Уравнение электромагнитной индукции фарадея максвелла

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Закон электромагнитной индукции

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Магнитный поток

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Электромагнитная индукция. Уравнения Максвелла для электромагнитного поля

Уравнения Максвелла для электромагнитного поля

1. Явление электромагнитной индукции

2. ЭДС индукции в движущемся проводнике

3. ЭДС индукции в неподвижном проводнике

4. Самоиндукция. Индуктивность

5. Взаимная индукция

6. Энергия магнитного поля в неферромагнитной изотропной среде

7. Работа по перемагничиванию ферромагнетика

8. Теория Максвелла

8.1. Первое уравнение Максвелла

8.2. Ток смещения. Второе уравнение Максвелла

8.3. Теорема Остроградского-Гаусса. Третье и четвёртое уравнения Максвелла

8.4. Полная система уравнений Максвелла

8.5. Частные случаи: стационарное поле; поле в свободном пространстве

1. Явление электромагнитной индукции

При перемещении проводника в магнитном поле под действием силы Ампера (рис.16.1) совершается работа (см. предыдущую лекцию)

. (16.1)

Эта работа совершается за счёт энергии источника. Полная работа источника равна

и по закону сохранения энергии расходуется и на перемещение проводника (16.1), и на нагрев проводников. Выделяющаяся теплота по закону Джоуля-Ленца равна

,

где R – полное сопротивление цепи; тогда

,

.

.

Последнее выражение представляет собой закон Ома для полной цепи, причём в числителе, кроме ЭДС источника, появилось ещё одно слагаемое, которое естественно интерпретируется тоже как ЭДС. Это – ЭДС индукции:

. (16.2)

Получен закон Фарадея: ЭДС индукции в замкнутом контуре равна по величине и противоположна по знаку скорости изменения магнитного потока через поверхность, натянутую на этот контур.

Знак «минус» в (16.2) является следствием закона сохранения энергии: если бы минуса не было, появившийся из-за ЭДС индукции дополнительный ток (индукционный ток ) провоцировал бы дальнейшее изменение магнитного потока, что вело бы опять же к увеличению индукционного тока и так до бесконечности, а такого быть не может – энергия для возросшего до бесконечности тока тоже требовалась бы бесконечная. Отсюда – правило Ленца: собственное магнитное поле индукционного тока препятствует изменению магнитного потока, вызвавшего индукционный ток.

Закон Фарадея (16.2) здесь получен для одного частного случая (деформации контура), но он универсален: ЭДС индукции можно вычислять по (16.2) независимо от того, каким способом изменяется магнитный поток :

1) можно деформировать контур (изменяем площадь);

2) перемещать контур (изменяем ориентацию контура в пространстве – угол );

3) изменять индукцию поля .

2. ЭДС индукции в движущемся проводнике можно объяснить возникновением силы Лоренца.

Пусть проводник длиной движется в плоскости, перпендикулярной индукции поля , и скорость направлена под углом к проводнику (рис.16.2).

Электроны проводника движутся вместе с проводником, и на них действует сила Лоренца

,

что эквивалентно действию поля сторонних сил с напряжённостью

.

Под действием силы Лоренца электроны проводника перемещаются вдоль проводника (вверх на рис.15.2). Между точками (1) и (2) на концах проводника возникает разность потенциалов.

ЭДС (в данном случае – ЭДС индукции) по определению равна

,

. (16.3)

То же самое можно получить по закону Фарадея (16.2). Площадь, заметённая проводником в процессе движения, равна

,

пересечённый магнитный поток

,

ЭДС индукции по (16.2)

.

3. ЭДС индукции в неподвижном проводнике

ЭДС индукции, возникающую в неподвижном проводнике при изменении индукции магнитного поля, объяснить силой Лоренца нельзя. Максвелл предположил, что всякое переменное магнитное поле порождает в пространстве электрическое поле , которое и является причиной возникновения индукционного тока. Поле неэлектростатического происхождения.

Если , то возникает поле . По аналогии с предыдущим случаем для любого замкнутого контура L, мысленно выделенного в пространстве:

.

По закону Фарадея:

,

где – изменение магнитного потока через поверхность, натянутую на контур L (рис.15.3).

По определению магнитного потока

,

.

Операции дифференцирования по времени и интегрирования по пространству независимы друг от друга, поэтому их можно поменять местами; при этом производная будет частной (по времени):

.

Как видно, циркуляция вектора отлична от нуля, то есть это поле вихревое, непотенциальное.

