Уравнение эдс и моментов для генераторов

Генератор постоянного тока ГПТ: основные понятия.

В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Ea. При подключении к генератору нагрузки в цепи якоря возникает ток, а на выводах генератора устанавливается напряжение, определяемое уравнением напряжений для цепи якоря генератора:

сумма сопротивлений всех участков цепи якоря: обмотки якоря ra , обмотки добавочных полюсов rД , компенсационной обмотки rк., последовательной обмотки возбуждения и переходного щеточного контакта rщ.

При отсутствии в машине каких-либо из указанных обмоток в (28.2) не входят соответствующие слагаемые.

Якорь генератора приводится во вращение приводным двигателем, который создает на валу генератора вращающий момент М1 Если к генератору не подключена нагрузка (работает в режиме х.х. Ia=0 ), то для вращения его якоря нужен сравнительно небольшой момент холостого хода M0. Этот момент обусловлен тормозными моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.

При работе генератора с подключенной нагрузкой в проводах обмотки якоря появляется ток, который, взаимодей­ствуя с магнитным полем возбуждения, создает на якоре электромагнитный момент М. В генераторе этот момент направлен встречно вра­щающему моменту приводного двигателя ПД (рис. 28.1), т. е. он является нагрузочным (тормозящим).

Рис. 28.1. Моменты, действующие в генераторе постоянного тока

При неизменной частоте вращения n = const вра­щающий момент приводного двигателя M1 уравнове­шивается суммой противодействующих моментов: мо­ментом х.х. M0 и электромагнитным моментом М, т. е.

Выражение (28.3) —называется уравнением моментов для генератора при постоянной частоте нагрузки. Умножив члены уравнения (28.3) на угловую скорость вращения якоря ω, получим уравнение мощностей:

где P1 = M1ω — подводимая от приводного двигателя к генератору мощность (меха­ническая); P0 = M0ω мощность х.х., т. е. мощность, подводимая к генератору в режиме х.х. (при отключен­ной нагрузке); PЭМ = Mω— электромагнитная мощность генератора.

Согласно (25.27), получим

или с учетом (28.1)

где P2 — полезная мощность генератора (электрическая), т. е. мощ­ность, отдаваемая генератором нагрузке; PЭa — мощность потерь на нагрев обмоток и щеточного контакта в цепи якоря .

Учитывая потери на возбуждение генератора PЭВ, получим уравнение мощностей для генератора постоянного тока:

Следовательно, механическая мощность, развиваемая приводным двигателем P1, преобразуется в генераторе в полезную электрическую мощность P2, передаваемую нагрузке, и мощ­ность, затрачиваемую на покрытие потерь

Так как генераторы обычно работают при неизменной частоте вращения, то их характеристики рассматривают при условии n = const.

Рассмотрим основные характеристики генераторов посто­янного тока.

Характеристика холостого хода — зависимость напряжения на выходе генератора в режиме х.х. U0 от тока возбуждения IВ:

Нагрузочная характеристика зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбу­ждения IВ:

Внешняя характеристика — зависимость напряжения на выходе генератора U от тока нагрузки I:

Регулировочная характеристика — зависимость тока возбуж­дения IВ от тока нагрузки I при неизменном напряжении на выходе генератора

Вид перечисленных характеристик определяет рабочие свой­ства генераторов постоянного тока которые во многом зависят от способа включения генератора в схему, поэтому мы рассмотрим каждый способ включения по отдельности.

Уравнение эдс и моментов для генераторов

Воропаев Е.Г.
Электротехника

гл.7 Машины постоянного тока
глава 1| глава 2| глава 3| глава 4| глава 5| глава 6| глава 8| глава 9| глава 10| глава 11|

7.1. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИЯ

Два неподвижных полюса N и S создают магнитный поток. В пространстве между полюсами помещается стальной сердечник в виде цилиндра (рис. 7.1.1).

