Уравнение электромагнитного момента дпт нв

Основные теоретические положения

Важное свойство ДПТ с независимым возбуждением от постоянных магнитов состоит в том, что результирующий момент сил от всех проводников якоря, называемый электромагнитным моментом двигателя M, пропорционален току якоря Iя, потребляемому двигателем от источника питания:

,

где k m — коэффициент пропорциональности, называемый постоянной момента двигателя. Его размерность [Нм/А]. По законам электромагнитной индукции в проводнике, движущемся в магнитном поле, возникает электродвижущая сила. Суммарная ЭДС катушек якоря E через коллектор и щетки прикладывается к внешним выводам двигателя. В двигательном режиме работы эта ЭДС направлена против внешнего напряжения U я, подведенного к якорю от источника питания. Поэтому ЭДС двигателя часто называется противоЭДС. Она прямо пропорциональна угловой скорости вращения вала двигателя w дв[рад/с]:

,

где k ω — коэффициент пропорциональности, называемый постоянной ЭДС двигателя. Его размерность [Вс/рад].

Природа электромагнитных явлений в ДПТ такова, что если используется система единиц СИ, то значения коэффициентов k ω и km численно равны.

Уравнения, описывающие электрические процессы в ДПТ

В электрической якорной цепи двигателя протекает ток I я под действием напряжения постоянного тока Ua источника питания и противоЭДС двигателя.

Рис. 1

Эта цепь характеризуется параметрами: активным сопротивлением R я [Ом] и индуктивностью L я [Гн] якорной обмотки. Вращающийся ротор, обладающий моментом инерции Ja [Нм с 2 /рад] , приводится в движение одновременным действием электромагнитного момента двигателя M дв и момента внешних сил M вн, приложенного к валу двигателя.

Исходные дифференциальные уравнения ДПТ составляются на основании законов физики. Для электрической цепи используется второй закон Кирхгофа, согласно которому можно записать уравнение

,

где член R я I я характеризует падение напряжения на активном сопротивлении якорной цепи в соответствии с законом Ома, а член L я ( dI я/ dt ) отражает наличие ЭДС самоиндукции, возникающей в обмотке при изменении тока якоря. В представленном уравнении не учитывается падение напряжения на щетках, зависящее нелинейно от тока якоря, но имеющее, как правило, относительно небольшое значение по сравнению с напряжением U я .

Дифференциальное уравнение, характеризующее процессы в механической части двигателя, составляется на основании второго закона Ньютона:

,

где M вн — момент внешних сил, действующий относительно оси вращения вала двигателя. В этом уравнении не учитывается действие сил трения, возникающих при вращении ротора, но оказывающих относительно слабое действие на ускорение вала ДПТ.

Используя вышеприведенные формулы и приводя дифференциальные уравнения к нормальной форме Коши, получим описание ДПТ в форме:

Для исследования процессов с помощью ЭВМ удобно использовать структурное представление математической модели ДПТ. Для этого преобразуем полученную систему линейных дифференциальных уравнений по Лапласу при нулевых начальных условиях. В результате получим систему алгебраических уравнений:

в которых s — переменная Лапласа, а величины I я( s ), w дв( s ), U я( s ), M вн( s ) — изображения по Лапласу переменных I я , w дв, U я, M вн соответственно. После эквивалентных преобразований эти уравнения могут быть представлены в форме:

где Тэ = L я / R я — электромагнитная постоянная времени якорной цепи двигателя.

По уравнениям с помощью системы SIMULINK может быть сформирована структурная схема ДПТ для его математического моделирования (рис.1).

Важным параметром ДПТ, определяющим его динамические свойства, является электромеханическая постоянная времени двигателя:

.

Зависимость между электромагнитным моментом двигателя и частотой вращения ротора в установившемся режиме при постоянных U я и M вн называется механической характеристикой двигателя. Уравнение механической характеристики имеет вид:

.

При пуске двигателя, когда скорость равна нулю, развивается пусковой момент

.

Частота вращения вала двигателя при отсутствии сопротивления называется частотой вращения холостого хода

.

Основные уравнения двигателя постоянного тока (ДПТ)

В этой статье описаны основные формулы, величины и их обозначения которые относятся ко всем двигателям постоянного тока.

В результате взаимодействия Iя тока якоря в проводнике L обмотки якоря с внешним магнитным полем возникает электромагнитная сила создающая электромагнитный момент М который приводит якорь во вращение с частотой n.

Противо ЭДС двигателя Eя

При вращении якоря пазовый проводник пресекает линии поля возбуждения с магнитной индукцией B и в соответствии с явлением электромагнитной индукции в проводнике наводится ЭДС Eя направленная навстречу Iя. Поэтому эта ЭДС называется противо ЭДС и она прямо пропорциональна Ф магнитному потоку и частоте вращения n.

Ce — постоянный коэффициент определяемой конструкцией двигателя.

Применив второй закон Кирхгофа получаем уравнение напряжения двигателя.

