Уравнение эйлера для центробежных машин

Перемещение жидкостей

Для перемещения жидкостей по горизонтальным трубопроводам и для их подъема применяют насосы.

Насосы – гидравлические машины, преобразующие механическую энергию в энергию движения жидкости.

Разность давлений в насосе и трубопроводе вызывает перемещение жидкости.

Перемещение жидкости может осуществляться также самотеком, который достигается соответствующей компоновкой оборудования по высоте.

Классификация насосов осуществляется по принципу их действия:

1) Лопастные (центробежные) – разность давлений создается центробежной силой, действующей на жидкость при вращении лопастных колес; движение жидкости перпендикулярно оси вращения колеса.

2) Объемные – разность давлений создается при вытеснении жидкости из замкнутого пространства телами, движущимися:

Рекомендуемые файлы

3) Вихревые – разность давлений создается за счет энергии вихрей, образующихся в жидкости при вращении рабочего колеса;

4) Осевые – разность давлений создается за счет вращения гребного винта; жидкость движется вдоль оси вращения.

К насосам относятся также устройства, преобразующие в давление энергию пара, воды и сжатого газа:

· Газлифты – за счет разности плотностей жидкости и газожидкостной смеси, образующейся при вводе газа;

· Монтежю – перемещение жидкости происходит за счет давления воздуха, газа или пара на поверхность жидкости.

Основные параметры насосов

Производительность (подача) — объем жидкости, подаваемой насосом в нагнетательный трубопровод в единицу времени.

Напор — это удельная энергия, которая сообщается насосом единице веса перекачиваемой жидкости; или высота, на которую может быть поднят 1 кг перекачиваемой жидкости (не зависит от плотности или удельного веса жидкости)

Полезная мощность — мощность, затрачиваемая насосом на сообщение жидкости энергии.

;

Мощность на валу — учитывает потери в самом насосе.

;

Коэффициент полезного действия — отражает потери мощности в самом насосе.

;

;

где: объемный К.П.Д. (коэффициент подачи);

— отношение действительной производительности насоса к теоретической.

учитывает потери жидкости через сальники, зазоры, клапаны, запаздывание в закрывании и открывании клапанов, скопление воздуха в цилиндре.

гидравлический К.П.Д. – отношение действительного напора к теоретическому (учитывает потери напора при движении жидкости через сам насос).

механический К.П.Д. (учитывает потери мощности на механическое трение в насосе).

Номинальная мощность, потребляемая двигателем

;

— К.П.Д. передачи (учитывает механические потери в передаче).

— К.П.Д. двигателя (учитывает механические потери в двигателе).

Полный К.П.Д. насосной установки:

;

;

Установочная мощность двигателя:

;

где: — коэффициент запаса мощности (учитывает перегрузки в момент пуска в связи с преодолением инерции жидкости, находящейся в насосе). .

— давление в емкости 1 (расходная);

— давление в емкости 2 (напорная);

— давление на входе в насос;

— давление на выходе из насоса;

— высота всасывания;

— высота нагнетания;

— геометрическая высота подачи жидкости;

— расстояние по вертикали между уровнями манометра и вакуумметра.

Запишем уравнение Бернулли для сечений при всасывании:

;

Для сечений при нагнетании:

;

где: — скорости жидкости в емкостях 1 и 2;

— скорости жидкости во всасывающем и нагнетающем патрубках насоса.

Считаем, что и .

Тогда, напор, развиваемый насосом:

;

;

Это выражение для расчета полного напора насоса.

(патрубки одинаковых размеров);

;

— общее сопротивление трубопровода.

;

Полный напор насоса затрачивается на:

· Подъем жидкости на полную геометрическую высоту ;

· Преодоление разности давлений в напорной и приемной емкостях;

· Преодоление гидравлического сопротивления во всасывающем и нагнетающем трубопроводах;

1. При одинаковом давлении в приемной и нагнетающей емкостях :

;

2. Для горизонтального трубопровода :

;

3. Для горизонтального трубопровода при одинаковых давлениях:

;

Полный напор действующего насоса может быть определен по показаниям вакуумметра и манометра:

;

;

;

— давление столба жидкости между уровнями установки манометра и вакуумметра.

