Уравнение электролиза расплава хлорида меди

1. Электролиз расплава хлорида меди (II).

Электродные процессы могут быть выражены полуреакциями:

на катоде K(-): Сu 2+ + 2e = Cu 0

на аноде A(+): 2Cl – — 2e = Cl2

Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением:

Cu 2+ + 2 Cl – = Cu + Cl2

При электролизе щелочей и солей оксокислот на аноде выделяется кислород:

2. Электролиз расплава хлорида калия:

Электролиз растворов

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».

происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого)

анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

— окисление анионов и гидроксид-ионов,

— восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого)

анода процесс усложняется и конкурирующими реакциями на электродах являются:

— окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;

— восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих в своем составе анионы SO4 2- , NО — 3, РО4 3- , а также растворов щелочей на аноде окисляется вода и

б) при окислении анионов Сl — , Вr — , I — выделяются соответственно

А + Cl — +e — = Cl 0

2. На катоде могут образовываться следующие продукты:

а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде восстанавливается вода и

б) если ион металла расположен в ряду напряжений правее водорода, то на катоде

К — Me n+ + ne — = Me 0

в) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al + и Н + , на катоде могут протекать конкурирующие процессы как

восстановления катионов, так и выделения водорода

Пример: Электролиз водного раствора нитрата серебра на инертных электродах

Диссоциация нитрата серебра:

При электролизе водного раствора АgNО3 на катоде происходит восстановление ионов Аg + , а на аноде — окисление молекул воды:

Катод: Аg + + е = А g

Составьте схемы электролиза водных растворов: а) сульфата меди; б) хлорида магния; в) сульфата калия.

Во всех случаях электролиз проводится с использованием угольных электродов.

Пример: Электролиз водного раствора хлорида меди на инертных электродах

Диссоциация хлорида меди:

В растворе находятся ионы Си 2+ и 2Сl — , которые под действием электрического тока направляются к соответствующим электродам:

Катод — Cu 2+ + 2e = Cu 0

Анод + 2Cl — — 2e = Cl2

На катоде выделяется металлическая медь, на аноде — газообразный хлор.

Если в рассмотренном примере электролиза раствора CuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl 0 и выделения хлора протекает окисление анода (меди).

В этом случае происходит растворение самого анода, и в виде ионов Сu 2+ он переходит в раствор.

Электролиз CuCl2 с растворимым анодом можно записать так:

Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Пример: Электролиз водного раствора хлорида магния на инертных электродах

Диссоциация хлорида магния в водном растворе:

Ионы магния не могут восстанавливаться в водном растворе

(идет восстановление воды)

Пример: Электролиз водного раствора сульфата меди на инертных электродах

В растворе сульфат меди диссоциирует на ионы:

Ионы меди могут восстанавливаться на катоде в водном растворе.

Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды.

Электролиз водного раствора соли активного металла и кислородсодержащей кислоты (К24) на инертных электродах

Пример: Диссоциация сульфата калия в водном растворе:

Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно,

на катоде будет протекать восстановление

аноде — окисление воды.

или, учитывая, что

(осуществляется при перемешивании),

H2O 2H2 + O2

Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются.

На катоде выделяется водород, а на аноде — кислород, и электролиз сводится к электролитическому разложению воды.

Электролиз расплава гидроксида натрия

проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита — воды):

Закон Фарадея

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:

— масса образовавшегося при электролизе вещества (г);

— эквивалентная масса вещества (г/моль);

— молярная масса вещества (г/моль);

— количество отдаваемых или принимаемых электронов;

— продолжительность процесса (с);

— константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества

(F = 96 500 Кл/моль = 26,8 Ач/моль).

Гидролиз неорганических соединений

Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют

Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.

1. Соль, образованная сильным основанием и сильной кислотой KBr, NaCl, NaNO3)

, гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.

2. В соли, образованной слабым основанием и сильной кислотой FeCl2, NH4Cl, Al2(SO4)3, MgSO4)

гидролизу подвергается катион:

FeCl2 + HOH → Fe(OH)Cl + HCl

Fe 2+ + 2Cl — + H + + OH — → FeOH + + 2Cl — + Н +

В результате гидролиза образуется слабый электролит, ион H + и другие ионы. рН раствора

3. Соль, образованная сильным основанием и слабой кислотой (КClO, K2SiO3, Na2CO3, CH3COONa)

подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.

