Уравнение эллиптического параболоида имеет вид

Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.

Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или (8)

из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h 0, q>0.

Уравнение (9) называется каноническим уравнением гиперболического параболоида.

Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение

(10)

из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.

рассмотрим сечение данного параболоида плоскостью Oyz (x=0).

из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения

из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).

Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения

или

из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h 0 и h

Поверхности второго порядка. Поверхности вращения.

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0)

этой поверхности окружность, проходящая через эту точку в плоскости z=z0 с центром в (0,0,z0) и радиусом

, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).

Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением

F(x 2 +y 2 ,z)=0, то S — поверхность вращения вокруг оси OZ.

Эллипсоид:

Мнимый эллипсоид.

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

Свойства эллипсоида.

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что

2. Эллипсоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно координатных осей,
  • плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается

Однополостной гиперболоид.

Свойства однополостного гиперболоида.

1. Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что

2. Однополостной гиперболоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается

эллипс, а плоскостями, ортогональными осям Ox и Oyгипербола.

Двуполостной гиперболоид.

Свойства двуполостного гиперболоида.

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует,

что и неограничен сверху.

2. Двуполостный гиперболоид обладает

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при

получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям

Ox и Oy, – гипербола.

Эллиптический параболоид.

В случае, если a=b≠0, перечисленные выше (эллипсоид, однополостной гиперболоид, двуполостной

гиперболоид, эллиптический параболоид) поверхности являются поверхностями вращения.

Эллиптический параболоид.

Свойства эллиптического параболоида.

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует,

что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает:

  • осевой симметрией относительно оси Oz,
  • плоскостной симметрией относительно координатных осей Oxz и Oyz.

3. В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а

плоскостями, ортогональными осям Ox и Oy – парабола.

Уравнение эллиптического параболоида имеет вид:

Если a=b, то эллиптический параболоид представляет собой поверхность вращения, образованную

вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через

вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью z=z0>0 является эллипсом.

Пересечение эллиптического параболоида с плоскостью x=x0 или y=y0 является параболой.

I. Теоретические сведения. 1. Эллиптический параболоид.

1. Эллиптический параболоид.

Определение. Эллиптическим параболоидом называется множество точек пространства, координаты которых в некоторой системе координат удовлетворяют следующему уравнению

. (1)

Уравнение (1) – каноническое уравнение эллиптического параболоида.

Из уравнения параболоида следует:

1) Все точки эллиптического параболоида лежат выше плоскости xOy;

2) Плоскости симметрии эллиптического параболоида: yOz, xOz;

ось симметрии эллиптического параболоида: Oz;

центра симметрии у эллиптического параболоида нет.

3) Вершина эллиптического параболоида: О(0; 0; 0) – начало координат.

Исследование эллиптического параболоида методом сечений.

1) Сечение плоскостью a, параллельной плоскости .

(2)

. (3)

а) Если , то линия пересечения эллипс;

б) если , то линия пересечения мнимый эллипс;

в) если , то линия пересечения пара мнимых пересекающихся прямых с действительной точкой пересечения.

2) Сечение плоскостью b, параллельной плоскости .

(4)

. (5)

При любом значении h получаем параболу, ось которой параллельна оси Oz, В частности, если , то , и в сечении мы получаем параболу ;

3) Сечение плоскостью g, параллельной плоскости .

(6)

. (7)

При любом значении h получаем параболу, ось которой параллельна оси Oz, ветви направлены вверх. В частности, если , то , и в сечении мы получаем параболу .

2. Гиперболический параболоид.

Определение. Гиперболическим параболоидом называется множество точек пространства, координаты которых в некоторой системе координат удовлетворяют следующему уравнению

. (8)

Уравнение (8) – каноническое уравнение гиперболического параболоида.

Из уравнения параболоида следует:

1) Гиперболический параболоид поверхность неограниченная;

2) Плоскости симметрии гиперболического параболоида: yOz, xOz;

ось симметрии: Oz;

центра симметрии у гиперболического параболоида нет.

3) Вершина: О(0; 0; 0) – начало координат.

Исследование гиперболического параболоида методом сечений.

1) Сечение плоскостью a, параллельной плоскости .

(9)

. (10)

а) Если , то линия пересечения гипербола с действительной осью параллельной оси Ох;

б) если , то линия пересечения гипербола с действительной осью параллельной оси Oy;

в) если , то линия пересечения пара действительных пересекающихся прямых.

2) Сечение плоскостью b, параллельной плоскости .

(11)

. (12)

При любом значении h получаем параболу, ось которой параллельна оси Oz, В частности, если , то , и в сечении мы получаем параболу ;

3) Сечение плоскостью g, параллельной плоскости .

(13)

Или

. (14)

При любом значении h получаем параболу, ось которой параллельна оси Oz, ветви направлены вниз. В частности, если , то , и в сечении мы получаем параболу .

3. Прямолинейные образующие поверхностей второго порядка.

Определение. Прямая l называется прямолинейной образующей поверхности второго порядка, если каждая точка этой прямой лежит на поверхности.

Очевидно, что образующие конических и цилиндрических поверхностей являются прямолинейными образующими. Кроме того, прямолинейные образующие имеют однополостный гиперболоид и гиперболический параболоид. У однополостного гиперболоида и гиперболического параболоида существует два семейства прямолинейных образующих, таких что:

1) через каждую точку поверхности проходят по одной прямолинейной образующей из каждого семейства;

2) любые две прямолинейные образующие одного семейства являются скрещивающимися.

Прямолинейные образующие однополостного гиперболоида задаются следующими системами уравнений:

I. II. (15)

где k и l – любые числа.

Прямолинейные образующие гиперболического параболоида задаются следующими системами уравнений:

I. II. (16)

Дата добавления: 2014-12-30 ; просмотров: 30 ; Нарушение авторских прав


источники:

http://www.calc.ru/Poverkhnosti-Vtorogo-Poryadka-Poverkhnosti-Vrashcheniya.html

http://lektsii.com/1-45442.html

Читайте также:
  1. I. Теоретические сведения.
  2. I. Теоретические сведения.
  3. I. Теоретические сведения.
  4. I. Теоретические сведения.
  5. I. Теоретические сведения.
  6. I. Теоретические сведения.
  7. I. Теоретические сведения.
  8. I. Теоретические сведения.
  9. I. Теоретические сведения.