Следовательно, для расчета напора действующего насоса используется выражение:

;

Напор действующего насоса определяется суммой показаний манометра и вакуумметра (в метрах столба перекачиваемой жидкости) и расстояния по вертикали между точками установки этих приборов.

Всасывание жидкости происходит под действием разности давлений в приемной емкости и в насосе .

Из уравнения Бернулли:

;

Скорость и тогда:

;

Давление на входе в насос должно быть больше давления насыщенного пара перекачиваемой жидкости при температуре всасывания , иначе жидкость в насосе начнет кипеть, что вызовет разрыв потока:

;

Если , то:

:

Высота всасывания зависит от величины атмосферного давления, температуры, плотности и скорости жидкости и гидравлического сопротивления всасывающего трубопровода.

При перекачивании из открытых резервуаров высота всасывания не может быть более высоты столба жидкости, соответствующего атмосферному давлению (20 м вод.ст. на уровне моря и 9 м. на высоте 1000 м.)

Для жидкостей, температура которых близка к температуре кипения, высота всасывания может оказаться равной нулю:

;

Следовательно, при увеличении температуры всасываемой жидкости высота всасывания насоса уменьшается.

Поэтому для горячих жидкостей насос устанавливают ниже уровня приемной емкости или создают в ней давление.

При учете потерь напора кроме того, необходимо учитывать инерционные потери (в поршневых насосах) – вследствие неравномерности подачи и кавитационную поправку (для ц/б насосов) – в справочных пособиях.

Кавитация – резкое парообразование жидкости на всасывании насоса с последующей быстрой конденсацией на выхлопе. Возникают гидравлические удары, что влечет разрушение и увеличение коррозии насоса.

Практически высота всасывания уменьшается за счет подсосов воздуха и выделения газов из жидкости.

При перекачивании воды практическая высота всасывания не превышает следующие значения:

Температура,

Высота всасывания, м

Центробежные насосы (ц/б) бывают одно- и многоступенчатыми. Всасывание и нагнетание происходит непрерывно и равномерно.

1 – всасывающий трубопровод; 2 – рабочее колесо; 3 – корпус; 4 – лопатки; 5 – нагнетательный трубопровод.

Жидкость из всасывающего трубопровода поступает вдоль оси рабочего колеса в корпус и, попадаяна лопатки, приобретает вращательное движение.

Центробежная сила отбрасывает жидкость в канал переменного сечения между корпусом и рабочим колесом, в котором скорость жидкости уменьшается до скорости в нагнетательном трубопроводе, а давление возрастает.

При этом кинетическая энергия преобразуется в энергию давления. На входе создается разряжение.

Перед пуском ц/б насос обязательно заливают жидкостью, так как иначе разряжение на входе недостаточно для подъема жидкости по всасывающему трубопроводу (из-за зазоров). На конце всасывающего трубопровода устанавливают обратный клапан.

Для создания значительных напоров (более 50-70 м.вод.ст.) применяют многоступенчатые насосы – несколько колес, расположенных последовательно на валу (не более 5). Жидкость поступает из колеса в колесо по обводному каналу.

;

Основное уравнение центробежных машин – уравнение Эйлера

Это уравнение определяет полный напор, развиваемый рабочим колесом при перекачке идеальной жидкости.

Допустим, что колесо неподвижно, а жидкость движется между лопатками с той же скоростью, что и во вращающемся колесе.

Скорость жидкости (на входе в колесо — ; на выходе из колеса — ; ) является геометрической суммой относительной , которые направлены вдоль лопаток и окружной , которые направлены по касательной к окружности вращения составляющей.

Составим баланс энергии для плоскости рабочего колеса :

;

При вращении колеса жидкость на выход приобретает дополнительную энергию , равную работе центробежной силы на пути :

;

Центробежная сила, действующая на частицу массы :

;

где: — вес частицы;

— текущий радиус вращения.

Работа на пути :

;

Поскольку окружная скорость , то:

;

Удельная работа, отнесенная к единице веса жидкости:

;

Уравнение Бернулли запишется следующим образом:

;

;

По уравнению Бернулли напор жидкости на входе в колесо:

;

;

Теоретический напор насоса есть разность напоров на входе и на выходе из него:

;

Из параллелограммов скоростей следует:

;

;

Основное уравнение ц/б машин всех типов:

;

Обычно жидкость из всасывающего трубопровода движется по колесу в радиальном направлении: (безударный ввод жидкости). Тогда:

;

Поскольку окружная скорость , то напор пропорционален квадрату числа оборотов и зависит также от формы лопаток.

