Уравнение энергии для безграничного потока

Дифференциальное уравнение энергии и примеры

Дифференциальное уравнение энергии

  • Дифференциальное уравнение энергии определяет распределение температуры в теле выводится на основе закона сохранения энергии и метода Фурье. Получаем уравнение движущейся среды, в которой внутренний источник тепла находится равномерно. Предполагается, что теплоноситель является изотропным, однородным по теплопроводности х, теплоемкости. Температура не зависит от cp и плотности p.

Рассмотрим только системы, которые могут игнорировать изменение кинетической энергии по сравнению с изменением энтальпии. Выберите основной параллелепипед, закрепленный плоскостью χχ, лукгг, и укажите количество тепла, поступающего между ними. c-это 00 ’x, ЦЦ’ ц и ^ 2.И Л0.2.1), компонент средней скорости A) X, шц, а, а>, и те, которые передают мощность внутреннего источника тепла W! это м3. Исходя из закона сохранения энергии, тепловой баланс рассматриваемого параллелепипеда принимает вид.

Частицы жидкости за пределами пограничного слоя способны двигаться, преодолевая возрастающее давление за кормовой половиной, благодаря переходу их кинетической энергии в энергию давления. Людмила Фирмаль

Разность количества тепла, поступающего в параллелепипед и выходящего из него, Л(> r-изменение внутреннего тепловыделения, энтальпия основного объема. тепло, поступающее в коробку по оси x и выходящее из нее, можно определить по формуле: ^ ’х = Д’ х(1yLxLx, (2.2) 4 Где u-плотность теплового потока, соответствующая координатам x и x + Ox соответственно. Расширьте значение$ряда Тейлора и ограничьте его первыми 2 членами ряда (2.4) Принимая во внимание формулу (2.4), разницу в количестве тепла, входящего и выходящего из параллелепипеда вдоль оси x, можно описать следующим образом.

  • Общее количество тепла, накопленного параллелепипедом, составляет (2.5). Внутреннее тепловыделение определяется по формуле = IV О. (2.6). Изменения температуры в неподвижной первичной тропосфере О лелепипед вовремя-будет ah. So … а б-КФР-Ахау. (2.7) Формула(2.(2.5), (2.6) и (2.7). Вы можете получить уравнение Рассмотрим более подробно составляющие плотности теплового потока, содержащиеся в Формуле (2.8).ЗначениеX записывается как: Гдеhtepl и Chh kop-плотность теплового потока, поступающего в параллелепипед за счет теплопроводности вдоль оси x и конвективного переноса. На основе правил Фурье Конвекционный компонент-это.

Где u> x-составляющая скорости потока вдоль x-axis. So … ?х = pcrr> Х. Если X = const1, то это равенство равно Для других осей также: Здесь и находится составляющая скорости потока вдоль оси y и оси r. Если подставить эти равенства в Формулу (2.8)、 (2.12) Дифференциальное уравнение неразрывности несжимаемости! Форма жидкости является* С этой- й точки зрения уравнение (2.12) сводится к следующему виду: A. a-a-a-a-a-a-a-v-2_ ДГ ДХ делать Здесь+ Проводимость.

Как видно из фотографии, поток обтекает цилиндр с двух сторон, отрываясь от его поверхности, и у кормовой половины образуется зона с завихрениями. Людмила Фирмаль

Температурный коэффициент В общем случае I-I(x, y, r, m). Итак, используя понятие полной производной, можно записать: Л1 Д1, Д1 ЛК д! дю, Д1 ЛГ ДХ ДХ ЛГ + у ДТ ДГ ЛГ Это производное называется субстантивным, 01, 01 by. м. символ-г- Заменить левую часть равенства (2.13) значением равенства (2.14), получаем дифференциальное уравнение (2.15) В цилиндрической системе координат дифференциального уравнения(2.15) значение величины V2 имеет следующий вид: (2.16) Упрощенные предположения об инвариантности коэффициента теплопроводности могут привести к серьезным ошибкам, так как температура в системе существенно меняется, а Х во многом зависит от температуры.

Выражения (2.10) и (2.11) принимают аналогичный вид form. In в этом случае дифференциальное уравнение(2.15) описывается следующим образом: 01 ПЦР=- Рассмотренные типы дифференциальных уравнений энергии подходят как для ламинарного, так и для турбулентного течения flows. In в последнем случае формула включает в себя мгновенные или так называемые действительные значения температуры и скорости, изменения которых естественным образом пульсируют во времени. Дифференциальные уравнения энергии также могут быть описаны с использованием усредненных по времени температур и скоростей.

