Уравнение эйлера для работы лопастного колеса

Уравнение Эйлера для работы лопастного колеса

Для определения суммарного момента реакции лопаток рабочего колеса при взаимодействии их с потоком жидкости воспользуемся теоремой об изменении момента количества движения. Согласно этой теореме при установившемся движении изменение момента количества движения потока жидкости, проходящее через рабочее колесо нагнетателя в единицу времени, равно моменту сил реакции лопаток.

Применяя данную теорему к движению жидкости через рабочее колесо нагнетателя, допустим, что это движение установившееся, струйное, без гидравлических потерь. Рассмотрим изменение момента количества движения, массы жидкости за 1с. При этом масса участвующей в движении жидкости можно определить по следующей зависимости:

(2.15)

где, – плотность жидкости;

Q – подача нагнетателя.

Момент количества движения относительно оси рабочего колеса во входном сечении при скорости движения в этом сечении C1 (рисунок 2.3), можно определить по следующей зависимости:

M1= Qc1r1

А момент количества движения на выходе из рабочего колеса – по следующей зависимости:

M2= Qc2r2

r1 и r2 — расстояния от оси колеса до вектора входной и выходной скоростей.

Сумма моментов сил, действующих на лопатку рабочего колеса нагнетателя спроецированных на радиус определяют по следующей зависимости:

, а

(2.16)

С другой стороны на массу жидкости, заполняющей межлопастные каналы рабочего колеса, действуют 4 группы внешних сил: сила тяжести, силы давления в сечениях (входа-выхода), динамические силы (центробежные силы) со стороны рабочего колеса и силы трения жидкости на обтекаемых поверхностях

где, МG – момент силы тяжести;

МP – момент сил давления;

МК – момент от динамических сил.

Момент силы тяжести всегда равен 0, так как плечо этих сил равно 0 (они проходят через ось вращения колеса). Момент сил давления в расчетных сечениях по той же причине равен 0. А поскольку силами трения пренебрегают, то момент сил трения тоже равен 0. Следовательно, момент всех внешних сил относительно оси вращения колеса сводится к моменту динамического взаимодействия рабочего колеса на протекающую через него жидкость, т.е.

(2.17)

Известно, что мощность, передаваемая жидкости рабочим колесом, т.е. произведение на окружную скорость w0 равна произведению расхода Q на теоретическое давление Pт, создаваемое нагнетателем.

, (2.18)

Следовательно, уравнение (2.16) с учетом выражений (2.17) и (2.18) будет иметь вид

(2.19)

Известно, что окружные скорости u1 и u2 можно представить в виде:

(2.20)

из этого следует

;

Подставив выражения в (2.19) и (2.20) и разделив его на Q, получим

(2.21)

или с учетом того, что или P= gH, уравнение (2.21) примет вид:

(2.22)

Зависимость (2.22) называют основным уравнением лопастных нагнетателей или уравнением Эйлера.

Уравнения (2.21) и (2.22) выведены из условия пренебрежения силами трения и учетом того, что рабочее колесо имеет бесконечное число тонких лопаток (z= ).

Известно, что в рабочее колеса большинства центробежных нагнетателей жидкость поступает радиально (a=90 0 , следовательно, с1=0) поэтому уравнение (2.21) и (2.22) можно записать в виде:

(2.23)

(2.24)

Для осевых нагнетателей в силу того, что переносные (окружные) скорости на входе и выходе одинаковы уравнение (2.22) имеет вид:

(2.25)

Основное уравнение лопастного нагнетателя показывает, что теоретическое давление и напор, тем больше, чем больше окружная скорость на внешней окружности рабочего колеса u=pD2n, т.е. чем больше его диаметр, частота вращения и угол b2.

2.4 Влияние угла (β2) выхода потока на напор нагнетателя

Угол выхода потока b2 зависит от формы лопаток. Существуют три вида лопаток: загнутые (по ходу вращения) назад; с радиальным выходом; загнутые вперед.


в)

Рис. 2.5. Зависимость угла выходы от формы лопаток.

При равных геометрических размерах колес и постоянном значении u2 c возрастанием b2 увеличивается окружная составляющая абсолютной скорости сw. Следовательно, с увеличением b2 напор насоса увеличивается и у рабочего колеса с лопатками, загнутыми вперед, он будет наибольшим. Однако в практике насосостроения чаще используют рабочие колеса с лопатками, загнутыми назад. Это объясняется следующими причинами:

1. Основным назначением нагнетателей является создание статистического напора, а колеса с лопатками загнутыми вперед обладают малым коэффициентом статического напора (kс 0,5), (k= )

Основное увеличение напора у них происходит за счет возрастания динамической составляющей скорости (с2).