На наружной поверхности цилиндра помещен виток медной проволоки abcd, изолированный от сердечника. Концы его присоединены к двум кольцам, на которые наложены щетки 1 и 2. К щеткам подключена нагрузка zн.
Если вращать сердечник с частотой n в указанном на рисунке направлении, то виток abcd, вращаясь, будет пересекать магнитные силовые линии, на концах его будет наводиться ЭДС. И если к витку подключена нагрузка zн, то потечет и ток. Направление тока определится правилом «правой руки». Из рисунка видно, что направление тока будет от точек b к а и от d к с. Соответственно во внешней цепи ток течет от щетки 1 к щетке 2. Щетку 1, от которой отводится ток во внешнюю цепь, обозначим (+), а щетку 2, через которую ток возвращается в машину обозначим (-). При повороте витка на 180° проводники аb и cd меняются местами, изменяется знак потенциала на щетках 1 и 2 и изменится на обратное направление ток во внешней цепи.
Таким образом, во внешней цепи течет переменный синусоидальный ток (рис. 7.1.2).

Чтобы выпрямить переменный ток, необходимо в машине применить коллектор (рис. 7.1.3).

В простейшем случае это два полукольца и к ним припаиваются концы витков abcd. Полукольца изолирования друг от друга и от вала. При вращении в витке abcd в нем попрежнему возникает переменная ЭДС, но под каждой щеткой будет ЭДС только одного знака: верхняя щетка будет иметь всегда (+), а нижняя — всегда (-).
Кривая тока во внешней цепи будет иметь другую форму (рис. 7.1.4).

Из графика видно, что нижняя полуволна заменена верхней. Если применить не один виток, а два и присоединить их концы к коллекторным пластинам, которых теперь 4, то кривая выпрямленного тока будет иной.
При наличии нескольких витков кривая выпрямленного напряжения будет более сглаженной (рис. 7.1.5).

Машина постоянного тока конструктивно состоит из неподвижной части — статора и вращающейся — ротора. Статор имеет станину, на внутренней поверхности которой крепятся магнитные полюсы с обмотками (рис. 7.1.6).

Ротор машины чаще называется якорем. Он состоит из вала, цилиндрического сердечника, обмотки и коллектора (рис. 7.1.7).

Магнитные полюсы и сердечник якоря набираются из отдельных листов электротехнической стали. Листы покрываются изолированной бумагой или лаком для уменьшения потерь на гистерезис и вихревые токи. Коллектор набирают из медных пластин, имеющих сложную форму (рис. 7.1.8). Пластины друг от друга изолированы специальной теплостойкой прокладкой. Такая же изоляция имеется между коллектором и валом двигателя. Набор коллекторных пластин образует, цилиндр-коллектор.

К внешней поверхности коллектора прилегают токосъемные щетки, которые выполнены из спрессованного медного и угольного порошка.
Щетка помещается в металлическую обойму и прижимается к коллектору пружинами (рис. 7.1.9).

7.2. СПОСОБЫ ВОЗБУЖДЕНИЯ МАШИН ПОСТОЯННОГО ТОКА

Возбуждение — это понятие, связанное с созданием основного магнитного поля машины. В машинах с электромагнитным возбуждением основное поле создается обмотками возбуждения. Имеются конструкции, в которых возбуждение создается постоянными магнитами, размещенными на статоре.
Различают четыре схемы включения статорных обмоток: с независимым, параллельным, последовательным и смешанным возбуждением (рис. 7.2.1).

Изображения под пунктами б, в, г на рис. 7.2.1, называются схемами с самовозбуждением. Процесс самовозбуждения происходит за счет остаточной намагниченности полюсов и станины. При вращении якоря в этом, небольшом по величине, магнитном поле (ФОСТ = 0,02 0,03 ФО) индуцируется ЭДС — ЕОСТ.
Поскольку обмотка возбуждения подключена через щетки к якорю, то в ней будет протекать ток. Этот ток усилит магнитное поде полюсов и приведет к увеличению ЭДС якоря. Большая ЭДС вновь увеличит ток возбуждения и произойдет нарастание магнитного потока до полного намагничивания машины.