Действительный напор меньше теоретического:

;

где: — гидравлический К.П.Д.

— коэффициент (0,6 – 0,8), учитывающий, что частицы в насосе не движутся по подобным траекториям.

Законы пропорциональности (при )

Производительность и напор ц/б насоса зависят от числа оборотов колеса.

Соответствующие уравнения называются законами пропорциональности: изменение числа оборотов насоса от до вызывает:

; ; ;

Эти зависимости соблюдаются при изменении n не более, чем в 2 раза и справедливы при турбулентном движении по горизонтальным трубопроводам, когда .

Характеристики центробежных насосов

Характеристики насосов – это графики зависимостей:

Эти зависимости получают опытным путём и содержатся в каталогах на насосы.

Преобразование уравнения напора:

Из графика следует, что наиболее благоприятный режим эксплуатации насоса – max (при данном значении n).

Пользуясь законами пропорциональности, можно пересчитать характеристику на другое число оборотов, однако это неточный метод (поскольку при изменении n изменяется КПД ().

Универсальная характеристика насоса

Получается при различных числах оборотов: . На график наносят линии одинакового КПД.

Линия pp соответствует max КПД при данном числе оборотов.

Пользуясь универсальной характеристикой, можно установить пределы работы насоса, соответствующие max КПД и выбрать наиболее благоприятные режимы работы.

Работа насосов на сеть

При выборе насоса необходимо учитывать характеристику сети (трубопроводов, аппаратов).

Характеристики сети:

=> парабола

Точка A соответствует наибольшей производительности насоса при работе на данную сеть и называется рабочей точкой.

а) Для I сети насос даёт меньший напор, но большую производительность;

б) Для II сети насос даёт больший напор, но меньшую производительность.

Центробежный насос обладает свойством саморегулирования, т.е. изменять свою производительность и напор в зависимости от характеристики сети.

Для получения больших производительности (Q) надо:

2) Заменить насос;

3) Уменьшить потери напора в сети.

Конструктивные особенности центробежных насосов

Центробежные насосы могут перекачивать сильно загрязнённые жидкости – пульпы, шламы => шламовые насосы, так как в них отсутствуют точно пригнанные детали.

Если обычные центробежные насосы имеют число лопаток 9-12, то у шламовых 6-8.

Центробежные насосы перекачивают агрессивные жидкости, так как могут быть изготовлены из кислотоупорных материалов или покрыты резиной и другими материалами.

Уплотнение вращающихся частей насоса осуществляется сальником. Это наиболее уязвимое место в насосе.

1 – грундбукса; 2 – сальниковая набивка; 3 – шпильки

Мягкая сальниковая набивка (асбестовые шнуры, пропитанные маслом с тальком или графитом и др.) поджимается грундбуксой при помощи шпилек.

Для получения высоких напоров требуется большая окружная скорость вращения рабочего колеса, вызывающая большие напряжения в материале колеса. Чтобы получить напор более 50-70 м вод. ст. насосы изготавливают многоступенчатыми – несколько колёс, расположенных последовательно на валу (но не более 5). Жидкость поступает из колеса в колесо по обводному каналу.

Центробежные насосы отличаются от других саморегулированием => самостоятельно изменяют режим работы в зависимости от сопротивления сети.

Принудительное регулирование осуществляется:

1) Изменением числа оборотов рабочего колеса; — наиболее современный

2) Установкой задвижки (вызывает перерасход энергии)

Задвижка устанавливается на нагнетательной линии. Если установить на всасывающей, то насос будет работать под увеличивающимся вакуумом, который может вызвать подсос воздуха через сальник и образование газовых пузырей в жидкости. Это приводит к кавитации – вибрации, гидравлическим микроударам, разрушающим насос.

Особенность (недостаток) работы центробежного насоса – необходимость пред пуском заливать жидкостью насос и всасывающий трубопровод. Иначе разрежение на входе недостаточно для подъёма жидкости по всасывающему трубопроводу (вращающийся в рабочем колесе воздух создаёт ничтожно малое разрежение). На конце всасывающего трубопровода устанавливают обратный клапан.

