Уравнение электромагнитной волны свойства электромагнитных волн

2.6. Электромагнитные волны

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0):

Величины и — электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где — введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где vфазовая скорость света в среде:

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Далее, ни у , ни у нет компонент параллельных оси х:

Иными словами и в изотропной среде,

электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):

Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.

Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К’, движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t’, r’. Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и — циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн.

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V 2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.

Ответ находим сразу из уравнений (3.127), где полагаем :

Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:

Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время площадка получила от волны энергию . Тогда переданный площадке импульс равен

На площадку действует со стороны волны сила

Давление Р, оказываемое волной, равно

Если средняя плотность энергии в волне равна , то на площадь А за время попадет энергия из объема и

Отсюда находим давление электромагнитной волны (света):

Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.

Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:

Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.

Электромагнитные волны

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Волны: что это и какими бывают

Давайте сначала разберемся, что такое волна.

Волна — это распространение колебаний в пространстве.

Волны бывают механическими и электромагнитными.

Главные герои этой статьи — электромагнитные волны. Немного удовлетворим ваше любопытство и скажем, что это те волны, которые мы потрогать не можем. Но все остальное чуть позже. Главное — терпение.

Механические волны — это те волны, колебания которых можно почувствовать физически, потому что они распространяются в упругой среде.

Представьте, что вы стоите на железнодорожных путях. Нет, вы не Анна Каренина, вы — экспериментатор.

Если к вам приближается поезд, вы рано или поздно его услышите. Вернее, услышите, как только звуковая волна со скоростью 𝑣 = 330 м/с достигнет ваших ушей.

Если приложить ухо к рельсу, то это произойдет значительно быстрее, потому что скорость звука в твердом теле больше, чем в воздухе. Кстати, под водой скорость звука больше, чем в воздухе, но меньше, чем в твердых телах.

Если вы когда-нибудь трогали музыкальную колонку, то знаете, что звук чувствуется и на ощупь.

Волны также принято делить на продольные и поперечные:

Продольные — это те волны, у которых колебание происходит вдоль направления распространения волны.

  • Дрожание окон во время грома или сейсмические волны (землетрясения) — это пример продольных волн.

Поперечные — волны, у которых колебание происходит поперек направления распространения волны.

  • Представьте, что вы запустили волну из людей на стадионе — она будет поперечной.
  • Видимый свет и дрожание гитарной струны — тоже поперечные волны.

Морская волна — продольная или поперечная?

На самом деле в ней есть и продольная, и поперечная составляющие, поэтому ее нельзя отнести к конкретному типу.

Электромагнитные волны

Увы, мы не можем потрогать руками электромагнитные волны. Осталось разобраться, как это так: волна есть, а возможности пощупать ее — нет.

Электромагнитная волна появляется благодаря электромагнитному полю.

Вот есть электрическое поле — его создает любой электрический заряд. Есть магнитное поле — оно возникает из-за движущегося заряда. А их взаимодействие — это электромагнитное поле.

Если совсем честно, то электрическое и магнитное поле не могут существовать в отдельности, потому что частицы всегда есть электрическое поле и она всегда худо-бедно да движется. Рассмотрение в отдельности электрических и магнитных полей может быть только в теоретической физике. В реальных инженерных задачах рассматривается обязательно электромагнитное поле.

Электромагнитная волна — это распространение электромагнитного поля. А если конкретнее, то электрическое поле колеблется (меняет свое значение и направление вектор напряженности электрического поля), магнитное поле колеблется (меняет значение и направление вектор магнитной индукции), эти колебания распространяются, и получается электромагнитная волна.

К электромагнитным волнам относятся радио, Wi-Fi и даже свет.

Разве свет не из частиц состоит?

Ничего от вас не скроешь. Дело в том, что свет — это как Гермиона с маховиком времени в двух местах сразу — одновременно и частица и волна.

Можете перечитать фразу выше, чтобы с ней смириться. Это не шутка. Экспериментально давно обнаружено, что свет в одних экспериментах ведет себя, как частица, а в других, как волна.

Все это безумство называется корпускулярно-волновым дуализмом. И это работает не только со светом, но и с другими волнами. В общем, у физики тоже бывает раздвоение личности.

Характеристики электромагнитной волны

Чтобы изучать любое явление, его нужно как-то охарактеризовать.

Длина волны

Это самая важная характеристика для волны. Ей называется расстояние между двумя точками этой волны, колеблющихся в одной фазе. Если проще, то это расстояние между двумя «гребнями».