7.3. ОБМОТКИ ЯКОРЯ МАШИНЫ ПОСТОЯННОГО ТОКА

Для работы машины постоянного тока необходимо наличие двух обмоток; обмотки возбуждения и обмотки якоря. Первая, как известно, служит для создания в машине основного магнитного потока, а во второй происходит преобразование энергии.
Обмотка якоря является замкнутой системой проводников, уложенных в пазах.
Элементом якорной обмотки является секция, которая может быть одно — или много витковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна:

т.е. она зависит от магнитной индукции полюсов ВСР, длины проводника L и скорости его движения V. В реальной машине, будь она генератором или двигателем, в наведении ЭДС участвуют все проводники обмотки якоря.
Величина суммарной ЭДС:

где n — скорость вращения якоря (ротора), об/мин;
Ф — магнитный поток полюсов;
Се — постоянный коэффициент, зависящий от количества витков в секции.
Обмотка якоря может быть петлевой и волновой. Петлевая обмотка, если ее изобразить в развернутом виде, имеет следующий вид (рис. 7.3.1):

Расстояние между активными сторонами одной секции называется первым шагом обмотки — y1. Расстояние между началом второй секции и концом первой называется вторым шагом обмотки — у2. Расстояние между, началами секций, следующих друг за другом, называется результирующим шагом — у. Шаги обмотки определяются числом пазов.
Расстояние между коллекторными пластинами, куда припаиваются начало и конец, принадлежащие одной секции, называется шагом по коллектору — ук. В петлевой обмотке ук= 1. Шаг ук определяется числом коллекторных пластин.
Развернутая волновая обмотка имеет вид: (рис. 7.3.2).

Форма волновой обмотки отлична от петлевой и, следовательно, будет иное соединение секций.
Однако шаги волновой обмотки имеют общее с петлевой определение.
Шаг по коллектору здесь значительно больше единицы (ук >> 1).

7.4. ЭДС И ЭЛЕКТРОМАГНИТНЫЙ МОМЕНТ ГЕНЕРАТОРА
ПОСТОЯННОГО ТОКА

Как уже отмечалось, ЭДС, наведенная в обмотке вращающегося якоря генератора, пропорциональна магнитному потоку полюсов и частоте его вращения:

Магнитный поток в генераторе, как известно, создается током возбуждения Iв.
Если вращать якорь c постоянной частотой n и непрерывно измерять выходную ЭДС Е, то можно построить график Е = f (Iв) (рис. 7.4.1).

Эта зависимость называется характеристикой холостого хода. Она строится для режима, когда генератор не имеет внешней нагрузки, т.е. работает вхолостую.
Если подключить к генератору нагрузку, то напряжение на его зажимах будет меньше E на величину падения напряжения в цепи якоря:

Здесь: U — напряжение на зажимах;
Е — ЭДС в режиме х.х.;
IЯ — ток якоря;
RЯ — сопротивление в цепи якоря.
Падение напряжения в цепи якоря обычно не превышает 2-8 % ЭДС генератора.
Уменьшение напряжения на выходе генератора связано с размагничиванием машины магнитным полем якоря, а также падением напряжения в его обмотках.
В каждой машине постоянного тока имеет место взаимодействие между током якоря IЯ и магнитным потоком Ф. В результате на каждый проводник обмотки якоря действует электромагнитная сила:

где В — магнитная индукция,
IЯ — ток в обмотке якоря,
L — длина якоря.
Направление действия этой силы определяется правилом левой руки.
Подставим сюда среднее значение магнитной индукции ВСР и величину тока в каждом проводнике обмотки якоря I = IЯ / 2 а.
Получим

Электромагнитный момент, действующий на якорь машины, при числе проводников обмотки N:

где — величина, постоянная для данной машины;
d — диаметр якоря;
р — число пар полюсов;
N — число проводников обмотки якоря;
а — число пар параллельных ветвей.
При работе машины в режиме генератора электромагнитный момент действует против вращения якоря, т.е. является тормозным.
Для привода генератора требуется электродвигатель мощность, которого должна покрыть все потери в генераторе:

где Р — полезная электрическая мощность генератора;
D РЯ — потери в обмотке якоря;
D РВ — потери в обмотке возбуждения;
D РМ — потери на намагничивание машины;
D РМЕХ — механические потери, связанные с трением вращающихся частей.

Коэффициент полезного действия генератора определяется отношением:

У современных генераторов постоянного тока коэффициент полезного действия составляет 90-92 %.