. (16.4)

Циркуляция напряжённости вихревого электрического поля , порождённого изменяющимся магнитным полем , по произвольному замкнутому контуру равна по величине и противоположна по знаку потоку производной индукции магнитного поля через поверхность, натянутую на этот контур.

4. Самоиндукция. Индуктивность

Контур с током I создаёт в окружающем пространстве магнитное поле, индукция которого пропорциональна силе тока: (рис.16.4).

Магнитный поток через поверхность, натянутую на контур, пропорционален индукции (по определению потока ):

.

Введём коэффициент пропорциональности между током в контуре и магнитным потоком – индуктивность контура L:

, (16.5)

. (16.5а)

Индуктивность контура численно равна магнитному потоку, пронизывающему контур, если сила тока в контуре равна 1 А.

Для катушки с N витками нужно учитывать суммарный магнитный поток сквозь все витки, то есть полное потокосцепление

, (16.6)

. (16.5б)

Индуктивность контура зависит от формы контура, его размеров и магнитных свойств среды. Размерность

.

Пример: индуктивность длинного соленоида.

Индукция поля длинного соленоида

,

где n – плотность намотки (число витков на единицу длины):

. (16.7)

Магнитный поток через сечение соленоида

.

.

,

. (16.8)

или, с учётом (16.7):

. (16.8а)

Поскольку – объём соленоида, то

. (16.8б)

Самоиндукция. Если в контуре изменяется сила тока, то пропорционально будет меняться и магнитный поток, что приведёт в возникновению ЭДС индукции в контуре (закон Фарадея). Это – явление самоиндукции. Самоиндукция – возникновение ЭДС индукции в контуре при изменении силы тока в нём.

.

Будем считать коэффициент самоиндукции L постоянным, тогда

. (16.9)

При замыкании или размыкании цепи токи резко меняются. Если индуктивность контура велика, то из-за возникновения ЭДС самоиндукции индукционный ток может быть много больше тока, на который рассчитана нагрузка:

.

Такие токи называются экстратоками замыкания или размыкания. Именно возникновение таких токов объясняет, почему лампочки чаще перегорают в момент включения или выключения.

5. Взаимная индукция

Рассмотрим два контура L1 и L2 с токами I1 и I2 соответственно, расположенные не слишком далеко друг от друга так, чтобы линии индукции B1 поля, созданного током I1 первого контура, пронизывали второй контур (рис.16.5).

Магнитный поток через второй контур пропорционален индукции B1 поля, созданного первым током, а индукция B1 пропорциональна току I1:

.

Введём коэффициент пропорциональности – коэффициент взаимной индукции двух контуров:

, (16.10)

. (16.10а)

И наоборот, если ток I2 во втором контуре создаёт поле с индукцией B2, то магнитный поток , пронизывающий первый контур, пропорционален току I2:

. (16.11)

Можно показать, что коэффициент пропорциональности в (16.10) и (16.11) один и тот же:

.

Коэффициент взаимной индукции зависит от формы, размеров обоих контуров, из взаимного расположения и магнитных свойств окружающей среды. Как и коэффициент самоиндукции, он измеряется в генри:

.

Пример: рассмотрим две катушки на общем ферромагнитном сердечнике (рис.16.6).

Число витков первой катушки равно N1, второй – N2; длина сердечника (тороида) по средней линии равна l, площадь сечения тороида – S. Линии индукции B1 магнитного поля, созданного током первой катушки, пронизывают все витки второй катушки, причём

;

магнитный поток через сечение сердечника

;

полное потокосцепление (суммарный поток через все N2 витков второй катушки) для второй катушки

;

а коэффициент взаимной индукции катушек

. (16.13)

Заметим, что для случая, когда поток, созданный одной катушкой, полностью проходит сквозь все витки второй катушки.

Если изменяется сила тока I1 в первом контуре, то по закону Фарадея и по (16.10) ЭДС индукции во втором контуре равна:

. (16.12)

Симметрично, при изменении тока во втором контуре ЭДС индукции в первом будет равна:

. (16.12а)

Явление взаимной индукции – это возникновение ЭДС индукции в одном контуре при изменении тока в другом контуре.

6. Энергия магнитного поля в неферромагнитной изотропной среде

При замыкании ключа К (рис.16.7) в цепи начинает течь ток и спустя некоторое время устанавливается его постоянное значение I, а в катушке – стационарное магнитное поле B. Будем считать, что сопротивление проводов и источника пренебрежимо мало (R=0), тогда по закону сохранения энергии работа источника идёт только на создание магнитного поля в соленоиде:

(16.14)

По второму правилу Кирхгофа для замкнутого контура:

.