2. Лопатки, загнутые назад, с гидродинамической точки зрения более удобообтекаемые при переменном режиме работы нагнетателей, диапазон скоростей безотрывного обтекания значительно шире. Следовательно, гидравлические потери при движении жидкой среды по каналам будут меньше, а КПД насоса выше. Обычно принимают следующие значения углов входа и выхода для лопаток, загнутых назад:

Действительное давление и напор, развиваемый нагнетателем, меньше теоретических. Давление, развиваемое нагнетателем, уменьшается главным образом из-за того, что при конечном числе лопастей рабочего колеса не все частицы жидкости отклоняются равномерно, вследствие чего уменьшается абсолютная скорость (с2). Влияние конечного числа лопастей учитывается введением поправочного коэффициента К,

(2.26)

Z – число лопастей рабочего колеса нагнетателя.

Кроме того, часть энергии расходуется на преодоление гидравлических сопротивлений, которые учитываются гидравлическим КПД.

(2.27)

С учетом этих поправок полное давление определяют следующим выражением:

(2.28)

(2.29)

Угол a2 принимают обычно в пределах 8-14 0 .

Полное давление (напор) можно выразить в виде зависимости от абсолютной, переносной и относительной скоростей потока. Для этого еще раз воспользуемся треугольником скоростей (см. рис.2.4)

Согласно теореме косинусов имеем:

(2.30)

и подставив в уравнение (2.69), вместо значения

(2.31)

Из уравнения видно, что давление, создаваемое нагнетателем, складывается из прироста кинетической энергии абсолютного движения, повышения статического давления от работы центробежных сил и преобразования кинетической энергии относительного движения в межлопасных каналах.

Отношение скорости закручивания к окружной скорости называется коэффициентом закручиванияj.

Отношение полного давления PТ к динамическому Pd= , где скорость потока равна окружной скорости U2, получило название коэффициентаполного давления ψ, который определяют опытным путем.

Основное уравнение лопастных насосов

Рассмотрим процесс протекания жидкости по каналам рабочего колеса центробежного насоса (рис. 3). При этом сделаем два допущения:

1) число лопаток рабочего колеса считается бесконечно боль­шим;

2) жидкость проходит через каналы рабочего колеса в виде тождественных элементарных струек по одинаковым криволиней­ным траекториям, определяемым формой лопаток.

Движение жидкости является сложным. Каждая частичка жид­кости, попадая на лопатку рабочего колеса, участвует одновре­менно в двух движениях: вращается вместе с колесом с перенос­ной скоростью и1, равной окружной скорости вращения колеса; перемещается вдоль профиля лопаток с относительной скоростью w1. Вектор переносной ско­рости икасателен к окруж­ности колеса, а вектор от­носительной скорости wка­сателен к профилю лопатки.

Абсолютную скорость v1движения жидкости на входе в колесо можно определить из параллелограмма скоро­стей, используя теорему ко­синусов:

. (1)

Аналогичное выражение получим из параллелограмма скоростей на выходе жид­кости из колеса:

, (2)

где a1 и a2 — углы между векторами абсолютной и окружной скоростей.

Составим уравнение Бернулли для двух сечений: в сечении 1, находящемся в непосредственной близости перед входом жид­кости в колесо, и в сечении 2, расположенном после выхода жид­кости с рабочего колеса. Пренебрегая потерями напора, получим:

, (3)

где z1 и z2 — координаты центра тяжести сечений 1 и 2; р1 и р2 — средние давления в этих сечениях; Нн — энергия, полученная жид­костью от рабочего колеса, равная полному напору, развиваемому насосом.

Запишем уравнение Бернулли для относительного движения жидкости по лопаткам в канале рабочего колеса, добавляя к числу действующих на жидкость массовых сил центробежную силу. Счи­таем, что работа центробежной силы начинается в сечении 1 после непосредственного поступления частиц жидкости на лопатки и заканчивается в сечении 2перед сходом с лопаток колеса:

, (4)

где Нц — удельная работа центробежной силы, т. е. работа, отне­сенная к единице веса протекающей жидкости.

