Уравнение электрического равновесия для вторичной цепи

Уравнения электрического равновесия цепей

Содержание:

Уравнения электрического равновесия цепей:

Любую электрическую цепь можно рассматривать как систему с одним или несколькими входами и одним или несколькими выходами (рис. 1.38). Если к входам цепи приложить внешнее воздействие

Задача анализа электрической цепи состоит в определении реакции цепи у (t) на заданное внешнее воздействие х (t).

Задача синтеза цепи заключается в нахождении цепи по заданной реакции цепи у (t) на некоторое внешнее воздействие х (t).

Исходными данными в задаче анализа являются эквивалентная схема цепи с параметрами всех входящих в нее элементов и описание внешнего воздействия х (t), задаваемого в виде совокупности токов и напряжений идеализированных неуправляемых источников. В результате анализа определяется отклик у (t) в виде совокупности токов и напряжений всех или некоторых ветвей цепи. В частном случае задача анализа может сводиться к определению соотношений между реакциями цепи на отдельных выходах и воздействиями приложенными к определенным входам. Такие соотношения называются характеристиками (системными функциями, функциями) цепи. В зависимости от того, какая величина— частота или время — является аргументом в выражениях, описывающих соотношения между откликом и внешним воздействием, различают частотные и временные характеристики цепи. Определение и исследование частотных характеристик представляют собой задачу анализа цепи в частотной области; нахождение временных характеристик — задачу анализа цепи во временной области.

Исходными данными в задаче синтеза являются описания внешнего воздействия х (t) и ее отклика у (t). В результате синтеза необходимо найти эквивалентную схему цепи и параметры всех входящих в нее элементов. В частном случае задача синтеза может сводиться к нахождению цепи, обеспечивающей заданные соотношения между внешним воздействием на цепь и ее реакцией т. е. к нахождению цепи по ее характеристикам.

Анализ и синтез электрических цепей в определенной степени взаимосвязаны, в частности методы синтеза базируются на использовании общих свойств характеристик различных классов цепей, которые изучаются в процессе анализа. Поэтому изложению методов синтеза цепей будет предшествовать рассмотрение общих методов анализа цепей и знакомство с характеристиками некоторых классов цепей при различных внешних воздействиях.

Понятие об уравнениях электрического равновесия

Математически задача анализа электрической цепи сводится к составлению и решению системы линейно независимых уравнений, в которых в качестве неизвестных фигурируют токи и напряжения ветвей исследуемой цепи. Уравнения, решение которых позволяет определить токи и напряжения ветвей электрической цепи, называются уравнениями электрического равновесия цепи. Очевидно, что число уравнений электрического равновесия должно быть равно количеству неизвестных токов и напряжений.

В общем случае в цепи, содержащей р ветвей и q узлов, имеется 2р неизвестных токов и напряжений ветвей. Используя законы Кирхгофа, для такой цепи можно составить m = q— 1 независимых уравнений баланса токов и n = р — q + 1 независимых уравнений баланса напряжений. В сочетании с компонентными уравнениями (уравнениями ветвей) получаем 2р линейно независимых уравнений, что достаточно для определения неизвестных токов и напряжений ветвей.

Если в рассматриваемой цепи имеется ветвей, в которых содержатся идеализированные источники тока (токи этих ветвей заданы, а напряжения неизвестны), и ветвей, составленных только из идеализированных источников напряжения (напряжения этих ветвей известны), то общее число неизвестных токов и напряжений уменьшается до Для определения этих неизвестных нужно составить лишь линейно независимых уравнений (m + n = р уравнений на основании законов Кирхгофа и компонентных уравнений для ветвей, не содержащих указанных источников).

Таким образом, используя компонентные уравнения и топологические уравнения, составленные на основании законов Кирхгофа, всегда можно сформировать систему уравнений электрического равновесия, число уравнений в которой достаточно для определения всех неизвестных токов и напряжений. Будем называть такую систему уравнений основной системой уравнений электрического равновесия цепи.

На практике для анализа цепей используют различные методы составления уравнения электрического равновесия, в частности методы токов ветвей, напряжений ветвей, контурных токов, узловых напряжений, переменных состояния. Все они базируются на использовании различных приемов, позволяющих преобразовать основную систему уравнений электрического равновесия и уменьшить по сравнению с 2р или число одновременно решаемых уравнений.

Как было показано ранее, уравнения (1.37) и (1.40) являются алгебраическими, а компонентные уравнения идеализированных пассивных элементов могут быть как алгебраическими (1.9), (1.10), так и дифференциальными (1.13), (1.22) или интегральными (1.16), (1.23).

Вследствие этого уравнения электрического равновесия цепи, составленные любым методом, представляют собой в общем случае систему интегродифференциальных уравнений.

Пример 1.7.

Составим основную систему уравнений электрического равновесия цепи, схема и топологический граф которой изображены на рис. 1.39, а и б соответственно. Для этой цепи р=6, q = 4, — 1 и = 1. Общее число неизвестных токов и напряжений ветвей Используя законы Кирхгофа, можно составить m = q — 1 = 3, уравнения баланса токов:

3 уровня баланса напряжений:

Кроме того, имеем уравнений ветвей, нес одержащих идеализированных источников:

В результате получаем систему из 10 линейно независимых уравнений для определения 10 неизвестных токов и напряжений:

Система уравнений электрического равновесия цепи, составленная любым методом, может быть путем дифференцирования и последовательного исключения неизвестных сведена к одному дифференциальному уравнению для любого из неизвестных токов и напряжений, называемому дифференциальным уравнением цепи. В частном случае это может быть алгебраическое уравнение, которое можно рассматривать как дифференциальное уравнение нулевого порядка. Дифференциальное уравнение цепи содержит фундаментальную информацию о характере имеющих место в цепи электрических процессов и является основой для классификации электрических цепей.Тип дифференциального уравнения цепи полностью определяется ее топологией и характером входящих в нее идеализированных элементов.