ЭДС здесь две: ЭДС источника и ЭДС самоиндукции в катушке индуктивности:

.

,

Работа источника тока:

.

Отсюда энергия магнитного поля катушки

. (16.15)

По определению (16.5) , тогда

, (16.16)

. (16.17)

Если у катушки больше одного витка, нужно заменить поток на полное потокосцепление :

, (16.16а)

. (16.17б)

Эта энергия локализована в пространстве, где создано магнитное поле. Рассчитаем объёмную плотность энергии, считая поле однородным. По определению, объёмная плотность энергии – это энергия единицы объёма:

. (16.18)

Тогда из (16.15) и (16.8б):

.

Здесь в первых скобках – индукция поля соленоида; во вторых – напряжённость:

, (16.19)

. (16.20)

. (16.21)

Поскольку , можно записать по-другому:

, (16.22)

. (16.23)

7. Работа по перемагничиванию ферромагнетика

Имеется катушка с ферромагнитным сердечником. Ток в катушке периодически изменяется, ферромагнетик при этом перемагничивается. Изменения индукции B поля в ферромагнетике отстают от изменений напряжённости H, — возникает гистерезис (рис.16.8).

Работу по перемагничиванию ферромагнетика можно получить как произведение силы тока на изменение магнитного потока (точнее, полного потокосцепления в катушке):

. (16.1)

.

Из (16.20) заменим , тогда работа по перемагничиванию при изменении индукции на dB равна:

.

Работа в расчёте на единицу объёма:

. (16.24)

Она равна площади заштрихованной на графике (16.8) полоски. Работа по перемагничиванию единицы объёма ферромагнетика за один цикл равна площади петли гистерезиса, то есть интегралу:

. (16.25)

Чем уже петля гистерезиса (меньше коэрцитивная сила HC), тем меньше потери на перемагничивание; поэтому для изготовления сердечников электромагнитов применяют магнитомягкие ферромагнетики.

8. Теория Максвелла

Теория Максвелла для электромагнитного поля – это обобщение теоремы Остроградского-Гаусса, закона полного тока и закона электромагнитной индукции Фарадея. Теория решает задачу электродинамики: найти характеристики электрического и магнитного полей системы зарядов и токов.

8.1. Первое уравнение Максвелла

По теореме о циркуляции вектора напряжённости электроСТАТИЧЕСКОГО поля (то есть поля, созданного неподвижными зарядами):

.

По (16.4) циркуляция вектора напряжённости поля, созданного изменяющимся магнитным полем:

.

Поверхность S натянута на контур L (рис.16.9). Сложим почленно эти два уравнения:

,

где – напряжённость суммарного (полного) электрического поля. Тогда

. (I)

Это – первое уравнение Максвелла в интегральной форме. Его смысл: электрические поля создаются как электрическими зарядами, так и изменяющимся магнитным полем.

Дифференциальную форму первого уравнения Максвелла можно получить, если воспользоваться математической теоремой Стокса: для любого векторного поля (в том числе поля )

, (16.26)

где – ротор векторного поля; своего рода оператор векторного дифференцирования. Ротор проще всего записать в виде определителя:

. (16.27)

Таким образом, например, проекция ротора на ось OX равна:

.

Операция ротор – из той же серии, что и градиент:

;

Градиент конструирует из скалярного поля векторное, а ротор – из векторного снова векторное.

Градиент характеризует быстроту изменения величины (например, потенциала ) в пространстве. Смысл ротора (ротор – значит «вихрь»): если поле вихревое (непотенциальное), то его ротор отличен от нуля. Ротор показывает вихревой характер поля.

Из сравнения (16.26) и (I):

. (I)

Это – первое уравнение Максвелла в дифференциальной форме.

8.2. Ток смещения. Второе уравнение Максвелла

Изменяющееся во времени магнитное поле порождает возникновение вихревого электрического поля – это одно из предположений Максвелла. Второе предположение симметрично: изменяющееся во времени электрическое поле порождает возникновение магнитного поля. Это удобно описывать с помощью токов смещения. Рассмотрим протекание переменного тока через конденсатор (рис.16.9).

Внутри конденсатора реально никаких токов нет; а есть изменяющееся во времени электрическое поле – за счёт изменяющегося заряда обкладок конденсатора. Но предположим, что внутри конденсатора течёт ток смещения . Он должен быть равен току проводимости в подводящих проводах; таким образом ток будет непрерывным. Тогда

,

.