Центробежный насос целесообразно устанавливать «под залив» ниже того бака, из которого должно перекачиваться жидкость.

I. Насос простого действия – всасывание и нагнетание жидкости происходит неравномерно: за 1 оборот кривошипа или 2 хода поршня.

Поршневой насос простого действия

1 – поршень; 2 – цилиндр; 3 – крышка цилиндра; 4 – всасывающий клапан; 5 – нагнетательный клапан; 6 – кривошипно-шатунный механизм; 7 – уплотнительные кольца

Насос двойного действия – слева от поршня происходит всасывание, справа – нагнетание. Эти насосы отличаются большей производительностью и более равномерной подачей.

Поршневой насос двойного действия

1 – поршень; 2 – цилиндр; 3 – крышка цилиндра; 4 – всасывающий клапан; 5 – нагнетательный клапан; 6 – кривошипно-шатунный механизм; 7 – уплотнительные кольца

II. По числу оборотов кривошипа (двойных ходов поршня) различают:

— Тихоходные насосы => 45-60 об/мин

— Нормальные насосы => 60-120 об/мин

— Быстроходные насосы => 120-180 об/мин

III. Различают поршневые и плунжерные насосы

Плунжерный насос двойного действия

1 – плунжер; 2 – цилиндры; 3,4 – всасывающие клапаны; 5,6 – нагнетательные клапаны.

Плунжерный насос – это металлический стакан – скалка, который не требует тщательной подгонки плунжера и цилиндра.

Существуют также триплекс-насосы, т.е. строенные. За 1 оборот коленчатого вала жидкость 3 раза всасывается и 3 раза нагнетается.

Производительность поршневых насосов

1. В насосах простого действия:

, где:

F – площадь сечения поршня объём

n – число оборотов кривошипно-шатунного механизма (число двойных ходов).

2. В насосах двойного действия:

Ход вправо: засасывается Fl; f – площадь поперечного сечения штока

Ход влево: засасывается (F-f)l;

За n оборотов или двойных ходов поршня теоретическая производительность насоса двойного действия:

;

Таким образом, производительность примерно вдвое больше, чем у насоса простого действия.

Действительная подача всегда меньше, чем теоретическая из-за:

1) Запаздывания в закрывании и открывании клапанов;

2) Неплотностей в клапанах и поршне;

3) Попадания воздуха в цилиндр – уменьшается всасываемый объём жидкости.

— объёмный КПД насоса

Производительность поршневого насоса практически на зависит от напора

Отклонение от прямой происходит из-за утечек через неплотности, которые возрастают при увеличении давления.

Конструктивные особенности поршневых насосов

Поршневые кольца – из мягкого чугуна, бронзы, кожаные манжеты;

Клапаны – тарельчатые, шаровые.

Возвратно-поступательное движение поршня вызывает большие инерционные усилия массы жидкости, даже при небольших числах оборотов (вследствие смены направления движения).

Для уменьшения инерционных сил и неравномерности подачи устанавливают буферы – воздушные колпаки.

а) на всасывающей линии

б) на нагнетательной линии

Верхняя часть колпака заполнена воздухом, который легко сжимается и расширяется. Объём поступающей жидкости меньше объёма воздуха.

Привод и регулирование подачи

Привод может быть: паровая машина (утилизация тепла) или электрический. Подача жидкости поршневым насосом – геометрически жёсткая, т.е. поршень должен вытолкнуть всю вытесняемую жидкость, иначе насос разорвётся. Регулирование осуществляется:

1) Изменением хода поршня:

а) отсечкой пара (раннее перекрытие);

б) изменением длины кривошипа;

2) Изменением числа оборотов:

б) число оборотов электродвигателя

Специальные типы поршневых и центробежных насосов

Специальные типы насосов используются для перекачки агрессивных и загрязненных жидкостей

1. Диафрагменные (мембранные)