Обозначается эта величина буквой λ и измеряется в метрах.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [-]

Для электромагнитных волн есть целая шкала длин волн. Она показывает длину волны и частоту для разных типов электромагнитных волн.

Частота

Частота — это величина, обратно пропорциональная периоду. Она определяет, сколько колебаний в единицу времени совершила волна.

Формула частоты колебания волны

υ = N/t = 1/T

N — количество колебаний [-]

Скорость

Также важной характеристикой распространения волны является ее скорость.

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия.

Формула скорости

𝑣 = S/t

Переходя к волнам, можно провести следующие аналогии:

  • путь — длина волны
  • время — период

А для скорости даже аналогия не нужна — скорость и Африке скорость.

Формула скорости волны

𝑣 = λ/T

λ — длина волны [м]

Для электромагнитной волны скорость равна скорости света — 𝑣 = 3*10^8 м/с. Поэтому формулу скорости чаще всего используют для нахождения из нее длины волны или периода.

Задачка

Определить цвет освещения, проходящий расстояние, в 1000 раз больше его длины волны за 2 пс.

Решение:

Для начала переведем 2 пикасекунды в секунды — это 2*10^-12 с.

Теперь возьмем формулу скорости

По условию S = 1000λ

Выражаем длину волны

Подставляем значения скорости света и известного нам времени:

λ = 3*108* 2*10-121000 =600 нм

И соотносим со шкалой видимого света

Из шкалы видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!

Рубрика «Разрушаем мифы»

А теперь давайте немного о распространенных заблуждениях. Присаживайтесь поудобнее — этот разговор, к сожалению, не на пару минут.

Миф 1. Вышки 5G вредны для нашего здоровья

Одна из теорий против 5G гласит, что новый тип связи может стать причиной раковых заболеваний. Справедливости ради — такие же обвинения не раз поступали в адрес 2G, 3G, 4G и более ранних поколений беспроводных сетей.

Стандарт 5G может использовать разные частотные диапазоны. Как правило, это низкий диапазон 600 МГц, а также средние частоты 2,5 ГГц, 3,5 ГГц и 3,7–4,2 ГГц.

В России «Государственная комиссия по радиочастотам» (ГКРЧ) рекомендует для выделения и использования под 5G частотный диапазон 27,1-27,5 ГГц. Американским операторам также скоро будут доступны диапазоны 37 ГГц, 39 ГГц и 47 ГГц.

Диапазон от 30 ГГц (миллиметровые волны) относится к так называемому спектру крайне высоких частот — и именно он вызывает большинство опасений по поводу вреда 5G для здоровья человека. Все еще недостаточно исследований, которые изучают влияние высоких частот на организм.

Тем не менее, известно, что даже в верхнем диапазоне излучение 5G не обладает достаточной энергией для разрушения человеческой ДНК или влияния на клетки. А значит, не может вызвать рак и не представляет опасность для нашего организма. По этой же причине нельзя верить в теорию, что 5G убивает птиц — этому излучению просто не хватит сил, чтобы кого-то убить.

К опасному излучению относятся волны, распространяемые на частотах от 30 ПГц (петагерц) — утрафиолетовые, рентгеновские и гамма-лучи. Они могут влиять на атомную структуру клеток и разрывать химические связи в ДНК. Именно поэтому, например, врачи советуют избегать долгого пребывания на солнце.

Миф 2. Шапочки из фольги защищают от вредного излучения

Кстати, они наоборот любую электромагнитную волну усиливают. Это доказали студенты из MIT (Массачусетский технологический институт), которые исследовали это опытным путем.

Ребята установили антенну в четырех частях от головы добровольцев: на лбу, затылке, висках и в районе мозга. И сравнивали показатели радиосигнала в шапочке для фольги и без нее. Оказалось, что сигнал не ослабляется, а усиливается. Так что шапочка вас не спасет от вредного излучения, а наоборот — только усилит сигнал.

Миф 3. Микроволновки убивают еду, и она становится неживой

Электромагнитный фон возле СВЧ-печей выше больше, чем природный более, чем в миллион раз, но вреда человеку не наносит. Санитарные требования к этим приборам очень жёсткие, поэтому опасности микроволновка не представляет. Например, благодаря системе блокировки дверцы генерация микроволнового излучения прекращается, когда дверца открыта. Также в микроволновке обязательно должна быть система защиты от утечки излучения. Гораздо опаснее электромагнитные излучения от солнца или солярия, потому что там есть ультрафиолет, который легко повреждает клетки кожи человека.

Продукты становятся теплее за счёт нагревания в них воды. И когда мы их греем, могут образовываться радикалы — но это происходит при любом способе теплового воздействия. Например, при жарке могут образовываться ещё и канцерогены.