7.5. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

В соответствии с принципом обратимости машина постоянного тока может работать как в качестве генератора, так и в качестве двигателя. Уравнение ЭДС для двигателя составлено на основании 2-го закона Кирхгофа с учетом направления ЭДС:

Ток в цепи якоря:

В соответствии о формулой Еа = Се Ф n частота вращения определяется выражением:

Подставим значение Е из уравнения U = Е — IЯ RЯ, получим:

т.е. частота вращения двигателя прямо пропорциональна подведенному напряжению и обратно пропорциональна магнитному потоку возбуждения.
Из этой формулы видно, что возможны пути регулирования частоты вращения двигателя постоянного тока:
1. Изменением напряжения сети U. Регулируя подаваемое напряжение Uсети можно менять частоту вращения.
2. Включением в цепь якоря добавочного сопротивлению (R ‘ Я = RЯ + RДОБ). Изменяя сопротивление RДОБ, меняют частоту вращения.
3. Изменением магнитного потока Ф. Машины с постоянными магнитами не регулируются. Машины с электромагнитами позволяют регулировать поток Ф путем изменения тока возбуждения IB.
На рис. 7.5.1. показана схема включения в сеть двигателя постоянного тока.

По закону электромагнитной индукции при прохождении тока по обмотке якоря происходит взаимодействие ее проводников с магнитным полем полюсов. На каждый проводник обмотки будет действовать электромагнитная сила Рэм = ВСРLI, пропорциональная магнитной индукции полюсов В, длине проводника L и току I, протекающему по проводнику.
Направление действия этой силы определяется правилом правой руки.
Не повторяя рассуждений, проведенных для генератора постоянного тока, запишем выражение для вращающего момента:

где CM — коэффициент пропорциональности.
Вращающий момент у двигателей с независимым и параллельным возбуждением с увеличением нагрузки может как расти, так и уменьшаться, поскольку с ростом потребляемого тока I и размагничивания полюсов, уменьшается магнитный поток Ф.

Двигатели с последовательным возбуждением имеют отличные от вышеприведенных двигателей характеристики.
Из схемы, приведенной на рис. 7.2.1 в, видно, что магнитный поток в машине создается обмоткой возбуждения, включенной последовательно с обмоткой якоря. Следовательно, IB = IЯ и выражение для вращающего момента будет иметь вид:

Последняя формула показывает, что чем больше нагрузка на двигатель, тем большим будет вращающий момент. Это обстоятельство делает двигатель с последовательным возбуждением незаменимым на электротранспорте (трамвае, троллейбусе и т.д.).
Реверсирование или изменение направления вращения двигателей постоянного тока может осуществляться изменением полярности тока либо в обмотке якоря, либо в обмотке возбуждения.

7.6. ЭЛЕКТРОМАШИННЫЕ УСИЛИТЕЛИ

Простейшим усилителем мощности является обычный генератор постоянного тока с независимым возбуждением. Коэффициент усиления машины определяется отношением тока, протекаемого в обмотке якоря, к току возбуждения:

В таком исполнении коэффициент усиления равен порядка 15 — 30.
Усилительную способность генератора можно увеличить, если использовать каскадную схему включения генераторов. В этом случае с выхода первого генератора подключается обмотка возбуждения второго, а выход со второго генератора будет превышать по мощности вход первого в 1000 и более раз.
Каскадная схема применяется редко из-за своей громоздкости и дороговизны.
Чаще используют так называемые электромашинные усилители (ЭМУ). Элек-трическая схема ЭМУ приведена на рис. 7.6.1.

Конструктивно электромашинный усилитель представляет собой коллекторную машину постоянного тока с независимым возбуждением, имеющую два комплекта щеток (продольные 1-1′ и поперечные 2-2′).
Ток, протекающий по обмотке возбуждения Iв, создает продольный магнитный поток Фd, направленный по оси полюсов машины. При вращении якоря на поперечных щетках 2-2′ появляется ЭДС Е2 = С n Фd Так как они замкнуты накоротко, то в обмотке якоря появляется большой ток I2. Этот ток создает в обмотке якоря сильное поперечное магнитное поле реакции якоря Фq, неподвижное в пространстве и направленное по оси щеток 2-2′. Под действием магнитного потока Фq в якорной обмотке ме-жду щетками 1-1′ возникает ЭДС Е1 = С n Фq >>Е2, так как Фq >>Фd. При подключении к щеткам 1-1′ нагрузки Rн в цепи потечет ток Iя превышающий ток Iв в десятки тысяч раз. Электромашинные усилители применяют для автоматического управления мощными электродвигателями.