Пример 1.8.

Применяя указанные преобразования к основной системе уравнений электрического равновесия цепи (рис. 1.39, а), получим дифференциальное уравнение этой цепи, составленное относительно напряжения

Здесь —постоянные коэффициенты, определяемые параметрами пассивных элементов цепи;

Функция времени, определяемая параметрами независимых источников напряжения и тока.

Таким образом, уравнение цепи, изображенной на рис. 1.39, является линейным неоднородным дифференциальным уравнением 2-го порядка с постоянными коэффициентами

Классификация электрических цепей

Электрические цепи, составленные из идеализированных элементов, могут быть классифицированы по ряду признаков:

по топологическим особенностям: планарные (плоские) и непланарные (объемные), разветвленные и неразветвленные, простейшие (одноконтурные, двухузловые) и сложные (многоконтурные, многоузловые);

по энергетическим свойствам: активные (содержащие идеализированные активные элементы) и пассивные (не содержащие идеализированных активных элементов);

по числу внешних выводов: двухполюсники и многополюсники; и др.

Классификация цепей по этим признакам не носит принципиального характера и используется, в основном, с целью упорядочения терминологии.

Фундаментальный характер имеет классификация цепей в зависимости от вида дифференциального уравнения цепи. Идеализированные электрические цепи, процессы в которых описываются обыкновенными дифференциальными уравнениями, называются цепями с сосредоточенными параметрами. Цепи такого типа используют в качестве упрощенных моделей реальных электрических цепей и их элементов на сравнительно низких частотах, когда длина волны электромагнитных колебаний существенно больше размеров исследуемого устройства. При этих условиях в исследуемых устройствах и их элементах удается выделить конечное число’ участков, в которых преобладает какой-то один из основных эффектов — запасание энергии электрического или магнитного полей, преобразование электрической энергии в другие виды энергии или преобразование энергии сторонних сил в электрическую. Токи рассматриваемой реальной цепи, являясь функциями времени, имеют одинаковые мгновенные значения в пределах каждого из выделенных участков. Заменяя эти участки идеализированными активными или пассивными элементами, получают идеализированную цепь, содержащую конечное число элементов, значения параметров которых конечны.

Таким образом, цепи с сосредоточенными параметрами представляют собой идеализированные цепи, моделирующие реальные устройства или их элементы при условиях, когда можно предположить, что каждый из основных электрических эффектов сосредоточен в конечном числе пространственно локализуемых областей.

Когда длина волны электромагнитных колебаний соизмерима с размерами исследуемого устройства или его элементов, пространственно локализовать области, в которых сосредоточены только эффекты одного типа, не удается. Это связано с тем, что даже при бесконечно малой длине выделяемых участков, в пределах каждого из них имеют место одновременно несколько из перечисленных основных эффектов, причем значения токов в пределах выделенных участков изменяются от одного сечения к другому.

При этих условиях цепи, моделирующие реальные устройства или их элементы, содержат бесконечно большое число идеализированных элементов, параметры которых имеют бесконечно малые значения. Процессы в таких цепях описываются дифференциальными уравнениями в частных производных. Идеализированные электрические цепи, процессы в которых описываются дифференциальными уравнениями в частных производных, называются цепями с распределенными параметрами.

Следует подчеркнуть, что термины «цепь с распределенными параметрами» и «цепь с сосредоточенными параметрами» применимы только к идеализированным (моделирующим) цепям и не должны использоваться для характеристики реальных цепей.

В зависимости от условий и требуемой точности исследования каждый элемент реальной цепи и, следовательно, каждая реальная цепь в целом могут быть заменены моделирующей цепью с сосредоточенными или распределенными параметрами. Например, конденсатор любого типа конструктивно представляет собой две проводящие обкладки 1 и 3, разделенные слоем диэлектрика 2 (рис. 1.40). В области частот, когда длина волны электромагнитных колебаний значительно превышает геометрические размеры обкладок, он может быть представлен одной из моделирующих цепей с сосредоточенными параметрами, схемы которых приведены на рис. 1.11. На более высоких частотах, когда длина волны электромагнитных колебаний сравнима с геометрическими размерами обкладок, но существенно больше расстояния между ними, необходимо учитывать, что процессы запасания энергии электрического и магнитного полей, а также необратимое преобразование электрической энергии в другие виды энергии имеют место вдоль всей длины обкладок конденсатора. В этом случае эквивалентная схема элементарного участка конденсатора длиной dx состоит из индуктивности и емкости характеризующих процессы запасания энергии магнитного и электрического полей, а также сопротивления и проводимости утечки учитывающих потери энергии в конденсаторе (рис. 1.41, а). Эквивалентная схема всего конденсатора должна состоять из бесконечно большого числа таких секций. Следовательно, идеализированная цепь, моделирующая конденсатор в рассматриваемом диапазоне частот, представляет собой цепь с распределенными параметрами.