Здесь – поверхностная плотность заряда. В лекции 12 было показано, что вектор электрического смещения вблизи проводника равен поверхностной плотности заряда:

,

.

Здесь производная – частная, поскольку D зависит в общем случае ещё и от координат, а производная – по времени. Тогда плотность тока смещения равна:

. (16.28)

Особенности тока смещения:

1) Течёт в вакууме, где нет реальных заряженных частиц – переносчиков тока.

2) При протекании тока смещения не выделяется теплота Джоуля-Ленца.

3) Единственное положительное свойство (и назначение!) тока смещениясоздавать магнитное поле.

Название «ток смещения» – из определения (16.28) через вектор электрического смещения .

Получим некоторые полезные соотношения для плотности тока смещения. Из лекции 12:

,

где – вектор поляризации диэлектрика, тогда

.

Первое слагаемое возникает в веществе при его поляризации и оправдывает термин «ток смещения»: в переменном электрическом поле происходит смещение поляризационных зарядов. Второе слагаемое есть и в вакууме, где никаких заряженных частиц нет.

Итак, в общем случае магнитные поля создаются токами проводимости и токами смещения. В законе полного тока (см. предыдущую лекцию)

заменим плотность тока проводимости на суммарную плотность тока проводимости и смещения:

,

тогда

, (II)

где S – поверхность, натянутая на контур L (рис.16.11).

Уравнение (II) – второе уравнение Максвелла для электромагнитного поля в интегральной форме.

Воспользовавшись теоремой Стокса (16.26) для напряжённости магнитного поля:

,

получим второе уравнение Максвелла в дифференциальной форме:

. (II)

Его смысл: магнитные поля создаются как токами проводимости (плотность тока проводимости – ), так и изменяющимися во времени электрическими полями – .

8.3. Теорема Остроградского-Гаусса. Третье и четвёртое уравнения Максвелла

Максвелл обобщил теорему Остроградского-Гаусса (см. лекцию 12) для любых полей, в том числе и нестационарных:

, (III)

где – объёмная плотность заряда. Интегрирование производится по объёму V, ограниченному замкнутой поверхностью S (рис.16.12).

Смысл теоремы: поток вектора электрического смещения через произвольную замкнутую поверхность равен алгебраической сумме электрических зарядов, охваченных этой поверхностью. Иначе говоря, источником электрического поля являются электрические заряды.

По математической теореме Гаусса:

, (16.29)

где – дивергенция векторного поля. Она равна по определению:

. (16.30)

Дивергенция завершает коллекцию операций дифференцирования по координатам векторных и скалярных полей: градиент из скаляра конструирует вектор ( – вектор), ротор из вектора снова даёт вектор, а дивергенция вектор превращает в скаляр ( – скаляр!). Сравнивая (16.30) и (III), получим третье уравнение Максвелла в дифференциальной форме:

. (III)

В лекции 14 сформулирована теорема Остроградского-Гаусса для магнитного поля:

. (IV)

Это – четвёртое уравнение Максвелла для электромагнитного поля в интегральной форме.

Аналогично в дифференциальной форме:

. (IV)

Смысл этого уравнения: магнитных зарядов нет.

8.4. Полная система уравнений Максвелла

Полная система уравнений Максвелла включает, кроме приведённых четырёх основных, ещё три так называемых материальных. Эти три связывают характеристики полей со свойствами среды и друг с другом и включают, в частности, закон Ома в дифференциальной форме. Вот полная система в интегральной и в дифференциальной формах:

8.5. Частные случаи: стационарное поле; поле в свободном пространстве

Если поля стационарные, все производные равны нулю:

Поля – магнитное и электрическое – разделяются. Их характеристики не связаны друг с другом.

Второй частный случай – поля в свободном пространстве, где нет ни зарядов, ни токов проводимости:

Рассмотрим систему двух первых уравнений Максвелла для свободного пространства:

или

Изменение магнитного поля порождает поле электрическое , тоже в общем случае изменяющееся во времени; а изменения поля порождают снова возникновение магнитного поля . Поля – электрическое и магнитное – распространяются, превращаясь друг в друга. Это – электромагнитная волна, распространяющаяся в свободном пространстве, в отрыве от первоначально породивших её зарядов и токов.


источники:

http://skysmart.ru/articles/physics/zakon-elektromagnitnoj-indukcii

http://pandia.ru/text/78/219/15087.php