2K + +SiO3 2- + Н + + ОH — → НSiO3 — + 2K + + ОН —

рН таких растворов > 7 ( раствор приобретает щелочную реакцию).

гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания.

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и силиного основания

Различают несколько вариантов гидролиза солей:

1. Гидролиз соли слабой кислоты и сильного основания:

Пример 1. Гидролиз ацетата натрия.

или CH3COO – + Na + + H2O ↔ CH3COOH + Na + + OH –

Так как уксусная кислота слабо диссоциирует, ацетат-ион связывает ион H + , и равновесие диссоциации воды смещается вправо согласно принципу Ле Шателье.

В растворе накапливаются ионы OH — ( pH >7)

Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.

Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.

Например, гидролиз карбоната:

Практическое значение обычно имеет только процесс, идущий по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей.

Равновесие гидролиза по второй ступени значительно смешено влево по сравнению с равновесием первой ступени, поскольку на первой ступени образуется более слабый электролит (HCO3 – ), чем на второй (H2CO3)

Пример 2 . Гидролиз ортофосфата рубидия.

1. Определяем тип гидролиза:

Рубидий – щелочной металл, его гидроксид — сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, — слабая кислота.

Идет гидролиз по аниону.

2. Пишем ионное уравнение гидролиза, определяем среду:

Продукты — гидрофосфат- и гидроксид-ионы, среда – щелочная.

3. Составляем молекулярное уравнение:

Получили кислую соль – гидрофосфат рубидия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и слабого основания

2. Гидролиз соли сильной кислоты и слабого основания:

Пример 1. Гидролиз нитрата аммония.

В случае многозарядного катиона гидролиз протекает ступенчато, например:

I ступень : Cu 2+ + HOH ↔ CuOH + + H +

II ступень : CuOH + + HOH ↔ Cu(OH)2 + H +

При этом концентрация ионов водорода и pH среды в растворе также определяются главным образом первой ступенью гидролиза.

Пример 2. Гидролиз сульфата меди(II)

1. Определяем тип гидролиза.

На этом этапе необходимо написать уравнение диссоциации соли:

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты.

Идет гидролиз по катиону.

2. Пишем ионное уравнение гидролиза, определяем среду:

Cu 2+ + H-OH ↔ CuOH + + H + .

Образуется катион гидроксомеди(II) и ион водорода,

3. Составляем молекулярное уравнение.

Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два.

Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)».

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и слабого основания

3. Гидролиз соли слабой кислоты и слабого основания:

Пример 1. Гидролиз ацетата аммония.

В этом случае образуются два малодиссоциированных соединения, и pH раствора зависит от относительной силы кислоты и основания.

Если продукты гидролиза могут удаляться из раствора, например, в виде осадка или газообразного вещества, то гидролиз протекает до конца.

Пример 2. Гидролиз сульфида алюминия.

2А l 3+ + 3 S 2- + 6Н2О = 2Аl(OН)3(осадок) + ЗН2S (газ)

Пример 3. Гидролиз ацетата алюминия

1. Определяем тип гидролиза:

Соль образована катионом слабого основания и анионами слабой кислоты.

2. Пишем ионные уравнения гидролиза, определяем среду:

Al 3+ + H–OH ↔ AlOH 2+ + H + ,

Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону.

Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.

Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.

3 . Составляем молекулярное уравнение:

Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и сильного основания

4. Соли, образованные сильной кислотой и сильным основанием

, гидролизу не подвергаются, т.к. единственным малодиссоциирующим соединением является H2O.

Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e1e2682395a979f • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Электролиз растворов
и расплавов солей (2 ч)

Цели первого урока: научить писать схемы электролиза растворов и расплавов солей и применять полученные знания для решения расчетных задач; продолжить формирование навыков работы с учебником, тестовыми материалами; обсудить применение электролиза в народном хозяйстве.

П л а н п е р в о г о у р о к а

1. Повторение изученных способов получения металлов.

2. Объяснение нового материала.

3. Решение задач из учебника Г.Е.Рудзитиса, Ф.Г.Фельдмана «Химия-9» (М.: Просвещение, 2002), с. 120, № 1, 2.

4. Проверка усвоения знаний на тестовых заданиях.