На примере цепи, эквивалентная схема которой изображена на рис. 1.41, а, покажем, что электрические процессы в цепях с распределенными параметрами описываются дифференциальными уравнениями в частных производных. Действительно, ток i = i (х, t) и напряжение u = u (х, t) рассматриваемой цепи являются функциями времени t и координаты х.

Приращения тока и напряжения на участке цепи длиной dx

Полагая, что параметры элементов моделирующей цепи не зависят от токов и напряжений и выражая их через погонные (т. е. приходящиеся на единицу длины) параметры

составим уравнения баланса токов и напряжений элементарного участка цепи:

Пренебрегая величинами второго порядка малости, уравнения (1.57), (1.58) можно преобразовать к виду

Решая уравнения (1.59), (1.60) при соответствующих начальных граничных условиях, можно определить токи и напряжения цепи моделирующей коденсатор в рассматриваемом режиме.

Отметим, что уравнениям (1.59), (1.60) может быть поставлена в соответствие более простая эквивалентная схема элементарного участка цепи (рис. 1.41, б). Аналогичный вид имеют высокочастотные схемы замещения и ряда других элементов, входящих в состав радиоэлектронных устройств, в частности двухпроводных и коаксиальных линий передачи.

В зависимости от числа координат, вдоль которых происходит изменение тока и напряжения и вдоль которых «распределены» параметры цепи, различают одномерные, двухмерные и трехмерные цепи с распределенными параметрами. В теории цепей рассматривают, в основном, одномерные цепи с распределенными параметрами, процессы в которых описываются дифференциальными уравнениями типа (1.59), (1.60).

Параметры рассмотренных ранее идеализированных линейных пассивных элементов не зависят от значений токов и напряжений соответствующих элементов и, следовательно, от интенсивности внешнего воздействия на цепь, определяемой токами действующих в цепи независимых источников тока и напряжениями действующих в цепи независимых источников напряжения. Связь между током и напряжением линейных идеализированных пассивных элементов описывается линейными алгебраическими, дифференциальными или интегральными уравнениями, иными словами, компонентные уравнения этих элементов являются линейными.

Параметры нелинейных пассивных элементов зависят от токов или напряжений соответствующих элементов, а следовательно, и от интенсивности внешнего воздействия. Компонентные уравнения нелинейных идеализированных пассивных элементов — нелинейные.

В зависимости от вида компонентного уравнения идеализированные активные элементы также делятся на линейные и нелинейные. К линейным идеализированным активным элементам относят независимые в линейно управляемые зависимые источники тока и напряжения, к нелинейным — нелинейно управляемые зависимые источники тока г напряжения.

Цепь с сосредоточенными или распределенными параметрами, составленная только из линейных идеализированных элементов, называется линейной. Дифференциальное уравнение такой цепи — линейное. Если в состав цепи входит хотя бы один нелинейный пассив ими или активный элемент, то она называется нелинейной, а процессы в ней описываются нелинейными дифференциальными уравнениями.

Параметры линейных идеализированных пассивных элементов и коэффициенты управления линейно управляемых источников могут либо иметь постоянные значения, либо изменяться во времени под действием некоторых факторов, непосредственно не связанных с токами или напряжениями этих элементов (например, емкость конденсатора может изменяться во времени вследствие изменения расстояния между обкладками; индуктивность катушки можно изменять путем перемещения сердечника). Идеализированные элементы первого типа называют линейными элементами с постоянными параметрами, элементы второго типа — линейными элементами с переменными параметрами. Параметрические изменение параметров происходит с частотой. линейным а м а элементы, у близкой к частоте токов или напряжений этих элементов, следует отличать от регулируемых элементов —конденсаторов переменной емкости, вариометров, подстроечных конденсаторов и др., у которых изменение параметров производится весьма медленно и только в процессе настройки или регулировки соответствующего устройства.

При составлении уравнений электрического равновесия параметрам регулируемых элементов приписывают некоторые фиксированные значения, а сами элементы относят к элементам с постоянными параметрами.

Цепи, составленные только из линейных элементов с постоянными параметрами, называются линейными цепями с постоянными параметрами или линейными инвариантными во времени цепями. Процессы в линейных инвариантных во времени цепях описываются линейными уравнениями с постоянными коэффициентами.

Линейные цепи, содержащие хотя бы один элемент с переменными параметрами, называются линейными параметрическими цепями. Процессы в линейных параметрических цепях описываются линейными уравнениями с переменными коэффициентами.

В общем случае дифференциальное уравнение линейной цепи с сосредоточенными параметрами имеет следующий вид:

где у — искомая реакция цепи (ток или напряжение какой-либо ветви); — коэффициенты, определяемые параметрами пассивных элементов и коэффициентами управления управляемых источников. В дифференциальном уравнении линейной инвариантной во времени цепи эти коэффициенты постоянны, в дифференциальном уравнении линейной параметрической цепи, по крайней мере, один из них является функцией времени.

Правая часть уравнения (1.61) есть линейная комбинация функций, описывающих внешнее воздействие на цепь х (t), и их производных. При выключении всех источников она становится равной нулю.

Значение v характеризует порядок сложности цепи (порядок цепи) и равно числу реактивных элементов (емкостей и индуктивностей), энергетическое состояние которых может быть задано независимо (подробнее этот вопрос будет рассмотрен в гл. 6). Различают цепи нулевого порядка (не содержащие реактивных элементов), первого, второго и более высоких порядков.