Наш организм способен бороться с небольшим количеством «вредных» радикалов благодаря иммунитету. При нагревании пищи образуется то количество радикалов, с которым организм способен бороться, поэтому ничего страшного ни в микроволновке, ни в кастрюле, в которой вы греете суп, нет.

Электромагнитные волны

Дж. Максвелл доказал существование электромагнитных волн еще в 1864 после того, как решил применить их к изменяющимся во времени электромагнитным полям. Проанализировав все известные на тот момент законы электродинамики, увидел связь и асимметрию между электрическими и магнитными полями.

Понятие вихревого электрического поля

Максвеллом было введено понятие вихревого электрического поля, после чего он предложил иную формулировку закона электромагнитной индукции, которая была открыта в 1831 году Фарадеем:

Всякое изменение магнитного поля может стать причиной порождения в окружающем пространстве вихревого электрического поля с замкнутыми силовыми линиями.

Максвелл показал гипотезу, которая говорит совсем об обратном, а именно:

Электрическое поле, изменяющееся во времени, является причиной появления в окружающем пространстве магнитного поля.

Рисунки 2 . 6 . 1 и 2 . 6 . 2 показывают взаимное преобразование электрического и магнитного полей.

Рисунок 2 . 6 . 1 . Закон электромагнитной индукции по определению Максвелла.

Рисунок 2 . 6 . 2 . Гипотеза Максвелла об изменяющемся электрическом поле, порождающим магнитное поле.

Свойства уравнений Максвелла

Вначале данная гипотеза не имела экспериментального подтверждения, а выступала как теоретическое предположение. Основываясь на ней, Максвеллу смог зафиксировать непротиворечивую систему уравнений, которые описывали взаимные превращения электрического и магнитного полей. Данная запись называлась системой уравнений электромагнитного поля, иначе говоря, уравнениями Максвелла. Исходя из теории, используются выводы:

  1. Электромагнитные волны существуют. Они могут распространяться как в пространстве, так и во времени электромагнитного поля. Электромагнитные полны поперечные, а векторы E → и
    B → располагаются перпендикулярно друг другу в одной плоскости, которая перпендикулярна относительно направления распространения волны. Это отчетливо видно на приведенном ниже изображении.

Рисунок 2 . 6 . 3 . Снусоидальная (гармоническая) электромагнитная волна, где заданные векторы
E → , B → и v → перпендикулярны друг к другу
.

  1. Распространение электромагнитных волн имеет конечную скорость, которая обозначается

v = 1 ε · ε 0 · μ · μ 0 .

По формуле ε и μ являются диэлектрической и магнитной проницаемостью веществ, а ε 0 и μ 0 – электрической и магнитной постоянными, имеющими значения ε 0 = 8 , 85419 · 10 – 12 Ф / м , μ 0 = 1 , 25664 · 10 – 6 Г н / м .

Длина синусоидальной волны λ связана со скоростью распространения волны υ при помощи соотношения λ = υ T = υ f где f – это значение частоты колебаний электромагнитного поля, причем T = 1 f .

Запись скорости распространения волн в вакууме ( ε = μ = 1 ) записывается как

c = 1 ε 0 · μ 0 = 2 , 99792458 · 10 8 м / с ≈ 3 · 10 8 м / с .

Скорость распространения волны в вакууме с – это фундаментальная физическая постоянная.

Вывод Максвелла о конечной скорости распространения волн противоречил теории дальнодействия, известной на тот момент. Тогда принятие скорости распространения электрического и магнитного полей обозначали как бесконечно большое значение. Отсюда и вывод, что теория Максвелла получила название теория близкодействия.

  1. Преобразование электрического и магнитного полей в электромагнитной волне. Одновременность процессов говорит о том, что их можно считать равноправными. Отсюда имеется вывод, что объемные плотности электрической и магнитной энергии равны и записываются w э = w м . Формула может быть записана как

ε · ε 0 · E 2 2 = B 2 2 μ · μ 0 .

Делаем вывод, что имеется связь между модулями индукции магнитного поля B → и напряженности E → , обозначаемая отношением:

  1. Возможность перенесения энергии при помощи электромагнитных волн. Во время распространения волны появляется поток электромагнитной энергии. При выделении площадки S , изображенной на рисунке 2 . 6 . 3 . , видно, что она ориентирована перпендикулярно направлению распространения волны. Тогда достаточно прохождению времени Δ t для того, чтобы энергия Δ W э м смогла пройти через заданную площадку, зафиксированной формулой

Δ W э м = ( w э + w м ) υ S Δ t .