5. Сообщение о применении электролиза.

Цели первого урока: научить писать схемы электролиза растворов и расплавов солей и применять полученные знания для решения расчетных задач; продолжить формирование навыков работы с учебником, тестовыми материалами; обсудить применение электролиза в народном хозяйстве.

ХОД ПЕРВОГО УРОКА

Повторение изученных способов получения металлов на примере получения меди из оксида меди(II).

Запись уравнений соответствующих реакций:

Еще один способ получения металлов из растворов и расплавов их солей – электрохимический, или электролиз.

Электролиз – это окислительно-восстановительный процесс, происходящий на электродах при пропускании электрического тока через расплав или раствор электролита.

Электролиз расплава хлорида натрия:

NaCl Na + + Cl – ;

катод (–) (Na + ): Na + + е = Na 0 ,

анод (–) (Cl – ): Cl – – е = Cl 0 , 2Cl 0 = Cl2;

2NaCl = 2Na + Cl2.

Электролиз раствора хлорида натрия:

NaCl Na + + Cl – ,

H2O Н + + ОН – ;

катод (–) (Na + ; Н + ): H + + е = H 0 , 2H 0 = H2

анод (+) (Cl – ; OН – ): Cl – – е = Cl 0 , 2Cl 0 = Cl2;

2NaCl + 2H2O = 2NaOH + Cl2 + H2.

Электролиз раствора нитрата меди(II):

Cu(NO3)2 Cu 2+ +

Н2O H + + OH – ;

катод (–) (Cu 2+ ; Н + ): Cu 2+ + 2е = Cu 0 ,

анод (+) ( OН – ): OH – – е = OH 0 ,

2Cu(NO3)2 + 2H2O = 2Cu + O2 + 4HNO3.

Эти три примера показывают, почему электролиз проводить выгоднее, чем осуществлять другие способы получения металлов: получаются металлы, гидроксиды, кислоты, газы.

Мы писали схемы электролиза, а теперь попробуем написать сразу уравнения электролиза, не обращаясь к схемам, а только используя шкалу активности ионов:

Примеры уравнений электролиза:

2HgSO4 + 2H2O = 2Hg + O2 + 2H2SO4;

Na2SO4 + 2H2O = Na2SO4 + 2H2 + O2;

2LiCl + 2H2O = 2LiOH + H2 + Cl2.

Решение задач из учебника Г.Е.Рудзитиса и Ф.Г.Фельдмана (9-й класс, с. 120, № 1, 2).

Задача 1. При электролизе раствора хлорида меди(II) масса катода увеличилась на 8 г. Какой газ выделился, какова его масса?

CuCl2 + H2O = Cu + Cl2 + H2O,

(Cu) = 8/64 = 0,125 моль,

(Cu) = (Сl2) = 0,125 моль,

Ответ. Газ – хлор массой 8,875 г.

Задача 2. При электролизе водного раствора нитрата серебра выделилось 5,6 л газа. Сколько граммов металла отложилось на катоде?

4AgNO3 + 2H2O = 4Ag + O2 + 4HNO3,

(O2) = 5,6/22,4 = 0,25 моль,

(Ag) = 4(O2) = 4•25 = 1 моль,

m(Ag) = 1•107 = 107 г.

Ответ. 107 г серебра.

Тестирование

Вариант 1

1. При электролизе раствора гидроксида калия на катоде выделяется:

а) водород; б) кислород; в) калий.

2. При электролизе раствора сульфата меди(II) в растворе образуется:

а) гидроксид меди(II);

б) серная кислота;

3. При электролизе раствора хлорида бария на аноде выделяется:

а) водород; б) хлор; в) кислород.

4. При электролизе расплава хлорида алюминия на катоде выделяется:

а) алюминий; б) хлор;

в) электролиз невозможен.

5. Электролиз раствора нитрата серебра протекает по следующей схеме:

а) AgNO3 + H2O Ag + Н2 + HNO3;

б) AgNO3 + H2O Ag + О2 + HNO3;

в) AgNO3 + H2O AgNO3 + Н2 + О2.

Вариант 2

1. При электролизе раствора гидроксида натрия на аноде выделяется:

а) натрий; б) кислород; в) водород.