Определим работу центробежной силы Рпо перемещению час­тички жидкости массой тна расстоянии dr:центробежная сила P = mw 2 r; элементарная работа dA = mw 2 rdr.

Полная работа центробежной силы на пути от входа частицы жидкости на колесо с внутренним радиусом r1 до выхода с его внешней окружности радиусом r2определится интегрированием:

. (5)

Разделив полученное выражение на единицу веса жидкости mg, получим удельную работу центробежной силы, отнесенную к 1 кг:

. (6)

Подставив уравнение (6) в уравнение (4), получим:

. (7)

Вычтем из уравнения (3) уравнение (7):

. (8)

Заменим в уравнении (8) относительные скорости w1и w2, подставив их значения из уравнений (1) и (2). Тогда после преобразования получим уравнение для напора насоса:

Это уравнение было выведено Л. Эйлером в 1755 г., т. е. рань­ше, чем центробежные насосы появились в производстве; оно на­зывается основным уравнением лопастных машин.

Исходя из условий безударного входа жидкости в колесо, во избежание больших потерь напора при конструировании насосов стремятся к тому, чтобы направление вектора скорости подхода к колесу не отличалось от абсолютной скорости v1входа, а угол a был равен 90°. Тогда cos a1 = 0, а теоретический напор:

Из уравнения (10) видно, что для получения максималь­ных значений напора угол a2 должен быть небольшим. На прак­тике a2= 8-15°.

Действительный напор насоса будет несколько меньше, чем определяемый по уравнению (10), по следующим причинам: из-за гидравлических сопротивлений, встречаемых жидкостью в насосе; из-за неравномерности распределения скоростей в попе­речном сечении каждого канала, так как число лопаток ограни­чено.

Эти потери напора можно учесть, вводя гидравлический коэф­фициент полезного действия hги коэффициент Кz, учитывающий форму и число лопаток: hг= 0,80-0,95, Кz= 0,75-0,85.

Таким образом, действительный напор центробежного насоса:

Анализ уравнения Л. Эйлера (11) позволяет сделать сле­дующие выводы:

1. Напор центробежного насоса не зависит от рода жидкости и числа лопаток рабочего колеса.

2. Напор насоса будет тем больше, чем больше окружная ско­рость на внешней окружности рабочего колеса, пропорциональная его диаметру и частоте вращения.

3. Напор насоса будет увеличиваться по мере уменьшения угла между векторами окружной скорости колеса и абсолютной скорости схода жидкости.

Отметим, что основное уравнение Л. Эйлера справедливо не только для лопастных насосов, но и для гидравлических турбин, также представляющих собой лопастные машины, но с обратным процессом. Поэтому применительно к гидравлическим турбинам уравнение Л. Эйлера имеет вид:

Уравнение Эйлера

Жидкость, перекачиваемая под действием центробежной силы насосом, при прохождении через межлопаточные пространства (каналы) рабочего колеса приобретает как потенциальную, так и кинетическую энергию.

На рис. 2.25 изображена схема изменения направления скоростей на рабочем колесе при входе жидкости на рабочую лопатку и выходе с нее. Энергия в потоке жидкости увеличивается в результате силового воздействия лопаток колеса на жидкость и соответствующего расхода энергии двигателя, приводящего насос в действие. Напор, развиваемый насосом, может характеризовать удельную энергию, т. е. энергию, приобретенную единицей массы жидкости.


Рис. 2.25. Схема изменения направления скоростей на рабочем колесе насоса

Эйлер вывел уравнение для определения теоретического напора при следующих допущениях: а) перекачиваемая жидкость является идеальной (при ее протекании через проточную часть насоса исключаются гидравлические сопротивления); б) рассматриваемый насос имеет бесконечно большое число лопаток, благодаря чему все частицы жидкости движутся внутри колеса по одинаковым траекториям, имеющим очертания лопаток.

Бесконечное число лопаток дает бесконечно узкий канал для прохода жидкости и обеспечивает ламинарный характер течения жидкости, что упрощает построение векторной диаграммы на выходе. Допустим, что за 1 с через колесо протекает масса жидкости т. При входе в лопаточное колесо частица жидкости получает окружную скорость направленную по касательной к окружности входных кромок и равную u1 = 0,5ωD1, где ω — угловая скорость колеса насоса (по часовой стрелке); D1 — диаметр внутренней окружности колеса. Кроме того, жидкость получает относительную скорость ω1 которая направлена по касательной к контуру лопатки от положения входа.