Эти насосы отно­сятся в поршневым насосам простого действия и применяются для пере­качивания суспензий и химически агрессивных жидкостей. Цилиндр 1 и плунжер 2 насоса отделены от перекачиваемой, жидкости эластичной перегородкой 3 — диафрагмой (мембраной) из мягкой резины или спе­циальной стали, вследствие чего плунжер не соприкасается с перекачи­ваемой жидкостью и не подвергается воздействию химически активных сред или эрозии. При движении плунжера вверх диафрагма под действием разности давлений по обе ее стороны прогибается вправо, и жидкость всасывается в насос через шаровой клапан 4. При движении плунжера вниз диафрагма прогибается влево и жидкость через нагнетательный кла­пан 5 вытесняется в напорный трубопровод. Все части насоса, соприка­сающиеся с перекачиваемой жидкостью — корпус, клапанные коробки, шаровые клапаны, изготавливают из кислотостойких материалов или защищают кислотостойкими покрытиями.

1 – корпус; 2 – рабочее колесо; 3 – добавочное колесо; 4 – пружина; 5 – втулка.

В насосах данного типа достигается устранение утечки перекачиваемой жидкости. На рабочем колесе укреплено добавочное колесо с радиальными лопатками, которое обеспечивает откачивание протекшей за него жидкости.

1 – рабочее колесо; 2- ротор электродвигателя; 3 – статор электродвигателя; 4 – экран; 5 – подшипники; 6 – корпус.

Эти насосы применяют для перекачивания химически агрессивных и токсичных жидкостей. Они надёжны в эксплуатации и находят всё более широкое применение в химической промышленности.

1 – рабочее колесо; 2 – вал; 3 – всасывающий патрубок; 4 – напорные трубы; 5 – подшипник.

Они являются разновидностью бессальниковых насосов. Рабочее колесо погружено в перекачиваемую жидкость. Привод насоса размещён выше уровня жидкости. Нагнетание происходит по напорной трубе.

Насосы других типов

1. Осевые (пропеллерные) насосы

Эти насосы применяют для перекачивания больших количеств жидкостей при небольших напорах. Пропеллерные насосы используют главным образом для создания циркуляции жидкостей в различных аппаратах, например при выпаривании.

2. Вихревые насосы

А – входное окно; В – уплотняющий участок; 1 – корпус; 2 – рабочее колесо; 3 – кольцевой канал; 4 – нагнетательный канал.

Жидкость поступает через входное окно к основаниям лопастей, отбрасывается центробежной силой в кольцевой канал, где приобретает вихревое движение. При перемещении по каналу к выходному патрубку жидкость неоднократно попадает между лопастями, где ей дополнительно сообщается механическая энергия.

3. Шестерёнчатые насосы

1 – корпус; 2 – шестерни.

Одна из шестерён (ведущая) имеет привод от электродвигателя. Когда зубья выходят из зацепления, образуется разрежение и происходит всасывание. Жидкость перемещается вдоль стенки в направлении вращения. В области, где зубья вновь входят в зацепление, жидкость вытесняется и поступает в нагнетательный трубопровод.

4. Винтовые насосы (объёмные)

1 – ведущий винт; 2 – ведомый винт; 3 – обойма; 4 – корпус.

Жидкость за 1 оборот перемещается на величину шага винта. Ведомый винт ( с другой нарезкой) играет роль уплотнителя.

5. Пластинчатые ротационные насосы

Пластинчатый ротационный насос

1 – ротор; 2 – корпус; 3 – пластины; 4 – рабочее пространство; 5 – всасывающий патрубок; 6 – нагнетательный патрубок.

В роторе имеются прорези, в которые вставляются прямоугольные пластины. При вращении они прижимаются к поверхности цилиндра, разделяя объём на камеры. Благодаря эксцентриситету сначала происходит всасывание, п затем нагнетание.

6. Струйные насосы

I – рабочая жидкость; II – перекачиваемая жидкость; III – смесь; 1 – корпус насоса; 2 – диффузор

Эти насосы используют для создания напора энергию рабочей жидкости. Происходит всасывание, так как в узкой части скорость велика, а в диффузоре меньше (увеличивается потенциальная энергия давления – создаётся напор). Кроме того, подсос происходит за счёт трения струи.

Струйные насосы используют, когда можно смешивать жидкости. , т.к. велики потери энергии на завихрение жидкостей.

7. Эрлифт (газлифт) – воздушные подъёмники.