Плотность потока или интенсивность I – это электромагнитная энергия, переносимая волной за определенное количество времени через поверхность единичной площади. Формула имеет вид:

I = ε ε 0 μ μ 0 · E 2 = E B μ μ 0 .

При подстановке выражения для преобразования w э , w м и υ , получаем, что:

I = 1 S ∆ W э м ∆ t · E 2 = E B μ μ 0 .

Справедливо обозначение потока энергии в электромагнитной волне при помощи вектора
I → направление которого является совпадающим с направлением распространения волны, причем модуль имеет значение E B μ μ 0 .

Полученный вектор был назван вектором Пойтинга.

Синусоидальная (гармоническая) волна, находящаяся в вакууме, со средним значением плотности потока электромагнитной энергии I с р обозначается как:

I с р = 1 2 ε 0 μ 0 E 0 2 ,

Где E 0 обозначается амплитуда колебаний напряженности.

Обозначение плотности потока энергии с С И — ватты на квадратный метр, то есть В т / м 2 .

  1. Основываясь на теорию Максвелла, получаем, что оказание давления на поглощающее или отражающее тело производится с помощью электромагнитных волн. Это давление обусловлено возникновением слабых токов под действием электрического поля, иначе говоря, упорядочением движения зараженных частиц. На них действует сила Ампера магнитного поля волны, которая направлена в толщу вещества. Именно она является причиной создания результирующего давления, которое чаще всего имеет маленькое значение. При давлении солнечного излучения, попадающего на Землю, имеет 5 м к П а . Последователь Максвелла П.Н. Лебедев смог подтвердить теорию в 1900 году. Эти опыты были высоко значимы для электромагнитной теории Максвелла.

Имеющееся давление электромагнитных волн говорит о том, что для такого электромагнитного поля существует механический импульс, который может быть представлен в виде выражения:

g = w э м c с w э м , обозначаемое в качестве объемной плотности электромагнитной энергии, с – скоростью распространения волн в вакууме. Электромагнитный импульс способствует введению понятия электромагнитной массы.

Для поля единичного объема запишем ρ э м = g c = w э м c 2 .

Тогда получим, что w э м = ρ э м c 2 .

Соотношение между массой и энергией считается как универсальный закон природы. Исходя из теории относительности, данное утверждение справедливо для любых тел.

Отсюда следует, что электромагнитное поле имеет все признаки, присущие материальным телам: энергия, конечная скорость распространения, импульс, масса.

То есть электромагнитное поле – это одна из форм существования материи.

  1. Первым экспериментальным подтверждением теории Максвелла было произведено по прошествии 15 лет после ее создания в опытах Г. Герца в 1888 году. Герц стал изучать их свойства волн: поглощение, преломление, отражение и так далее. После чего он смог измерить длину волны, находящуюся в разных средах распространения электромагнитных волн, которые равнялись скорости света.

Опыты Герца были основополагающими для доказательства и признания электромагнитной теории Максвелла. По прошествии 7 лет она была применена в беспроводной связи, изобретенной А.С. Поповым в 1895 году.

  1. Возбуждение электромагнитных волн происходит с помощью ускоренно движущихся зарядов. Движение цепей постоянного тока имеют неизменную скорость носителей заряда, причем не являются источником таких волн. Современная радиотехника трактует изучение электромагнитных волн как наличие антенн различных конструкций с возбужденными быстропеременными токами.

Простейшая система, излучающая электромагнитные волны, считается сравнительно небольшим электрическим диполем, дипольный момент p ( t ) которого изменяется достаточно быстро с течением времени.

Элементарный диполь получил название диполя Герца. Радиотехника трактует его как эквивалентным небольшой антенне, размер которой меньше длины волны λ , показанной на рисунке 2 . 6 . 4 .

Рисунок 2 . 6 . 4 . Элементарный диполь, совершающий гармонические колебания.

Рисунок 2 . 6 . 5 позволяет понять структуру электромагнитной волны, которая излучается таким диполем.

Рисунок 2 . 6 . 5 . Излучение элементарного диполя.

Максимальное значение потока электромагнитной энергии может излучаться в плоскости, которая располагается перпендикулярно оси диполя. Вдоль оси диполь не излучает энергию. Использование Герцем элементарного диполя было необходимо для излучающей и приемной антенн во время экспериментального доказательства существования электромагнитных волн.


источники:

http://skysmart.ru/articles/physics/elektromagnitnye-volny

http://zaochnik.com/spravochnik/fizika/elektromagnitnye-kolebanija-volny/elektromagnitnye-volny/