Для линейных уравнений вида (1.61) сформулирована теорема наложения (теорема суперпозиции). Если f(t) где являются решениями уравнений

то является решением уравнения (1.61).

Математически это значит, что решение линейного уравнения (1.61) со сложной правой частью можно выразить через решения уравнений (1.62) с более простой правой частью.

На теореме наложения базируется широко используемый в теории цепей принцип наложения (принцип суперпозиции): реакция у (t) линейной цепи на сложное воздействие х (t) представляющее собой линейную комбинацию более простых воздействий равна линейной комбинации реакций вызванных каждым из простых воздействий в отдельности, у (t) В частности, если внешним воздействиям соответствуют реакции то внешнему воздействию х (t) соответствует реакция а внешнему воздействию где А = const, реакция у(t) = Применение принципа наложения существенно облегчает исследование процессов в линейных электрических цепях, он лежит в основе многих широко используемых методов анализа.

Состояние теории цепей в значительной степени определяется степенью разработанности теории и методов решения соответствующих дифференциальных уравнений. К настоящему времени разработаны общие методы решения только линейных дифференциальных уравнений с постоянными коэффициентами, поэтому наиболее законченный вид имеет теория линейных инвариантных во времени цепей, которые в дальнейшем будем называть просто линейными цепями.

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Линейные цепи при гармоническом воздействии
  • Нелинейные резистивные цепи
  • Преобразование схем электрических цепей
  • Установившиеся процессы в линейных электрических цепях
  • Линии с распределенными параметрами
  • Идеализированные пассивные элементы
  • Идеализированные активные элементы
  • Топологии электрических цепей

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Трансформаторы. Режимы работы и рабочие характеристики

Введение.

В первой части нашей статьи мы рассмотрели устройство трансформатора, принцип действия и виды трансформаторов. Теперь поговорим о них более детально.

Режимы работы трансформатора

Холостой ход однофазного трансформатора

Приведенные при рассмотрении принципа действии трансформа­тора соотношения справедливы лишь для идеального трансформатора, в котором пренебрегают сопротивлениями обмоток и потерями в сердечнике и считают, что магнитный поток замыкается только по сердечнику. В реальных условиях необходимо учитывать падения напряжения в обмотках и фактическую картину распределения магнитных полей. В частности, при холостом ходе МДС F0 кроме основного магнитного потока взаимоиндукции Ф0, замыкающегося по сердечнику, создает магнитный поток рассеяния Фрс1, который замыкается, в основном, по воздуху и сцепляется только с первичной обмоткой (рис. 1).

Рис. 1 — Холостой ход однофазного трансформатора

Под действием этого магнитного потока в первичной обмотке индуктируется ЭДС самоиндукции ерс1, действующее значение которой обычно рассчитывают по соотношению

где хрс1 — индуктивное сопротивление рассеяния первичной обмотки.

Для упрощения записи это сопротивление часто обозначают просто х1 Оно равно

где L1 — индуктивность рассеяния, определяемая по специальным формулам.

Таким образом, реально существующий магнитный поток рассеяния Фрс1 первичной обмотки и соответствующая ему ЭДС Ерс1 учитываются путем введения некоторого индуктивного сопротивления рассеяния х1, падение напряжения на котором уравновешивает ЭДС, т.е. в векторной форме равенство

записывают в виде

Такой подход значительно упрощает анализ и расчет режимов работы трансформатора. Сопротивление х1 практически постоянно, а величина Ерс1 пропорциональна току первичной обмотки.

Полное сопротивление первичной обмотки, кроме сопротивления х1 учитывает также активное сопротивление r1, т.е.

Электрическая схема замещения фазы первичной обмотки трансформатора на холостом ходу полностью аналогична схеме замещения катушки со стальным сердечником (рис. 2).

Рис. 2 — Электрическая схема замещения фазы трансформатора на холостом ходу

Уравнение электрического равновесия трансформатора для режима холостого хода может быть записано в виде

Таким образом, подводимое к первичной обмотке напряжение уравновешивается ЭДС самоиндукции Е10 и падением напряжения на сопротивлениях r1 и х1 обмотки. Поскольку падение напряжения достаточно мало, последнее уравнение для режима холостого хода часто записывают в виде

Векторная диаграмма трансформатора в режиме холостого хода является графической иллюстрацией и решением уравнений

Векторы как это следует из уравнений

отстают от вектора Фом на 90° (рис.3). Величина напряжения U2020 отличается от Е10 в отношении коэффициента трансформации. Ток холостого хода I0 не синусоидален и его представляют в виде двух составляющих: I0а — активной, определяющей потери энергии в стали сердечника и в обмотке; I0р — реактивной, необходимой для создания МДС F0 и потоков Ф0 и Фрс1.

Рис. 3 — Векторная диаграмма холостого хода трансформатора

Таким образом, можно записать

Работа трансформатора под нагрузкой

Нагрузочным или рабочим называется режим работы трансформатора, при котором к первичной обмотке подведено напряжение U1, а к вторичной подключены потребители ZН (рис. 4), так что I2 > 0.

Рис. 4 — Нагрузочный режим однофазного трансформатора

Это основной режим, при котором вторичный ток изменяется в пределах 0 Режим короткого замыкания

Короткое замыкание (к.з.) трансформатора представляет собой такой режим его работы, когда вторичная обмотка замкнута накоротко (Zн = 0) и, следовательно, вторичное напряжение U2 равно нулю.