1 – труба для подачи сжатого воздуха; 2 – смеситель; 3 – подъёмная труба; 4 – отбойник; 5 –сборник.

Имеют низкий КПД, но не требуются уплотнения.

1 – корпус; 2-6 – краны; 7 – труба для передавливания

Периодический аппарат, используется для перекачки агрессивных, радиоактивных, загрязнённых жидкостей. КПД 10-20%.

Сравнение различных типов насосов

Выбор производится по характеристике сети:

а) Насоса – рабочая точка – производительность, напор, число оборотов

б) Двигателя – по установочной мощности и числу оборотов.

1. Наибольшее распространение получили центробежные насосы.

1) Высокая производительность и равномерная подача;

2) Компактность и быстроходность (непосредственное присоединение к электродвигателю);

3) Простота устройства – применение химически стойких материалов;

4) Возможность перекачки загрязнённых и агрессивных жидкостей;

5) Возможность установки на лёгких фундаментах.

1) Невозможность перекачки вязких жидкостей;

2) Относительно низкие напоры;

3) Уменьшение производительности и КПД при увеличении сопротивления сети;

4) Малая величина КПД у насосов малой и средней производительности (0,5-0,8). Т.к. высокие затраты на завихрение жидкости в самом насосе.

Применение: при высоких производительностях и для загрязнённых, агрессивных жидкостей.

2. Применение поршневых насосов:

Они используются при небольших подачах и высоких давления (50-100 атм.), а также при дозировании жидкостей и для перекачивания высоковязких огне- и взрывоопасных жидкостей.

1) Высокие напоры;

1) Тихоходность и громоздкость (т.к. большие инерционные силы => мощный фундамент);

2) Много точно пригнанных движущихся частей, которые изнашиваются загрязнёнными и агрессивными жидкостями.

3. Пропеллерные насосы – большие подачи (до 1500 м 3 /мин) при небольших напорах (10-15 мин).

г) Пригодность для кристаллизующихся и загрязнённых жидкостей.

4. Винтовые насосы – используются для высоковязких жидкостей (300 м 3 /час, 150 атм).

5. Пластинчатые насосы используются для чистых незагрязнённых жидкостей при умеренных производительностях и напорах.

6. Шестерёнчатые насосы используются для вязких незагрязнённых жидкостей при небольших подачах (5-6 м 3 /мин) и высоких давлениях (100-150 атм).

б) Отсутствие клапанов;

в) Пригодность для вязких жидкостей.

а) Большой износ;

б) Обратный ток жидкости при больших давлениях.

7. Вихревые насосы – используются для чистых маловязких жидкостей при небольших подачах (до 40 м 3 /мин) и невысоких напорах (до 250 м).

а) Простота конструкции;

в) Высокие напоры (по сравнению с центробежными насосами).

а) Низкий КПД (20-50%).

8. Струйные насосы, газлифты, монтежю

а) Агрессивные среды;

б) Отсутствие движущихся частей.

б) Смешение рабочей и перекачиваемой жидкости.

Теоретический напор насоса, формула Эйлера

Во вращающемся рабочем колесе на частицы жидкости действует центробежная сила:

F= m ω 2 R = ρ∙V∙ ω 2 R

Где Fц- центробежная сила

V – объем частиц

ω- угловая скорость

R- радиус рабочего колеса

В результате этого в центре колеса падает давление, создается разрежение, а на периферии колеса давление повышается, тем самым создается напор.

Движение жидкости в межлопаточных каналах вращающегося колеса можно рассматривать как результат сложения двух движений: переносного (вращение колеса) и относительного (движе­ние относительно колеса).

Поэтому вектор абсолютной скоростижидкости в колесе V может находиться как сумма векторов окруж­ной скорости U и относительной скорости W.

При этом относительная скоростьWнаправлена по касательной к лопатке, а окружнаяU по касательной к соответствующей окружности.

Параллелограмм скоростей можно построить для лю­бой точки на лопатке.