где ∑R — суммарное сопротивления обмотки якоря включающая сопротивление :

  • обмотки якоря
  • добавочных полюсов
  • обмотки возбуждения (для двигателей с последовательным возбуждением)

Ток якоря Iя

Выразим из формулы 2 ток якоря.

Частота вращения якоря

Из формул 1 и 2 выведем формулу для частоты вращения якоря.

Электромагнитная мощность двигателя

Электромагнитный момент

где: ω = 2*π*f — угловая скорость вращения якоря, Cм — постоянный коэффициент двигателя (включает в себя конструктивные особенности данного двигателя)

Момент на валу двигателя, т.е. полезный момент, где М0 момент холостого хода;

Общие сведения о двигателях постоянного тока

Автор: Евгений Живоглядов.
Дата публикации: 01 марта 2013 .
Категория: Статьи.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и так далее).

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

Схемы двигателей и генераторов с данным видом возбуждения одинаковы (рисунок 1 в статье «Общие сведения о генераторах постоянного тока») . В двигателях независимого возбуждения токи якоря Iа и нагрузки I равны: I = Iа, в двигателях параллельного и смешанного возбуждения I = Iа + iв и в двигателях последовательного возбуждения I = Iа = Iв.

С независимым возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы, и поэтому первые ниже отдельно не рассматриваются.

Рисунок 1. Энергетическая диаграмма двигателя параллельного возбуждения

Энергетическая диаграмма

Энергетическая диаграмма двигателя параллельного возбуждения изображена на рисунке 1. Первичная мощность P1 является электрической и потребляется из питающей сети. За счет этой мощности покрываются потери на возбуждения pв и электрические потери pэла = Iа² × Rа в цепи якоря, а оставшаяся часть составляет электромагнитную мощность якоря Pэм = Eа × Iа, которая превращается в механическую мощность Pмх. Потери магнитные pмг, добавочные pд, и механические pмх покрываются за счет механической мощности, а остальная часть этой мощности представляет собой полезную механическую мощность P2 на валу.

Аналогичные энергетические диаграммы, иллюстрирующие преобразование энергии в двигателе, можно построить и для других типов двигателей.

Уравнение вращающих моментов

Электромагнитный момент двигателя

который является движущим и действует в сторону вращения, расходуется на уравновешивание тормозящих моментов: 1) момента M0, соответствующего потерям pмг, pд и pмх, покрываемым за счет механической мощности [смотрите равенство (6) в статье «Общие сведения о генераторах постоянного тока»]; 2) Mв – момента нагрузки на валу, создаваемого рабочей машиной или механизмом; 3) Mдин – динамического момента [смотрите равенство (7) в статье «Общие сведения о генераторах постоянного тока»]. При этом

Mэм = M0 + Mв + Mдин(1)
Mэм = Mст + Mдин(2)

является статическим моментом сопротивления.

При установившемся режиме работы, когда n = const и поэтому Mдин = 0,

Mэм = Mст.(3)

В дальнейшем индекс «эм» у Mэм будем опускать. Обычно M0 мал по сравнению с Mв, и поэтому приблизительно можно считать, что при установившемся режиме работы Mэм = M является полезным моментом на валу и уравновешивается моментом Mв. Можно также значение M0 включить в значение Mв.

Укажем, что если выразить P в киловаттах, а Ω — через число оборотов в минуту nм, то между P, nм и M в кгс × м будет существовать зависимость

Уравнение напряжения и тока

В двигателях направление действия э. д. с. якоря Eа противоположно направлению тока якоря Iа (смотрите статью «Принцип действия машины постоянного тока»), и поэтому Eа называется также противоэлектродвижущей силой якоря. Уравнение напряжения для цепи якоря двигателя можно записать следующим образом:

U = Eа + Rа × Iа.(4)

Здесь Rа – полное сопротивление цепи якоря [смотрите равенство (15) в статье «Общие сведения о генераторах постоянного тока»]. В режиме двигателя всегда U > Eа.

Из равенства (4) следует, что

(5)
Eа = cе × Фδ × n.(6)

Скорость вращения и механические характеристики

Решая уравнение (4) совместно с (6) относительно n, находим уравнение скоростной характеристики n = f(Iа) двигателя:

(7)
M = см × Фδ × Iа.(8)

Определив отсюда значение Iа и подставив его в (7), получим уравнение механической характеристики n = f(M) двигателя:

(9)

которое определяет зависимость скорости вращения двигателя от развиваемого момента вращения.

Вид механической характеристики n = f(M) или M = f(n) при U = const зависит от того, как с изменением момента M изменяется поток машины Фδ, и различен для двигателей с различными способами возбуждения. Это же справедливо для скоростных характеристик (смотрите статьи «Двигатели параллельного возбуждения», «Двигатели последовательного возбуждения», «Двигатели смешанного возбуждения»).

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.


источники:

http://electrikam.com/osnovnye-uravneniya-dvigatelya-postoyannogo-toka-dpt/

http://kratko-obo-vsem.ru/articles/809-general-information-about-engines-of-a-direct-current.html