При внезапном коротком замыкании, когда к первичной обмотке подводится номинальное напряжение, токи в обмотках превышают номинальные значения в 10…20 раз. Такое к.з. может иметь место при эксплуатации трансформатора и является аварийным. Возникают недопустимые перегревы обмоток и значительные электродинамические усилия, которые приводят к разрушению трансформатора. Для защиты трансформатора от коротких замыканий применяются быстродействующие автоматы защиты.

В процессе испытания трансфор­маторов производят опыт короткого замыкания, но при таком понижен­ном первичном напряжении, чтобы токи в обмотках были равны номи­нальным. Это напряжение, выраженное в % от номинального (uк %), заносится на заводскую табличку трансформатора. Измерения при таком испытательном коротком замыкании, также как и измерения при холостом ходе позволяют определить ряд важных параметров трансформатора.

Приведенный трансформатор

Приведение вторичной обмотки трансформатора к первичной

Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой. Смысл приведения состоит в том, чтобы сделать ЭДС первичной и вторичной обмоток одинаковыми, электромагнитную связь между обмотками заменить электрической связью и получить единую электрическую схему замещения трансформатора, построить другую, более простую и наглядную векторную диаграмму. Чаще всего вторичную обмотку приводят к первичной. Для этого условно заменяют реальную вторичную обмотку некоторой фиктивной обмоткой с числом витков:

т.е. увеличивают число ее витков в k раз. Таким образом, коэффициент приведения вторичной обмотки к первичной равен коэффициенту трансформации. Все параметры приведенной обмотки обозначают со штрихами:

и т.д. В приведенной обмотке в соответствии с новым числом витков увеличиваются все ЭДС, напряжения и падения напряжения, т.е.:

Важным условием приведения является то, чтобы мощности и потери энергии во вторичной обмотке не изменялись. Для этого должны выполняться равенства:

из которых получаются соотношения для тока и активного сопротивления приведенной вторичной обмотки:

Аналогично последнему соотношению изменяются индуктивное сопротивление рассеяния приведенной вторичной обмотки и параметры нагрузки:

Для полных сопротивлений справедливы соотношения:

Если таким образом изменить (условно конечно) все электрические величины вторичной обмотки, то энергетические соотношения в реальном и приведенном трансформаторе сохраняются без изменений и поэтому приведение правомерно. При этом необходимо помнить, что приведение — это чисто аналитический прием, позволяющий упростить расчеты и анализ физических процессов в реальном трансформаторе.

Схема замещения и уравнения электрического равновесия приведенного трансформатора

Поскольку в приведенной вторичной обмотке ЭДС

равна ЭДС E1, то оказывается возможным схемы замещения первичной обмотки (рис. 5,а) и вторичной обмотки (рис. 5,б) с измененными параметрами объединить в одну схему замещения, соединив электрически точки равного потенциала. Такая полная двухконтурная схема замещения показана на рис. 7. Ее часто называют Т-образной схемой замещения приведенного трансформатора.

Рис. 7 — Т-образная схема замещения приведенного трансформатора

На этой схеме ветвь c – d с сопротивлениями rm и xm и током I0 называют ветвью намагничивания, ветвь А – с с током I1 — первичной ветвью, ветвь с – а– х – d с током

— вторичной ветвью или вторичным контуром.Параметры схемы имеют строго определенные наименования: rm — активное сопротивление ветви намагничивания, учитывающее потери в стали магнитопровода на перемагничивание и вихревые токи:

— индуктивное сопротивление взаимоиндукции (ветви намаг­ничивания).

поэтому принимают, что:

r1 и r2’ — активные сопротивления первичной и приведенной вторичной обмоток; x1 и x2 ‘ — индуктивные сопротивления рассеяния первичной и приведенной вторичной обмоток;

— приведенное сопротивление нагрузки. Уравнения равновесия токов и ЭДС приведенного трансформатора записываются на основании 1 и 2 законов Кирхгофа:

Полная векторная диаграмма приведенного трансформатора (рис.8) является графическим решением приведенных уравнений электрического равновесия.

Рис. 8 — Векторная диаграмма приведенного трансформатора

Она объединяет векторные диаграммы первичной и вторичной обмоток, показанные на рис. 6 , при этом векторы ЭДС

между собой, а все построения для вторичной обмотки производятся для приведенных параметров.

Как отмечалось выше, в режимах номинальной нагрузки ток холостого хода I0 очень мал по сравнению с током I1н. Тем более он несоизмеримо мал по сравнению с током короткого замыкания, поэтому в этих режимах им можно пренебречь и в расчетах пользоваться упрощенной схемой замещения (рис. 9).

Рис. 9 — Упрощенная схема замещения приведенного трансформатора

Сопротивления rk = r1 +r2 ‘ и xk= x1 + x2называют сопротивлениями короткого замыкаия.

Уравнения электрического равновесия для упрощенной схемы имеют вид:

Опытное определение параметров схемы замещения трансформатора

Для определения параметров схемы замещения трансформатора проводят его испытания в режиме холостого хода и опытного короткого замыкания.

Схема опыта холостого хода приведена на рис.10 . Первичную обмотку подключают на номинальное напряжение и измеряют ток холостого хода I0 , мощность P0, напряжение на разомкнутой вторичной обмотке U20 .