7.7. ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ

Для преобразования переменного тока в постоянный, как известно, используют выпрямители. Преобразование постоянного тока в переменный можно осуществить электромашинными преобразователями. Каскад из двух машин: (асинхронный двигатель переменного тока и генератор постоянного тока) вполне решают эту задачу.
Но бывает ситуация, когда необходимо преобразовать постоянный ток низкого напряжения в постоянный ток повышенного напряжения. Делается это в одной комбинированной машине, состоящей из двигателя и генератора постоянного тока с общей магнитной системой. Со стороны низкого напряжения это электродвигатель, а со стороны повышенного напряжения — генератор постоянного тока с независимым возбуждением.
В одних и тех же пазах якоря преобразователя заложены самостоятельные обмотки низкого и повышенного напряжения. Концы обмоток присоединены к соответствующему коллектору (рис. 7.7.1), причем обмотка повышенного, напряжения имеет значительно большее число проводников, чем обмотка низкого напряжения.
Одноякорные преобразователи широко применяются в авиационной технике, а также в общепромышленных установках, где первичным источником постоянного тока является аккумулятор.
Одноякорные преобразователи постоянного тока в трехфазный переменный отличается от рассмотренного тем, что обмотка повышенного напряжения состоит из

трех секций, смещенных друг от друга на 120°. Выводы секционных обмоток припаяны к трем контактным кольцам и с помощью токосъемных щеток переменный ток передается к потребителю.

7.8. ТАХОГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА

Тахогенераторами называют электрические машины малой мощности, работающие в генераторном режиме и служащие для преобразования частоты его вращения в электрический сигнал.
Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению являются электрическими коллекторными машинами.
Выходной характеристикой тахогенератора является зависимость величины на-пряжения на зажимах якоря Uя от частоты его вращения n при постоянном магнитном потоке возбуждения Ф и постоянном сопротивлении нагрузки Rнагр
На рис. 7.8.1 показана выходная характеристика тахогенератора при различных Rнагр.

7.9. МИКРОДВИГАТЕЛИ, ПРИМЕНЯЕМЫЕ В ДЕТСКОМ ТЕХНИЧЕСКОМ ТВОРЧЕСТВЕ

Разнообразие изделий детского технического творчества не позволяет остановиться на конкретных решениях.
В структурные композиции любого подвижного объекта почти всегда входит электродвигатель. Именно он преобразует электрическую энергию в механическое движение.
Разновидность электропривода модели в первую очередь зависит от источника питания.
Если модель работает автономно, то, естественно, для нее необходим и автоном-ный источник питания. Это, как правило, электрохимическая батарейка или аккумулятор.
При выборе схемы электропривода необходимо лишь согласовать напряжение электродвигателя с источником питания.
В стационарных установках используется обычная электросеть напряжением 220, 127 В. Для понижения напряжения до безопасного уровня применяются понижающие трансформаторы и иногда выпрямители переменного тока в постоянный.
Такие приборы могут не входить в конструкцию изделия и являются вспомогательными.
Ниже в табл. 7.9.1 приводится техническая характеристика наиболее применяемых в техническом творчестве электродвигателей.

Генератор постоянного тока.

Давайте разберем принцип действия генератора постоянного тока, познакомимся с его конструктивными особенностями и принципом действия.

Генератор постоянного тока работает основываясь на использовании закона электромагнитной индукции. Согласно этому закону, в проводнике, который движется в магнитном поле и пересекает магнитный поток, индуцируется ЭДС.

Магнитопровод по которому замыкается магнитный поток является одной из основных частей генератора постоянного тока.

Магнитная цепь генератора постоянного тока (изображен на рисунке 1) состоит из неподвижной части — статора (1) и вращающейся части — ротора (4).

Статор представляет собой стальной корпус, к которому присоединены остальные детали машины, в том числе магнитные полюсы (2). На магнитные полюсы насажена обмотка возбуждения (3), которая питается постоянным током и создает основной магнитный поток Ф0.

Магнитная цепь генератора постоянного тока с четырьмя полюсами.

Листы, из которых собирается магнитная цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Ротор машины собирают из штампованных стальных листов с пазами по окружности и с отверстиями, предназначенными для вала и вентиляции. Рабочая обмотка генератора постоянного тока вставляется в пазы ротора (5 на изображении 1). Этой обмоткой индуцируется ЭДС основным магнитным потоком. Обмотку также называют обмоткой якоря, поэтому ротор генератора постоянного тока принято называть якорем.