Абсолютная скорость с1 может быть найдена построением параллелограмма, сторонами которого являются векторы скорости u1 и ω1. После того как частица жидкости совершила путь вдоль лопаток колеса, при выходе она будет иметь окружную скорость u2, направленную по касательной к наружному контуру колеса, и относительную ω2, направленную по касательной к контуру лопатки. Построив параллелограмм, можно найти абсолютную скорость выхода с2. Напор Ht∞ (t — идеальная жидкость; ∞ — бесконечно большое число лопаток) определяется на основании закона, известного из теоретической механики, по которому приращение момента количества движения материальной системы относительно данной оси за некоторый промежуток времени равно моменту импульса всех внешних сил за тот же промежуток времени (например, за 1 с).

Количество движения массы жидкости при входе равно произведению массы на скорость F1 = mc1, а при выходе F2 = mс2. Момент количества движения массы жидкости при входе равен 0,5mc1D1 cos α1, момент количества движения массы жидкости при выходе 0,5mc2D2 cos α2, где α1, α2 — углы между направлениями абсолютной и окружной скоростей. Момент импульса внешних сил равен разности моментов количества движения М = 0,5 (mc2D2 cos α2 — mc1D1 cos α1). Для упрощения обе части уравнения умножим на угловую скорость и разделим на массу, а левую часть разделим и умножим на ускорение свободного падения:
Mωg/(mg) = 0,5 (ωc2D2 cos α2 — mc1D1 cos α1. (2.6)
Известно, что мощность равна произведению угловой скорости и момента импульса внешних сил: N = ωМ. Если мощность выразить через теоретический напор, то она равна N = mgHt∞, откуда
Ht∞ = N/(mg). (2.7)
Заменяя в уравнении (2.6) произведение Мω на N и помня, что u1 = 0,5ω1D1 и u2 = 0,5ω2D2, получаем N/(mg) = (c2u2 cos α2 —с1u1 cos α1)/g. С учетом равенства (2.7) теоретический напор определится из выражения Ht∞ = (c2u2 cos α2 — c1u1 cos α1)/g.

Полный теоретический напор равен сумме статического и динамического напоров: Ht∞ = Hст + Hдин. Это очевидно из другого уравнения Эйлера, полученного через уравнение Бернулли: Ht∞ = Hст + Hдин = (n2 — u1)/(2g) + (w1 — w2)/(2g) + (c2—c1)/(2g).

Так как проекция абсолютной скорости на направление окружной скорости u2 представляет собой тангенциальную составляющую абсолютной выходной скорости с2, то она вычисляется по выражению c2u = с2 cos a2. Ввиду того что у большинства центробежных насосов отсутствуют направляющие аппараты при входе жидкости на лопатки и во избежание больших гидравлических потерь от ударов жидкости о лопатки угол ах принято выбирать равным 90°. Но cos 90° = 0, следовательно, c1u1 cos а1 = = 0. Таким образом, получаем основное уравнение центробежного насоса, или уравнение Эйлера:
Ht∞ = u2c2 cos a2/g = u2c2u/g. (2.8)
Основные уравнения для получения теоретического напора Ht в центробежном насосе были получены при условии, что траектория каждой частицы жидкости, движущейся по рабочему колесу, совпадает с профилем лопатки. Это было бы возможно лишь в том случае, когда каждая элементарная струйка направлялась бы двумя бесконечно тонкими лопатками, которых потребовалось бы бесконечно большое число. В действительном насосе число лопаток ограничено и они имеют определенную толщину. Это приводит к искажению треугольников скоростей, пересечению струек жидкости и образованию различных завихрений. Затраты на эти потери энергия снижают создаваемый напор на величину коэффициента φ = 1/<1 + 2 /z·1/[1 — (γ1/γ2)2]>, где ψ — технологический коэффициент, который зависит от степени обработки проточной части и угла β2 между направлениями относительной и окружной скоростей, находится по соотношению ψ= (0,55÷0,65) + 0,6 sin β1 ≈ 0,8÷1,3; z = 6÷9 — число лопастей судового насоса.

Для получения действительного напора необходимо учитывать также потери на преодоление гидравлических сопротивлений в насосе. Тогда (2.8) может быть преобразована в формулу действительного напора Hд = Ht∞φηr=u2c2uφηr/g.


источники:

http://helpiks.org/4-6001.html

http://www.stroitelstvo-new.ru/sudostroenie/mehanizm/uravnenie-eilera.shtml