Рис. 10 — Схема опыта холостого хода

Мощность P0, потребляемая из сети, расходуется на потери в меди ?Pm1 = I0 2 r1 и потери в стали ?Pст= I0 2 rm при этом, поскольку rm»r1, потерями в первичной обмотке ?Pm1 пренебрегают и считают, что вся потребляемая из сети мощность расходуется на потери в стали, т.е.:

Исходя из схемы замещения (рис. 5, а ) и пренебрегая величиной z1 по сравнению с zm можно определить величину zm из соотношения:

Коэффициент мощности при холостом ходе определяется из соотношения:

Коэффициент трансформации равен:

Схема опыта короткого замыкания приведена на рис. 11.

Рис. 11 — Схема опыта короткого замыкания

В этом опыте вторичная обмотка замыкается накоротко, а на первичной обмотке с помощью регулятора устанавливают такое напряжение U1k, при котором ток в первичной обмотке равен номинальному I1k = I1н. Величина U1k имеет весьма важное эксплуатационное значение и всегда указывается на щитке трансформатора. Обычно она указывается в процентах от номинального напряжения и для однофазных трансформаторов составляет 3%…5%.

Поскольку в рассматриваемом режиме U2=0, то трансформатор не отдает потребителю полезной мощности и вся мощность P1k, потребляемая из сети, расходуется на потери. Т.к. потери в стали ?Рст пропорциональны квадрату магнитной индукции ?Рст ? В 2 ? Е 2 ? U1 2 , то, ввиду малости напряжения U1k, этими потерями пренебрегают и считают, что вся потребляемая мощность расходуется на потери в обмотках, т. е:

Полное сопротивление короткого замыкания равно:

Принимая далее, что :

получаем все параметры Т-образной схемы замещения трансформатора.

Рабочие характеристики трансформатора

Зависимость вторичного напряжения трансформатора от величины и характера нагрузки

Изменением напряжения двухобмоточного трансформатора при заданной нагрузке называется выраженная в процентах от номинального вторичного напряжения разность:

где U2o и U2н — вторичные напряжения при холостом ходе и при нагрузке.

Существуют определенные ГОСТом допустимые нормы изменения напряжения трансформатора при номинальной нагрузке. Часто в конструкции трансформатора предусматривается возможность в небольших пределах регулировать вторичное напряжение путем изменения числа витков первичной или вторичной обмоток, имеющих дополнительные выводы.

Физически влияние величины нагрузки на вторичное напряжение объясняется изменением (увеличением) падения напряжения на соп­ротивлениях обмоток трансформатора при увеличении тока нагрузки I2 (или I2’).

Логическая цепочка этого процесса такова:

При возрастании тока увеличивается и ток I1 вызывая увеличение падения напряжения в сопротивлениях первичной обмотки. Поскольку:

то это приводит к некоторому снижению ЭДС E1, и соответствующему изменению магнитного потока взаимоиндукции, а это влечет за собой уменьшение . В свою очередь падение напряжения на сопротивлениях вторичной обмотки создают дополнительные изменения напряжения .

Влияние характера нагрузки (отношения xн /rн) на величину вторичного напряжения при неизменном токе нагрузки удобно проследить, пользуясь упрощенной векторной диаграммой (рис. 1), на которой показаны режимы работы трансформатора для случаев ?2 > 0, ?2 = 0 и ?2 0) и чисто активной нагрузке (?2 = 0) приведенное вторичное напряжение меньше первичного напряжения .

При активно-емкостной нагрузке (?2 Внешняя характеристика трансформатора

Внешней характеристикой трансформатора называют зависимость:

при и cos?1 = const (рис. 13).

Рис. 13 — Внешняя характеристика трансформатора

Из рис. 13 следует, что внешняя характеристика трансформатора при увеличении тока нагрузки до номинального является достаточно жесткой. Изменение напряжения составляет всего несколько процентов и зависит от характера нагрузки, что находится в соответствии с векторной диаграммой (рис. 12 ).

При активной и активно-индуктивной нагрузке напряжение уменьшается, при активно-емкостной нагрузке оно может несколько возрастать. На практике величина изменения напряжения обычно рассчитывается по приближенной формуле:

где ? = I2/I2н нагрузка трансформатора в относительных единицах;

Потери в трансформаторе и его КПД

Трансформатор потребляет из сети мощность:

где m1 – число фаз.

Часть этой мощности, как отмечалось, теряется в виде потерь в обмотках:

другая часть — в виде потерь в сердечнике на гистерезисе и вихревые токи.

Электромагнитная мощность:

передается во вторичную обмотку посредством магнитного поля.

Полезная мощность равна:

мало изменяются при изменении нагрузки и относятся к категории постоянных потерь. Потери в обмотках:

являются переменными т.к. изменяются при изменении тока. Коэффициент полезного действия трансформатора показывает соотношение между мощностью, которая передается из первичной обмотки во вторичную и обратно, и мощностью, которая преобразуется в тепло. КПД определяется по формуле:

КПД силовых трансформаторов обычно достигает 94…98%. Рассчитывают трансформаторы таким образом, чтобы КПД имел наибольшее значение при нагрузке ? = 0,5 – 0,7 от номинальной. Обычно трансформаторы работают с некоторой недогрузкой — в области максимального значения КПД рис. 14.

Рис. 14 — Коэффициент полезного действия трансформатора

При передаче значительной реактивной мощности (при уменьшении cos?2) КПД уменьшается, что показано на рис. 1, кривая 2.

Параллельная работа трансформаторов

Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:

1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 …kn.

2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.

