Уравнение движения жидкости в напряжениях связывает

Уравнения движения жидкости в напряжениях.

Уравнения движения жидкости в напряжениях.

Уравнения движения жидкости в напряжениях. Чтобы вывести уравнение движения жидкости, выберите любое число объема жидкости, окруженное поверхностью 5, и опишите уравнение, представляющее закон импульса. Производная по времени импульса системы равна сумме внешних сил, действующих на систему. Так как сила P действует на каждую единицу массы, то основным вектором массовой силы является Интеграл / pp XV Суммируя базовую силу RP 013, распределенную по поверхности 5, получаем основной вектор поверхностных сил. РП 013. с Импульс K и его производная от массы жидкости объема в выражается в Интеграле. Xv Здесь и находится скорость центроида объема (W. Напишите уравнение импульса в виде-ЗГ \ Риш-19рш+1рпаз. XV XV 8 60. Представляет левую часть формы TG) 0 «Ш ^ ^ + 1» 4-01№)■ 47 47 47 Предполагая, что масса объема жидкости постоянна、 (p(1Щ-0.

Тогда уравнение | Р = / ППБ?+ \ pn48. (3.8)) Номер ’ 47 5 Это уравнение является интегральной формой уравнения жидкости motion. To получив его дифференциальную форму, содержащаяся в нем поверхностная фракция преобразуется в объемный Интеграл. Людмила Фирмаль

  • Для этого, согласно формуле (3.4) Я Pn015 = | [pxC08(н, х)+ р» co8(н, г) ПЗ в COS (Л, 2)] У3. 5-5 Использование известных выражений векторного анализа, допустимых для любого вектора、 | Oco8 (я, х) Д8 = | / Cco8(н, д) Д8 = Я? 5(г / о co8 (l, 2) az = V、 Мне 47. Мы получаем Мне 7 лет Подставляя это выражение в уравнение (3.8) и записывая все члены уравнения на одной стороне знака равенства、 Семь Это уравнение должно быть справедливо для любого Тома 7, так что интеграл равен нулю означает исчезновение подынтегрального выражения. Подобный этому + ^ +(3.9) 6! Уравнение (3.9) является векторной формой желательного уравнения для движения жидкости в stress. It эквивалентно 3 уравнениям проекции и имеет вид: (3.10)) Система уравнений движения напряжений (3.10) содержит 3 проекции скорости, vy, u и 6 независимых компонент тензора напряжений в виде неизвестной функции.
  • Массовая сила проекции Р», РУ, Рг, как правило, заранее известны. Таким образом, для несжимаемой жидкости, система (3.10) содержит 9 неизвестных функций, поэтому он открыт. Для сжимаемой жидкости (газа) плотность р также должна быть включена в число unknowns. So систему(3.10)можно дополнить уравнением неразрывности, включающим проекцию плотности и скорости, но этого недостаточно для закрытия it. It необходимо учитывать и другие взаимосвязи между указанными функциями. Такая связь может быть установлена только путем принятия определенных гипотез, основанных на данных наблюдений и выражающих физические свойства жидкости. Проще всего, для неподвижной жидкости, система (3.10) закрывается. Обратите внимание на физическое содержание уравнений (3.8) и (3.9).

Они выводятся из законов импульса системы, а в случае сплошной среды они образуются непрерывным набором жидких частиц, составляющих объем. Людмила Фирмаль

  • Таким образом, эти уравнения можно рассматривать как формы уравнений импульса, присущих жидкой среде. Но в предположении, что масса объема жидкости постоянна, то же самое уравнение может быть выведено непосредственно из второго закона Ньютона или из принципа Д’Аламбера. Следовательно, уравнение (3.8) и (3.9) можно также рассматривать как интегральную и дифференциальную формы второго закона Ньютона для объема жидкости, respectively. In в этом случае левая часть формулы (3.8) представляет собой суммарную силу инерции, а правая-сумму внешних сил, действующих на массу объекта. liquid. In по формуле (3.9), правая сторона представляет собой произведение массы единицы объема и ускорения (силы инерции), а левая сторона-сумму масс и поверхностных сил, действующих на нее.