2. При электролизе раствора сульфида натрия в растворе образуется:

а) сероводородная кислота;

б) гидроксид натрия;

3. При электролизе расплава хлорида ртути(II) на катоде выделяется:

а) ртуть; б) хлор; в) электролиз невозможен.

4. При электролизе раствора нитрата серебра на катоде выделяется:

а) серебро; б) водород; в) кислород.

5. Электролиз раствора нитрата ртути(II) протекает по следующей схеме:

а) Hg(NO3)2 + H2O Hg + Н2 + HNO3;

б) Hg(NO3)2 + H2O Hg + О2 + HNO3;

в) Hg(NO3)2 + H2O Hg(NO3)2 + Н2 + О2.

Вариант 3

1. При электролизе раствора нитрата меди(II) на катоде выделяется:

а) медь; б) кислород; в) водород.

2. При электролизе раствора бромида лития в растворе образуется:

б) бромоводородная кислота;

в) гидроксид лития.

3. При электролизе расплава хлорида серебра на катоде выделяется:

а) серебро; б) хлор; в) электролиз невозможен.

4. При электролизе раствора хлорида алюминия алюминий выделяется на:

а) катоде; б) аноде; в) остается в растворе.

5. Электролиз раствора бромида бария протекает по следующей схеме:

а) BaBr2 + H2O Br2 + Н2 + Ba(OH)2;

б) BaBr2 + H2O Br2 + Ba + H2O;

в) BaBr2 + H2O Br2 + О2 + Ba(OH)2.

Вариант 4

1. При электролизе раствора гидроксида бария на аноде выделяется:

а) водород; б) кислород; в) барий.

2. При электролизе раствора йодида калия в растворе образуется:

а) йодоводородная кислота;

б) вода; в) гидроксид калия.

3. При электролизе расплава хлорида свинца(II) на катоде выделяется:

а) свинец; б) хлор; в) электролиз невозможен.

4. При электролизе раствора нитрата серебра на катоде выделяется:

а) серебро; б) водород; в) кислород.

5. Электролиз раствора сульфида натрия протекает по следующей схеме:

а) Na2S + H2O S + Н2 + NaOH;

б) Na2S + H2O Н2 + O2 + Na2S;

в) Na2S + H2O Н2 + Na2S + NaOH.

ВариантВопрос 1Вопрос 2Вопрос 3Вопрос 4Вопрос 5
1аббаб
2ббааб
3авава
4бвааа

Применение электролиза в народном хозяйстве

1. Для защиты металлических изделий от коррозии на их поверхность наносят тончайший слой другого металла: хрома, серебра, золота, никеля и т.д. Иногда, чтобы не расходовать дорогие металлы, производят многослойное покрытие. Например, внешние детали автомобиля сначала покрывают тонким слоем меди, на медь наносят тонкий слой никеля, а на него – слой хрома.

При нанесении покрытий на металл электролизом они получаются ровными по толщине, прочными. Таким способом можно покрывать изделия любой формы. Эту отрасль прикладной электрохимии называют гальваностегией.

2. Кроме защиты от коррозии гальванические покрытия придают красивый декоративный вид изделиям.

3. Другая отрасль электрохимии, близкая по принципу к гальваностегии, названа гальванопластикой. Это процесс получения точных копий различных предметов. Для этого предмет покрывают воском и получают матрицу. Все углубления копируемого предмета на матрице будут выпуклостями. Поверхность восковой матрицы покрывают тонким слоем графита, делая ее проводящей электрический ток.

Полученный графитовый электрод опускают в ванну с раствором сульфата меди. Анодом служит медь. При электролизе медный анод растворяется, а на графитовом катоде осаждается медь. Таким образом получается точная медная копия.

С помощью гальванопластики изготавливают клише для печати, грампластинки, металлизируют различные предметы. Гальванопластика открыта русским ученым Б.С.Якоби (1838).

Изготовление штампов для грампластинок включает нанесение тончайшего серебряного покрытия на пластмассовую пластинку, чтобы она стала электропроводной. Затем на пластинку наносят электролитическое никелевое покрытие.

Чем следует сделать пластинку в электролитической ванне – анодом или катодом?

(О т в е т. Катодом.)

4. Электролиз используют для получения многих металлов: щелочных, щелочно-земельных, алюминия, лантаноидов и др.

5. Для очистки некоторых металлов от примесей металл с примесями подключают к аноду. Металл растворяется в процессе электролиза и выделяется на металлическом катоде, а примесь остается в растворе.