Если все величины, относящиеся к входу на лопатку, отмечать индексом 1, а величины, относящиеся к выходу, — индексом 2, а угол между векторами скоростей окружной и абсолютной обо­значим через a, а между касательной к лопатке и касательной к окружности колеса, проведенной в сторону, обратную вращению, — через b ,то можно получить формулу для расчета теоретического напора (формула Эйлера)

(12)

Для вывода основного уравнения теории центробежного насоса принимают следующие два допущения:

1. Насос имеет бесконечно большое число одинаковых лопаток (z=¥), а толщина этих лопаток равна нулю (b=0). Это допущение означает, что мы предполагаем в межлопаточных кана­лах колеса такое струйное течение, при котором форма всех струек в относительном движении совершенно одинакова и точно соответ­ствует форме лопаток, а скорости зависят только от радиуса и не меняются на окружности данного радиуса. Это положение может иметь место лишь в том случае, когда каждая элементарная струйка направляется своей лопаткой.

2. Коэффициент полезного действия насоса равен единице (h=1), т.е. в насосе отсутствуют все виды потерь энергии и, сле­довательно, вся мощность, которая затрачивается на вращение колеса, целиком передается жидкости Такая работа насоса возможна лишь при перекачке идеальной жидкости, при отсутствии зазоров в насосе, а также при отсутствии механического трения в сальниках и подшипниках

Такой насос, у которого z=¥ и h=1, называетсяидеальным центробежным насосом.

Обычно жидкость подходит к рабочему колесу насоса без предварительной закрутки, а войдя в колесо, вступает в межло­паточные каналы, двигаясь радиально Это значит, что вектор V1 направлен по радиусу, а угол a1=90°. Следовательно, второй член в уравнении делается равным нулю и уравнение прини­мает вид

Эта форма уравнения Эйлера более употребительна.

Реальное колесо центробежного насоса имеет Z=4-8, a2 = 5 — 10 0 , b2 = 20 — 40 0 .

В этом случае поток в относительном движении уже не следует строго по направлению лопаток, что проводит к снижению теоретического напора НТ по сравнению с НТ∞..

где: К — поправка на коническое число лопаток,

Коэффициент К = 0,6 — 0,8 и зависит от кинематики и конструкции колеса.

Формула показывает, что для получения с помощью центробежного насоса больших напоров нужно иметь,

во-первых, большую окружную скорость вращения колеса и,

во-вторых, достаточную закрутка потока жидкости колесом.

Первое достигается соответствующими значениями числа оборотов и диаметра колеса, а второе — достаточным числом лопаток, их размером и формой.

Уравнение Эйлера

Жидкость, перекачиваемая под действием центробежной силы насосом, при прохождении через межлопаточные пространства (каналы) рабочего колеса приобретает как потенциальную, так и кинетическую энергию.

На рис. 2.25 изображена схема изменения направления скоростей на рабочем колесе при входе жидкости на рабочую лопатку и выходе с нее. Энергия в потоке жидкости увеличивается в результате силового воздействия лопаток колеса на жидкость и соответствующего расхода энергии двигателя, приводящего насос в действие. Напор, развиваемый насосом, может характеризовать удельную энергию, т. е. энергию, приобретенную единицей массы жидкости.


Рис. 2.25. Схема изменения направления скоростей на рабочем колесе насоса

Эйлер вывел уравнение для определения теоретического напора при следующих допущениях: а) перекачиваемая жидкость является идеальной (при ее протекании через проточную часть насоса исключаются гидравлические сопротивления); б) рассматриваемый насос имеет бесконечно большое число лопаток, благодаря чему все частицы жидкости движутся внутри колеса по одинаковым траекториям, имеющим очертания лопаток.

Бесконечное число лопаток дает бесконечно узкий канал для прохода жидкости и обеспечивает ламинарный характер течения жидкости, что упрощает построение векторной диаграммы на выходе. Допустим, что за 1 с через колесо протекает масса жидкости т. При входе в лопаточное колесо частица жидкости получает окружную скорость направленную по касательной к окружности входных кромок и равную u1 = 0,5ωD1, где ω — угловая скорость колеса насоса (по часовой стрелке); D1 — диаметр внутренней окружности колеса. Кроме того, жидкость получает относительную скорость ω1 которая направлена по касательной к контуру лопатки от положения входа.