Смотрите также:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОЙ ЖИДКОСТИ

Особенности напряженного состояния вязкой жидкости.

Нормальные и касательные напряжения. Тензор напряжений.

Закон трения Ньютона. Законом трения Стокса.

Поперечный и продольной градиент скорости.

Динамический и кинематический коэффициент вязкости.

Скорости угловой и линейной деформации. Тензор скоростей деформаций

Давление в вязкой жидкости. «Вторая вязкость».

Уравнение Навье Стокса.

Уравнения движения идеальной жидкости рассматривались в разделе Уравнения движения[1], где они были представлены в форме Эйлера и в форме Громеки. В настоящем разделе изучается движение вязкой жидкости. Это более сложное явление. В отличие от идеальной жидкости, где поверхностными силами являются только силы нормального давления (нормальные напряжения сжатия), в вязкой жидкости эти силы получаются несколько иными, а именно: появляются касательные напряжения, приложенные к поверхностям, которые ограничивают рассматриваемый объем, нормальные напряжения зависят не только от давления, но и от сил вязкости.

Уравнения движения вязкой жидкости выводятся тем же методом, что и уравнения Эйлера, только расширяется комплект действующих сил — добавляются касательные напряжения, а нормальные напряжения вычисляются более сложно. Поэтому, прежде чем приступить к выводу, необходимо выяснить, как определяются напряжения.

В элементарном объеме, изображенном на рисунке 5, полагая, что жидкость вязкая, векторы поверхностных сил будут направлены не перпендикулярно к площадкам (например, АDЕF, ВСКL), а под косыми углами к ним. Это связано с тем, что векторы напряжений поверхностных сил имеют не только нормальные компоненты, но и касательные. Заметим также, что в теории вязкой жидкости положительными нормальными напряжениями считаются напряжения растяжения. Поэтому на схемах подобных рисунку 5, напряжения от поверхностных сил изображают векторами, направленными не внутрь рассматриваемого объема, а наружу.

Для обозначения проекций вектора напряжения поверхностной силы применяется двойная индексация. Первый индекс указывает ту площадку, на которой рассматриваются напряжения. Этому индексу дается наименование той координатной оси, которая нормальна к заданной площадке. Так, например, для площадки, параллельной координатной плоскости хоу, при обозначении любых напряжений первым индексом будет z. Второй индекс указывает ту ось, на которую проектируется вектор напряжения. Таким образом, на каждой площадке рассматриваются два касательных и одно нормальное напряжение. Касательные имеют разноименные индексы, нормальные — одноименные (см. рисунок 109).

Поскольку частицу жидкости можно представить как элементарный объем кубической формы, то вполне очевидно, что для характеристики ее напряженного состояния нужно задать следующие девять величин:

Если составить моменты сил, вызываемые касательными напряжениями, приложенными к граням кубика, и рассмотреть условия их равновесия относительно координатных осей [2], то нетрудно доказать, что

т.е. касательные напряжения, приложенные к смежным граням и действующие в одной плоскости, численно равны. Это дает значительное упрощение, так как позволяет сократить число рассматриваемых напряжений с девяти до шести.

Для дальнейших рассуждений необходимо связать напряжения со скоростью движения жидкости.

Наиболее простую зависимость касательных напряжений от скорости дает закон жидкостного трения Ньютона

(6.1)

Здесь τ — касательное напряжение, ∂w/∂n — изменение скорости по нормали к линии тока, или поперечный градиент скорости. Коэффициент пропорциональности в этой формуле μ — называется динамическим коэффициентом вязкости, или динамической вязкостью. Он зависит от рода жидкости и характеризует вязкость. Кроме того, он зависит от температуры. Для капельных жидкостей с ростом температуры и уменьшается, следуя зависимости

(6.2)