Временной интервал усреднения фактических параметров турбулентности выбирается таким образом, чтобы среднее значение не зависело от размера интервала. Проводимость k заменяется суммой k + X. Где X-коэффициент турбулентного теплообмена. Величина Xm зависит от расстояния до стенки: вблизи стенки Xm — > 0, а расстояние-Xm может быть во много раз больше k.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ТЕПЛООБМЕНА

Аналитическое исследование процессов теплообмена связано с изу­чением пространственно-временного распределения температуры

В общем случае теплообмен определяется не только тепловыми, но и гидродинамическими явлениями, поэтому математическое описание процесса включает систему дифференциальных уравнений, в которые входят уравнение энергии, уравнение движения и уравнение сплош­ности.

Аналитические методы позволяют вскрыть физические особенности и общие принципиальные закономерности процессов теплообмена.

Дифференциальное уравнение энергии. Дифференциальное уравнение энергии выводится на основе первого закона термодинамики. Для единицы объема потока рабочего тела в условиях теплообмена он может быть записан в следующем виде:

Где Q — количество теплоты, подведенное к единице объема потока в единицу времени, Дж/(м3-с); L — работа, совершаемая внешними силами над единицей объема в единицу времени, Дж/(м3-с); р — плотность, кг/м3; и — внутренняя энергия среды, Дж/кг; w — скорость движения среды, м/с.

Как было показано в первой главе, внутренняя энергия связана с энтальпией соотношением H = и + Pv. Тогда

В процессе теплообмена работой L внешних сил можно пренебречь. Определим Q. Для этого с помощью контрольной поверхности выделим в теле произвольный объем V и тепловое воздействие части тела за пределами этого объема заменим некоторым распре­делением вектора Q по поверхности F объема.

Уравнение теплового баланса этого объема, отнесенное к единице времени, можно записать

Где Q0 — мощность внутренних источников теплоты, Вт/м3.

В соответствии с теоремой Гаусса — Остроградского между потоком вектора через поверхность ґ, ограничивающую объем V, и диверген­цией вектора существует связь

J qdF = fdiv и считая J3 постоянным, получим равнодействую­щую сил тяжести в следующем виде:

Где T, T0 — температуры, соответствующие плотностям р и р0.

Для многих задач конвективного теплообмена можно с достаточ­ной степенью точности ограничиться только подъемной составляющей: считая р расчетным значением плотности и обозначив T T0 получим ее выражение: рР%ух.

С учетом этих поправок уравнение движения примет вид

Найдем полную производную:

Для трехмерного движения равнодействующая сил вязкого трения определяется выражением:

В развернутом виде дифференциальное уравнение движения в проекции на ось х получает вид

Dwx dwx dwx dwx _ . 1 Dp

Dx dx dy y dz p йх

Где v = fi/p — кинематическая вязкость, м2/с.

Аналогично могут быть получены уравнения проекций равнодей­ствующих сил на оси у и г.

В векторной форме дифференциальное уравнение движения имеет вид

Система уравнений (2.22) и (2.35) не замкнута, так как содержит три неизвестных w и р. Уравнением, необходимым для замыкания системы, является уравнение сплошности.

Уравнение сплошности. Выделим в потоке жидкости (рис. 2.4) элементарный объем DV = Dxdydz. В направлении х за время dx втекает масса dМх = (pvvx)dydzdx. Из противоположной грани вытекает

Лишек массы, вытекающей из элемен­тарного объема по оси х, будет:

Аналогично, по оси у

Рис. 2.4. К выводу урав­нения сплошности

DMs + ds — dMz = ll^LdKdx.

Суммируя, получим избыток массы

Который может быть выражен изменением плотности

Приравнивая (2.36) и (2.37), получаем уравнение сплошности или уравнение сохранения массы в виде

Считая для несжимаемой жидкости р = const и др/

ТЕПЛОТЕХНИКА

СИ единицы

ПРОИЗВОДНЫЕ ВЕЛИЧИНЫ МЕЖДУНАРОДНОЙ СИСТЕМЫ (СИ) И ИХ ЕДИНИЦЫ (теплофизические и температурные измерения) Наименование Наименование Обозначение Величины Единицы Единицы Температура Кельвии К Температурный коэффициент Кельвин в ми­ К-‘ Нус первой Степени …

ЭНЕРГОТЕХНОЛОГИЧЕСКОЕ КОМБИНИРОВАНИЕ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

В установках утилизации ВЭР вырабатываются: водяной пар, горя­чая вода, электроэнергия, высокотемпературные теплоносители (ВОТ, соляные и др.), охлажденная вода, горячий воздух, механическая энергия для непосредственного привода машин. В зависимости от роли …

ИСПОЛЬЗОВАНИЕ НИЗКОТЕМПЕРАТУРНЫХ ВЭР ДЛЯ ПОЛУЧЕНИЯ ХОЛОДА

Одним из способов использования низкотемпературных ВЭР явля­ется применение термотрансформаторов. Этот метод может быть применен для использования теплоты загрязненных горячих жидкостей в результате их самоиспарения под вакуумом, т. е. минуя поверх­ностные …

Продажа шагающий экскаватор 20/90

Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788


источники:

http://msd.com.ua/teplotexnika/differencialnye-uravneniya-teploobmena/