3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.

4. Схемы и группы соединений обмоток трансформаторов, предназначенных для параллельной работы, должны быть одинаковыми. Это требование может быть выполнено, если условные обозначения схем и групп соединений, указанные на заводских табличках, будут одинаковыми.

5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. е. одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.

Рассмотрим последствия нарушения названных условий.

Допустим, что не выполнено первое условие (k1 Е2. Под действием возникшей разности потенциалов в замкнутом контуре вторичных обмоток пойдет уравнительный ток, который создаст падение напряжения в обмотках. В трансформаторе 1 это вызовет уменьшение напряжения на зажимах вторичной обмотки, в трансформаторе 2 – увеличение вторичного напряжения. В результате напряжение на внешних шинах будет иметь среднее значение. При нагрузке уравнительный ток накладывается на ток нагрузки, вследствии чего трансформатор 1 будет перегружен, а трансформатор 2 – недогружен. ГОСТ допускает расхождение в коэффициентах трансформации не больше ±0,5% от их среднего значения.

Если трансформаторы имеют неодинаковые номинальные напряжения короткого замыкания u ? u, значит неодинаковы сопротивления короткого замыкания Z ? Z. При работе трансформаторов в параллель напряжения вторичных обмоток одинаковы т. е. I12Z = I22Z, а это возможно лишь при неодинаковых токах трансформаторов. Это значит, что при параллельной работе трансформаторов нагрузка между ними будет распределяться непропорционально их номинальным мощностям. Чтобы не вызвать аварии трансформатора, имеющего меньшее значение uК, необходимо снижать общую нагрузку. Это ведет к неполному использованию трансформаторов. Согласно ГОСТ необходимо, чтобы разница напряжений короткого замыкания не превышала ±10% от их среднего значения, а соотношение номинальных мощностей параллельно работающих трансформаторов было не больше, чем 3:1.

Несоблюдение четвертого условия вызывает настолько большой уравнительный ток, что трансформаторы могут выйти из строя из-за перегрева обмоток. Даже при минимальном расхождении групп соединения трансформаторов (например, у одного группа ?/? – 0, а у другого ?/? – 11) уравнительный ток будет примерно в 5 раз больше номинального, что равносильно короткому замыканию.

Во избежание ошибок присоединение трансформаторов к сети без нулевого провода ( пятое условие ) производят следующим образом. Включают оба трансформатора со стороны высшего напряжения, затем один из них присоединяют к шинам низкого напряжения выводами обмоток всех фаз, а другой — выводами обмотки одной фазы, например С. Затем между выводами обмоток фаз В и А второго трансформатора и шинами низкого напряжения, к которым соответственно присоединены выводы обмоток фаз В и А первого трансформатора, включают вольтметр или лампу. Если обозначения выводов обмоток фаз на трансформаторах нанесены правильно, то между всеми парами одноименных выводов напряжение равно нулю (лампа не горит или вольтметр показывает нуль) и выводы В и А второго трансформатора могут быть соединены с шинами, к которым соответственно присоединены выводы В и А первого трансформатора.

Контрольные лампы или вольтметры при указанной проверке должны быть взяты на двойное рабочее напряжение трансформатора со стороны низшего напряжения.

уравнение электрического равновесия

Уравнение намагничивающих сил

,

уравнение электрического равновесия

Ряд практических вопросов, относящихся к эксплуатации трансформаторов, решается с помощью эквивалентных схем трансформатора. Эквивалентной схемой трансформатора называ­ется такая комбинация электрически соединенных сопротивлений, которая при ее включении на место трансформатора будет потреб­лять ту же мощность, при том же сдвиге фаз, как и замещаемый трансформатор. На рисунке 2 показана Т-образная эквивалентная схема трансформатора.

Рисунок 2 – Т-образная схема замещения трансформатора

В ней изображает первичную обмотку, — вторичную обмотку, замещает нагрузку трансформатора; оно находится вне эквивалент­ной схемы трансформатора.

В ряде случаев можно существенно упростить эквивалент­ную схему, если пренебречь намагничивающим током . Если отпустить ветвь тока , то в упрощенной схеме сопротивления Z1 и Z2 образуют простое последовательное соединение, благодаря чему активное сопротивление эквивалентной схемы , реактивное сопротивление , а будет полным сопротивле­нием упрощенной эквивалентной схемы (рисунок 3).

Рисунок 3 – Уупрощенная схема замещения трансформатора

Для определения полного сопротивление Z достаточно од­ного опыта короткого замыкания, то есть , , .

С помощью упрощенной эквивалентной схемы определяется, в частности, изменение вторичного напряжения трансформатора, вызываемое нагрузкой.

Для изучения работы трансформатора в любом режиме, а также для определения КПД трансформатора важное значение имеют два предельных режима работы: режим холостого хода и режим короткого замыкания.

Режимом холостого хода трансформатора называется такой режим его работы, при котором первичная обмотка включена на сеть переменного тока с частотой f, вторичная обмотка разомкнута.

Опыт холостого хода проводится по схеме, представленной на рисунке 4.

Рисунок 4 – Электрическая схема режима холостого хода

Чтобы создать режим холостого хода, достаточно при разомкнутой вторичной обмотке трансформатора подать номинальное напряжение U1H к его первичной обмотке. Для регулировки этого напряжения используются автотрансформаторы, индукционные регуляторы и т.п., позволяющие плавно изменять напряжение.