где а и b — постоянные для данного рода жидкости коэффициенты, t — температура в градусах Цельсия, μ0 — динамический коэффициент вязкости при t=0°. Для газов μ возрастает с увеличением температуры. Эта зависимость хорошо описывается формулой Сатерлэнда

(6.3)

в которой с — коэффициент, зависящий только от рода газа, Т — абсолютная температура в градусах Кельвина, μ0 — коэффициент вязкости при Т=Т0. Для воздуха можно пользоваться также приближенной зависимостью

(6.4)

Наряду с динамическим коэффициентом вязкости применяется еще кинематический коэффициент вязкости

(6.5)

Его размерность [м 2 /сек] не содержит динамических величин, а только кинематические, откуда он и получил свое название.

Единицы измерения дляμ и ν в различных системах следующие:

СИСГСМКГС (техническая)
μ1 1 1
ν1 1 1

В системе СГС эти единицы имеют специальные названия: 1 дин сек/см 2 = 1 пуаз; 1 см 2 /сек = 1 стокс. Соотношение между единицами в различных системах такое:

Применяя формулу Ньютона (6.1) к потоку, движущемуся параллельно плоскости хоу (см. рисунок 110), можно записать

(6.6)

Если рассмотреть два бесконечно близко расположенных слоя, которые на рисунке 110 изображены параллельными плоскостями, то можно заметить, что касательные напряжения на верхний слой со стороны нижнего действуют против движения, а на нижний со стороны верхнего — по движению. Иначе говоря, верхний слой стремится увлечь за собой нижний, а нижний слой тормозит верхний. Объем жидкости, находящийся между такими слоями, деформируется, получая деформацию сдвига (см. рисунок 111). Согласно формуле (1.5)[3] скорость угловой деформации определится как

что при =0 (так как wz=0) даст

(6.7)

Таким образом, между касательным напряжением и скоростью угловой деформации существует линейная зависимость с коэффициентом пропорциональности 2μ.

В более общем виде связь между напряжениями и скоростями деформации жидкости устана­вливается законом трения Стокса. Этот закон имеет формальную аналогию с законом Гука для твердого тела, применяемом в теории упругости или в сопротивлении мате­риалов. По закону Гука напряжения, возникающие в твердом теле, пропорциональны деформациям: нормальные напряжения пропорциональны линейным относительным деформациям, а касательные — угловым. Согласно закону Стокса напря­же­ния пропорциональны не деформациям, а скоростям деформации: нормальныескорости линейной деформации, а касательныескорости угловой деформации. Коэффициент пропорциональности, как это следует из рассмотренного выше частного примера, равен [4].

Обращаясь к теореме Коши-Гельмгольца (1.7)[5] видим, что при движении жидкого объема в общем случае имеют место следующие скорости деформации:

скорости линейной деформации

скорости угловой деформации

Тогда, принимая во внимание формулы (1.5), можно записать касательные напряжения в таком виде:

(6.8)

а нормальные напряжения, возникающие только от действия сил вязкости, представить так:

(6.9)

Нужно обратить внимание, что полные величины нормальных напряжений рхх, руу, рzz отличаются от записанных формулой (6.9) на величину давления в газе р0, которое определяется молекулярно-кинетическими процессами. (Давление в газе или жидкости существует и тогда, когда влияние вязкости отсутствует, например, в идеальной жидкости или в неподвижной реальной жидкости). Таким образом,

(6.10)

Знак минус перед величиной р0 связан с тем, что давление создает напряжения сжатия, в то время как положительными считаются нормальные напряжения растяжения.

Вычитая из утроенной величины р сумму напряжений, можно записать

(6.11)

Теперь следует ввести понятие о том, что такое давление в вязкой жидкости.

Если за величину давления принять нормальные напряжения рхх, рyy, рzz, то возникает неудобство, так как в одной и той же точке эти напряжения различны по величине. В этом случае пришлось бы в каждом направлении рассматривать свою величину давления. Для того чтобы понятия давления в вязкой жидкости и в идеальной жидкости сохранялись идентичными, надо отыскать такую комбинацию, составленную из трех напряжений рхх, рyy и рzz, которая не зависела бы от ориентации системы координат, иначе говоря, которая не зависела бы от ориентации площадки, проведенной внутри жидкости для подсчета действующих на нее сил давления. Таким свойством обладает средняя арифметическая величина

Она и принимается в качестве давления в вязкой жидкости.

