуле:

4. Определение суммарного приведенного момента инерции I пр å .

Для определения суммарного приведенного момента инерции необходимо просуммировать приведенные моменты инерции от всех масс и моментов инерции подвижных звеньев рассматриваемой системы. Приведенный момент инерции от массы равен произведению массы на квадрат передаточной функции ее центра, от момента инерции — произведению момента инерции звена на квадрат передаточного отношения от этого звена к звену приведения. Инерционность рассматриваемой системы определяется массами звеньев 2 и 3 и моментами инерции ротора двигателя, редуктора, коленчатого вала, маховика и звена 2. В суммарный приведенный момент инерции входят как составляющие не зависящие от положения механизма, так и составляющие, зависящие от обобщенной координаты. Первые имеют постоянный момент инерции и относятся к первой группе звеньев, момент инерции других — переменный, они образуют вторую группу. Приведенный момент для рассматриваемой системы определяется по формуле:

Таким образом выполнена поставленная задача — определены параметры динамической модели поршневого насоса: приведенный суммарный момент М пр å и приведенный суммарный момент инерции I пр å .

1. Определите прямую задачу динамики машин ? (стр. 1)

2. Сформулируйте теорему о изменении кинетической энергии для идеальной механической системы ? (стр.1)

3. Запишите уравнения движения динамической модели в интегральной и дифференциальной форме ? (стр. 2-3)

4. Что называется динамической моделью машины ? (стр. 1)

5. Какие параметры характеризуют динамическую модель машины ? (стр.3-4)

6. Что называется механической характеристикой машины ? (стр.4)

7. Изобразите механические характеристики (д.в.с., асинхронного электродвигателя, поршневого компрессора) и укажите их основные параметры ? (стр. 4-8)

8. Изложите алгоритм определения параметров динамической модели для поршневого насоса ? (стр.8-12)

Уравнение движения механизма

Выполнив приведение сил и масс, любой механизм с одной степенью свободы (рычажный, зубчатый, кулачковый и др.), сколь бы сложным он ни был, можно заменить его динамической моделью (рис. 5.2). Эта модель в общем случае имеет переменный приведенный момент инер- ции и к ней приложен суммарный приведенный момент . Закон движения модели такой же, как и закон движения начального звена механизма (см. 5.1).

Рис. 5.2. Динамическая модель механизма с W = 1

после приведения сил и масс

Основой для составления уравнения движения механизма с одной степенью свободы служит теорема об изменении кинетической энергии:

Работу совершают все активные силы и моменты и силы трения во всех кинематических парах механизма.

Уравнение движения в энергетической форме. Запишем формулу для кинетической энергии модели, учитывая уравнение (5.1):

(5.3)

Так как вся нагрузка, приложенная к модели, выражается суммарным приведенным моментом , то сумма работ равна

(5.4)

Здесь переменная интегрирования φм заменена координатой φ1 начального звена, так как φм = φ1.

Подставив выражения (5.4) в (5.2), получим уравнения движения в энергетической форме:

(5.5)

где искомой величиной является угловая скорость φ1 начального звена механизма.

В общем случае верхний предел φ1 интегрирования в равнении (5.5) считается переменным. Если вся нагрузка, приложенная к механизму, зависит только от его положения, то и суммарный приведенный момент есть функция только координаты φ1. В этом случае уравнение (5.5) решается непосредственно относительно искомой величины ω1:

(5.6)

Укажем, что интеграл под корнем имеет знак, который необходимо учитывать.

Уравнение движения в дифференциальной форме.

Продифференцируем (5.5) по координате φ1:

Определим производную, стоящую в левой части уравнения, помня, что в общем случае переменной величиной является не только угловая скорость ω1, но и . Поэтому

(5.7)

Это и есть уравнение движения в дифференциальной форме, поскольку искомая переменная величина – угловая скорость ω1 начального звена механизма – стоит под знаком производной. При пользовании уравнением (5.7) следует помнить, что суммарный приведенный момент , а также производная d/dφ1 величины алгебраические и подставляются со своими знаками.

В том случае, когда исследуется механизм, имеющий = const (например, зубчатый механизм с круглыми центроидами), уравнение его движения упрощается и приобретает вид

(5.8)

Уравнение движения в дифференциальной форме (5.7) может быть получено также и из уравнения Лагранжа второго рода.

Для определения углового ускорения 1 начального звена используем уравнение (5.7) и решаем его относительно

(5.9)

Величины и d/dφ1 подставляются в уравнение (5.9) со своими знаками. Если угловое ускорение 1 получится со знаком, противоположным знаку угловой скорости ω1, значит, начальное звено механизма движется замедленно.

Производную d/dφ1 подсчитывают численным дифференцированием или графическим дифференцированием. Необходимо отметить, что существует другой значительно более точный (но и более трудоемкий) способ определения производной d/dφ1 , который можно найти в специальной литературе.

УРАВНЕНИЕ ДВИЖЕНИЯ МЕХАНИЗМА

После выполнения приведения сил и масс, любой механизм с одной степенью подвижности можно заменить его динамической моделью (рисунки 4.1; 4.5). Эта модель имеет переменный приведенный момент инерции Iпр и приведенный момент Мпр. Закон движения модели такой же, как и закон движения начального звена (уравнение 4.1).

Основой для составления уравнения движения механизма служит теорема об изменении кинетической энергии

, (4.8)

где υ – скорость в конце движения, υо – скорость в начале движения, Адв – работа движущих сил, Асс – работа сил сопротивления. При этом работу совершают все силы и моменты, а также силы трения.

Уравнение движения в энергетической форме. Если привести все силы и массы к звену приведения, то уравнение примет вид

, (4.9)

где АРдв – работа приведенной к звену приведения движущей силы, АРсс – работа приведенной силы сопротивления, mпр и mпр0 — приведенные массы, соответствующие конечному и начальному положениям.

Обычно удобнее в левую часть уравнения вводить работу приведенных моментов АМдв и МРсс, а правую часть выражать через приведенные моменты инерции Iпр и Iпр0. Тогда выражение (4.9) примет вид

. (4.10)

Уравнение движения в дифференциальной форме.Уравнение движения механизмов машинного агрегата запишем через приведенные силы и массы, для чего продифференцируем уравнение (4.9)

, (4.11)

где Рдв – движущая силы, Рс – сила сопротивления.

То же самое уравнение можно записать, если воспользоваться приведенным моментом и приведенным моментом инерции, для чего продифференцируем уравнение (4.10)

. (4.12)

Уравнение движения в интегральной форме.В дифференциальное уравнение движения механизма машинного агрегата входят приведенные моменты движущих сил и сил сопротивления. Эти моменты могут быть функциями обобщенной координаты φ или ее первой производной φ’ = ω, или времени t. Тогда уравнение (4.12) запишем в виде

. (4.13)

Интегрируя данное выражение по обобщенной координате, получим

. (4.14)


источники:

http://3ys.ru/teoriya-mekhanizmov-i-mashin/uravnenie-dvizheniya-mekhanizma.html

http://helpiks.org/3-67748.html