При опыте холостого хода ток первичной обмотки составляет только от 10 до 2,5% от номинального значения (чем больше мощность трансформатора, тем меньше ток холостого хода).

(7)

(8)

где и — полные сопротивления первичной и вторичной обмоток трансформатора; и называются внутренними падениями напряжения на первичной и вторичной обмотках трансформатора.

Поэтому в уравнении равновесия (7) падением напряжения в пер­вичной обмотке можно пренебречь и считать, что . Так как I2=0, то из (8) следует . Следовательно, формулу (1) можно представить так:

Согласно формулам (7) и (8), уравнения электрического равновесия для холостого хода запишутся так:

Соответственно этим уравнениям строится векторная диаграмма холостого хода трансформатора.

Проведем вектор основного магнитного потока Φm в положи­тельном направлении оси абсцисс (рисунок 5)

Рисунок 5 – Векторная диаграмма холостого хода трансформатора

Вектор ЭДС отстает от вектора потока Φm на 90°, по фазе с совпадает вектор ЭДС вторичной обмотки. Вектор тока опережает поток на угол магнитного запаздывания α (обычно α

Если при коротком замыкании трансформатора к зажимам его первичной обмотки подведено номинальное или близкое к нему напряжение, то токи короткого замыкания в обмотках трансформатора достигают величины, превышающей номинальные токи обмоток в 10÷20 и более раз, так как сопротивления обмоток относительно невелики. Такое короткое замыкание трансформатора возможно в эксплуатационных условиях. Называется оно эксплуатационным или аварийным и представляет большую опасность для трансформаторов.

Другим видом короткого замыкания трансформатора является испытание его в режиме короткого замыкания, которое производится при соответственно пониженном напряжении Uk.

Опыт короткого замыкания трансформатора производится по схеме, представленной на рисунке 7.

Рисунок 7 — Электрическая схема режима короткого замыкания

Автотрансформатором напряжение, подводимое к первичной обмотке, плавно повышается до такого значения U, при котором первичный и вторичный токи станут номинальными: .

Напряжение короткого замыкания U1k составляет обычно 5÷10% от номинального напряжения первичной обмотки. Поэтому магнитный поток, пропорциональный напряжению (Φ

U1k), невелик. Потери в стали, пропорциональные квадрату потока (магнитной индукции), незначительны и ими можно пренебречь. На этом основании можно считать, что мощность короткого замыкания (или просто потери короткого замыкания) расходуется на потери в меди обмоток трансформатора, т.е.

(11)

если пренебречь намагничивающим током ввиду его относительной малости, то из формулы (2) следует

где – активное сопротивление короткого замыкания трансформатора.

(12)

полное сопротивление короткого замыкания

Зная Zk и rk, можно найти индуктивное сопротивление короткого замыкания трансформатора:

(13)

где

Коэффициент мощности при коротком замыкании

Обычно напряжение короткого замыкания U выражается в процентах от номинального напряжения U и называется номинальным напряжением короткого замыкания или просто напряжением короткого замыкания:

% (14)

Напряжение короткого замыкания Uk указывается на щитке трансформатора.

Итак, опыт короткого замыкания позволяет определить потери в меди обмоток трансформатора (11), сопротивление обмоток (12), (13), напряжение короткого замыкания (14).

Параметры Т-образной эквивалентной схемы трансформатора определяется следующим образом. Из схемы замещения трансформатора (рисунок 2) для холостого хода следует:

В силовых трансформаторах, как правило:

;

;

;

;

С достаточной степенью точности можно считать, что

;

При активно-индуктивном характере сопротивления потребителя с ростом нагрузки трансформатора падение напряжения на его обмотках будет увеличиваться. Следовательно, величина напряжения на вторичной обмотке U2 будет уменьшаться, т.к. U1=const. Кривая зависимости напряжения U2 на зажимах вторичной обмотки от тока I2 вторичной цепи при неизменном номинальной частоте f и при неизменном коэффициенте мощности cosφ2 нагрузки получила название внешней характеристики трансформатора.

Снятие внешней характеристики для активной нагрузки проводится по схеме, изображенной на рисунке 8.

Рисунок 8 – Электрическая схема режима работы трансформатора под нагрузкой

Коэффициент полезного действия трансформатора η определяется косвенным методом по формуле;

,

где -мощность, отдаваемая трансформатором;

-мощность, подводимая к трансформатору;

— потери в стали (опыт холостого хода);

— потери в меди;

— мощность короткого замыкания (опыт короткого замыкания);

— коэффициент, учитывающий величину загрузки трансформатора.

Максимум КПД имеет место в случае равенства потерь , или , откуда

1. Объяснить, почему магнитный поток трансформатора практически не зависит от нагрузки? Что определяет величину по­тока?

2. Почему при увеличении тока во вторичной обмотке растет ток в первичной обмотке? Как при этом изменяются потоки рассея­ния?

3. Потери трансформатора. Зависимость их от величины на­грузки; опытное определение.

4. Какого назначение опыта холостого хода?

5. Какого назначение опыта короткого замыкания?

6. Что называется коэффициентом загрузки трансформатора? При каких условиях КПД достигает максимального значения?

7. Как определяется КПД трансформатора? При каких усло­виях КПД достигает максимального значения?

8. Что называется внешней характеристикой трансформатора? Как определяется величина изменения вторичного напряжения?


источники:

http://www.radioingener.ru/transformatory_part2/

http://mydocx.ru/3-62880.html