Пользуясь таким представлением о давлении, можно записать выражение (6.11) для рхх и аналогичные ему для рyy и рzz в следующем виде:

(6.13)

В случае несжимаемой жидкости, согласно уравнению неразрывности divw=0, тогда последние слагаемые в правой части обращаются в нуль и уравнения (6.13) упрощаются. Сопоставляя их с формулами (6.10), нетрудно заметить, что в этом случае р=р0.

Попутно заметим, что «давление движущейся жидкости имеет свойства гидростатического, если не учитывать сил вязкости. Действительно, для невязкой жидкости силы, являющиеся причиной движения, не отличаются от сил, действующих в покоящейся жидкости (массовые силы, силы инерции). Поэтому доказательство того, что давление образует скалярное поле (см. Гидростатику), полностью распространяется и на движущуюся невязкую жидкость».

Для вывода уравнений движения вязкой жидкости рассмотрим элементарный объем АВСDЕFLК (см. рисунок 112), движущийся под действием сил: поверхностных нормальных , поверхностных касательных и массовых . Равнодействующая этих сил, в соответствии со вторым законом Ньютона, должна равняться массе жидкого объема, умноженной на ускорение. Запишем это уравнение сначала в проекциях на ось x, подсчитав предварительно проекции действующих сил

здесь — масса, а — проекция ускорения на ось х. После подстановки сюда вычисленных значений проекций сил, приведения подобных и сокращения на , это уравнение приобретает вид:

(6.14)

Подставим теперь вместо напряжений их выражения через скорости деформаций, пользуясь формулами (6.13) и (6.8) и считая μ=соnst. Тогда

и уравнение (6.14) после небольших преобразований принимает такой вид:

Применяя здесь операторы Δ и div

Поделив обе части равенства на ρ и приняв во внимание, что , представим уравнение движения в проекциях на ось х и аналогичные ему в проекциях на оси у и z в окончательном виде

(6.15)

Они называются уравнениями Навье-Стокса [6].

В заключение нужно отметить, что существует кроме зависимости (6.12) еще одна, которая может представлять давление в вязкой жидкости, а именно

Эта величина также не зависит от ориентации площадки, на которую рассматривается действие сил давления. Коэффициент μ’ называется второй вязкостью.

На формальную возможность такого представления давления указывали еще Стокс и Кирхгоф, однако физическое истолкование явление второй вязкости получило в 1937 году в работах Л.И.Мандельштама и М.А.Леонтовича. Вторая вязкость связана с явлениями неравновесности и проявляется в быстропротекающих процессах. Если в движущемся газе происходит очень быстрое изменение плотности, то наблюдается некоторое отставание в изменении других величин. Восстановление равновесия протекает с диссипацией энергии, т.е. с необратимым преобразованием части энергии в тепло. Таким образом, этот эффект аналогичен вязкости.

Если провести вывод уравнений Навье–Стокса, воспользовавшись формулой (6.16) вместо (6.12), то они принимают такой вид:

(6.17)

Нужно заметить, что в несжимаемой жидкости вторая вязкость не проявляется (divw=0), а в газах при сравнительно медленных процессах последний член в формуле (6.16) мал, поэтому в обычных случаях давление в вязкой жидкости определяют по формуле (6.12), а уравнения Навье — Стокса берут в форме (6.15).

«Дифференциальные уравнения газовой динамики, записанные в координатной форме, сложны, их вывод требует большого времени и большого количества бумаги. Значительно удобнее при их получении использовать векторную алгебру и самые начала тензорного анализа: тензорные обозначения и простейшие тензорные преобразования».

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.


источники:

http://lektsii.org/1-21881.html

http://habr.com/ru/post/171327/