Значение ЭДС генератора постоянного тока может изменяться, но ее полярность остается величиной постоянной. Принцип действия генератора постоянного тока изображен на рисунке 3.

Магнитный поток создается полюсами постоянного магнита. Допустим, обмотка якоря состоит из одного витка, у которого концы присоединены к различным полукольцам, находящимся в изоляции друг от друга. Из этих полуколец формируется коллектор, совершающий вращения вместе с витком обмотки якоря. Одновременно с этим вдоль коллектора двигаются неподвижные щетки.

При вращении витка в магнитном поле в нем индуцируется ЭДС: e = B*l*v

  • где В — магнитная индукция, l — длина проводника, v — его линейная скорость.

При совпадении плоскости витка с плоскостью осевой линии полюсов (при этом виток расположен вертикально), проводники пересекают максимальный магнитный поток. В это время в них индуцируется максимальный показатель ЭДС. В том случае когда виток принимает горизонтальное положение, ЭДС в проводниках равна нулю.

В проводнике направление ЭДС определяется по правилу правой руки (на рисунке 3 оно показано в виде стрелок). Когда при вращении витка проводник переходит под другой полюс, направление ЭДС в нем меняется на обратное. Но поскольку коллектор вращается вместе с витком, а щетки неподвижны, то к верхней щетке всегда присоединен проводник, который находится под северным полюсом, ЭДС которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению ЭДС на щетках — е (рисунок 4).

Простейший генератор постоянного тока.

Изменение во времени ЭДС простейшего генератора постоянного тока.

Несмотря на то что ЭДС простейшего генератора постоянного тока постоянна в направлении, по своему значению она изменяется. Поскольку за один оборот витка ЭДС принимает 2 раза значение равное нулю и 2 раза максимальное. Для большинства приемников постоянного тока ЭДС с такой большой пульсацией непригодна и, строго говоря, ее нельзя назвать постоянной.

Чтобы уменьшить пульсацию, обмотку якоря генератора постоянного тока делают из большого числа витков (катушек), а коллектор из большого числа коллекторных пластин, которые изолированы друг от друга.

Для того чтобы рассмотреть подробнее процесс сглаживания пульсаций возьмем в качестве примера обмотку кольцевого якоря (рисунок 5). Она состоит из четырех катушек (1, 2, 3, 4), по два витка в каждой. Якорь двигается по направлению часовой стрелки с частотой n и в проводниках обмотки якоря, которые расположены на внешней стороне якоря, индуцируется ЭДС (направление движения указано стрелками).

Обмотка якоря представляет собой замкнутую цепь, которая состоит из последовательно соединенных витков. При этом обмотка якоря относительно щеток представляет собой две параллельные ветви. На рисунке 5а одна параллельная ветвь состоит из катушки 2, вторая из катушки 4 (в катушках 1 и 3 ЭДС не индуцируется, и они обеими концами соединены с одной щеткой). На рисунке 5б якорь изображен в положении, которое он занимает через 1/8 оборота. В этом положении одна параллельная ветвь обмотки якоря состоит из последовательно включенных катушек 1 и 2, а вторая из последовательно включенных катушек 3 и 4.

Схема простейшего генератора постоянного тока с кольцевым якорем.

При вращении якоря по отношению к щеткам каждая катушка имеет постоянную полярность.

На рисунке 6а показано как при вращении якоря изменяется ЭДС катушек во времени. ЭДС на щетках равна ЭДС каждой из параллельных ветвей обмотки якоря.

Из рисунка 5 видно, что ЭДС параллельной ветви равна или сумме ЭДС двух соседних катушек или ЭДС одной катушки:

Как результат этого, заметно уменьшаются пульсации ЭДС обмотки якоря (рисунок 6б). А значит увеличивая количество витков и коллекторных пластин можно получить практически постоянную ЭДС обмотки якоря.

Изменение во времени ЭДС катушек и обмотки кольцевого якоря.


источники:

http://tsput.ru/res/fizika/1/VOROPAEV_2/vorop7.htm

http://www.calc.ru/Generator-Postoyannogo-Toka.html