6. Электролиз находит широкое применение для получения сложных веществ (щелочей, кислородсодержащих кислот), галогенов.

Схема электролиза воды

Цели урока. Провести электролиз воды, показать гальваностегию на практике, закрепить знания, полученные на первом уроке.

Оборудование. На столах учащихся: плоская батарейка, два провода с клеммами, два графитовых электрода, химический стакан, пробирки, штатив с двумя лапками, 3%-й раствор сульфата натрия, спиртовка, спички, лучина.

На столе учителя: то же + раствор медного купороса, латунный ключ, медная трубка (кусок меди).

1. Прикрепить провода клеммами к электродам.

2. Электроды поставить в стакан, чтобы они не соприкасались.

3. Налить в стакан раствор электролита (сульфата натрия).

4. В пробирки налить воды и, опустив их в стакан с электролитом кверху дном, надеть их на графитовые электроды поочередно, закрепив верхний край пробирки в лапке штатива.

5. После того как прибор будет смонтирован, концы проводов прикрепить к батарейке.

6. Наблюдать выделение пузырьков газов: на аноде их выделяется меньше, чем на катоде. После того как в одной пробирке почти вся вода вытеснится выделяющимся газом, а в другой – наполовину, отсоединить провода от батарейки.

7. Зажечь спиртовку, осторожно снять пробирку, где вода почти полностью вытеснилась, и поднести к спиртовке – раздастся характерный хлопок газа.

8. Зажечь лучину. Снять вторую пробирку, проверить тлеющей лучиной газ.

Задания для учащихся

1. Зарисовать прибор.

2. Написать уравнение электролиза воды и пояснить, почему надо было проводить электролиз в растворе сульфата натрия.

3. Написать уравнения реакций, отражающие выделение газов на электродах.

Учительский демонстрационный эксперимент
(могут выполнять лучшие ученики класса
при наличии соответствующего оборудования)

1. Подсоединить клеммы проводов к медной трубке и латунному ключу.

2. Опустить трубку и ключ в стакан с раствором сульфата меди(II).

3. Подсоединить вторые концы проводов к батарейке: «минус» батарейки к медной трубке, «плюс» к ключу!

4. Наблюдать выделение меди на поверхности ключа.

5. После выполнения эксперимента вначале отсоединить клеммы от батарейки, затем вынуть ключ из раствора.

6. Разобрать схему электролиза с растворимым электродом:

CuSО4 = Сu 2+ +

анод (+): Сu 0 – 2e = Cu 2+ ,

катод (–): Cu 2+ + 2e = Сu 0 .

Суммарное уравнение электролиза с растворимым анодом написать нельзя.

Электролиз проводился в растворе сульфата меди(II), поскольку:

а) нужен раствор электролита, чтобы протекал электрический ток, т.к. вода является слабым электролитом;

б) не будут выделяться какие-либо побочные продукты реакций, а только медь на катоде.

Ученик 9-го класса проводит
практическую работу
«Электролиз воды»

7. Для закрепления пройденного написать схему электролиза хлорида цинка с угольными электродами:

катод (–): Zn 2+ + 2e = Zn 0 ,

Суммарное уравнение реакции в данном случае написать нельзя, т.к. неизвестно, какая часть общего количества электричества идет на восстановление воды, а какая – на восстановление ионов цинка.

Схема демонстрационного эксперимента

1. Написать уравнение электролиза раствора, содержащего смесь нитрата меди(II) и нитрата серебра, с инертными электродами.

2. Написать уравнение электролиза раствора гидроксида натрия.

3. Чтобы очистить медную монету, ее надо подвесить на медной проволоке, присоединенной к отрицательному полюсу батареи, и опустить в 2,5%-й раствор NаОН, куда следует погрузить также графитовый электрод, присоединенный к положительному полюсу батареи. Объясните, каким образом монета становится чистой. (Ответ. На катоде идет восстановление ионов водорода:

Водород вступает в реакцию с оксидом меди, находящимся на поверхности монеты:

Этот способ лучше, чем чистка порошком, т.к. не стирается монета.)


источники:

http://gomolog.ru/reshebniki/11-klass/eremin-2019/10/8.html

http://him.1sept.ru/article.php?ID=200701405