Абсолютная скорость с1 может быть найдена построением параллелограмма, сторонами которого являются векторы скорости u1 и ω1. После того как частица жидкости совершила путь вдоль лопаток колеса, при выходе она будет иметь окружную скорость u2, направленную по касательной к наружному контуру колеса, и относительную ω2, направленную по касательной к контуру лопатки. Построив параллелограмм, можно найти абсолютную скорость выхода с2. Напор Ht∞ (t — идеальная жидкость; ∞ — бесконечно большое число лопаток) определяется на основании закона, известного из теоретической механики, по которому приращение момента количества движения материальной системы относительно данной оси за некоторый промежуток времени равно моменту импульса всех внешних сил за тот же промежуток времени (например, за 1 с).

Количество движения массы жидкости при входе равно произведению массы на скорость F1 = mc1, а при выходе F2 = mс2. Момент количества движения массы жидкости при входе равен 0,5mc1D1 cos α1, момент количества движения массы жидкости при выходе 0,5mc2D2 cos α2, где α1, α2 — углы между направлениями абсолютной и окружной скоростей. Момент импульса внешних сил равен разности моментов количества движения М = 0,5 (mc2D2 cos α2 — mc1D1 cos α1). Для упрощения обе части уравнения умножим на угловую скорость и разделим на массу, а левую часть разделим и умножим на ускорение свободного падения:
Mωg/(mg) = 0,5 (ωc2D2 cos α2 — mc1D1 cos α1. (2.6)
Известно, что мощность равна произведению угловой скорости и момента импульса внешних сил: N = ωМ. Если мощность выразить через теоретический напор, то она равна N = mgHt∞, откуда
Ht∞ = N/(mg). (2.7)
Заменяя в уравнении (2.6) произведение Мω на N и помня, что u1 = 0,5ω1D1 и u2 = 0,5ω2D2, получаем N/(mg) = (c2u2 cos α2 —с1u1 cos α1)/g. С учетом равенства (2.7) теоретический напор определится из выражения Ht∞ = (c2u2 cos α2 — c1u1 cos α1)/g.

Полный теоретический напор равен сумме статического и динамического напоров: Ht∞ = Hст + Hдин. Это очевидно из другого уравнения Эйлера, полученного через уравнение Бернулли: Ht∞ = Hст + Hдин = (n2 — u1)/(2g) + (w1 — w2)/(2g) + (c2—c1)/(2g).

Так как проекция абсолютной скорости на направление окружной скорости u2 представляет собой тангенциальную составляющую абсолютной выходной скорости с2, то она вычисляется по выражению c2u = с2 cos a2. Ввиду того что у большинства центробежных насосов отсутствуют направляющие аппараты при входе жидкости на лопатки и во избежание больших гидравлических потерь от ударов жидкости о лопатки угол ах принято выбирать равным 90°. Но cos 90° = 0, следовательно, c1u1 cos а1 = = 0. Таким образом, получаем основное уравнение центробежного насоса, или уравнение Эйлера:
Ht∞ = u2c2 cos a2/g = u2c2u/g. (2.8)
Основные уравнения для получения теоретического напора Ht в центробежном насосе были получены при условии, что траектория каждой частицы жидкости, движущейся по рабочему колесу, совпадает с профилем лопатки. Это было бы возможно лишь в том случае, когда каждая элементарная струйка направлялась бы двумя бесконечно тонкими лопатками, которых потребовалось бы бесконечно большое число. В действительном насосе число лопаток ограничено и они имеют определенную толщину. Это приводит к искажению треугольников скоростей, пересечению струек жидкости и образованию различных завихрений. Затраты на эти потери энергия снижают создаваемый напор на величину коэффициента φ = 1/<1 + 2 /z·1/[1 — (γ1/γ2)2]>, где ψ — технологический коэффициент, который зависит от степени обработки проточной части и угла β2 между направлениями относительной и окружной скоростей, находится по соотношению ψ= (0,55÷0,65) + 0,6 sin β1 ≈ 0,8÷1,3; z = 6÷9 — число лопастей судового насоса.

Для получения действительного напора необходимо учитывать также потери на преодоление гидравлических сопротивлений в насосе. Тогда (2.8) может быть преобразована в формулу действительного напора Hд = Ht∞φηr=u2c2uφηr/g.


источники:

http://helpiks.org/4-7829.html

http://www.stroitelstvo-new.ru/sudostroenie/mehanizm/uravnenie-eilera.shtml