Уравнение эйнштейна для фотоэффекта эффект комптона

Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Давление света. Эффект Комптона

2
2
0 6 c
0 6 c
v0 – начальная скорость электрона
Заметное излучение лишь при резком торможении
U0

0,4c
Бетатрон: eU0

0,99995c
Если начальная скорость велика, то помимо тормозного,
возникает характеристическое рентгеновское излучение,
обусловленное возбуждением внутренних электронных оболочек
атомов мишени.
5

Φ
Фототок сильно зависит от состояния поверхности.
9

E2.
C ростом Φ при ω = const должна расти Eкmax фотоэлектронов,
т.е. должно расти UЗ
В эксперименте не наблюдается!
11

1/ ω2
Для связанных электронов: E(ω) – резонансная
В эксперименте:
Задерживающее напряжение изменяется с изменением частоты
излучения, падающего на катод.
Энергия электронов растет с ростом частоты света!
Волновая теория:
Энергия электронов зависит от интенсивности но не частоты
излучения.
В эксперименте:
Минимальная частота света, ниже которой явление невозможно.
Существует красная граница фотоэффекта!
12

Тепловое излучение. Внешний фотоэффект. Давление света. Эффект Комптона

Раздел 4: Квантовая физика

Тепловое излучение. Внешний фотоэффект.

Давление света. Эффект Комптона

1. Тепловое излучение. Абсолютно чёрное тело

2. Законы теплового излучения

2.1. Закон Кирхгофа

2.3. Закон Стефана-Больцмана

3. Ультрафиолетовая катастрофа

4. Квантовая гипотеза и формула Планка

5. Оптическая пирометрия

6. Внешний фотоэффект. Уравнение Эйнштейна

7. Фотоны: энергия, импульс

8. Давление света

9. Эффект Комптона

1. Тепловое излучение. Абсолютно чёрное тело

Излучение тела, обусловленное тепловым движением молекул, называется тепловым, так как происходит за счёт энергии теплового движения молекул (атомов). Любое тело с температурой Т≠0, излучает, причём спектр излучения – сплошной. Тепловое излучение – единственное излучение, способное находиться в термодинамическом равновесии с веществом. Если уменьшение энергии тела при излучении восполняется за счёт поглощения излучения, падающего на тело из окружающей среды, то излучение называется равновесным.

Тепловое излучение тел может быть охарактеризовано следующими величинами:

1) Интегральная интенсивность излучения численно равна энергии всех длин волн, излучаемой за единицу времени с единичной площади поверхности тела:

. (20.1)

Эту величину называют также полной энергетической светимостью. Она зависит от абсолютной температуры тела. Размерность :

.

2) Монохроматическая (дифференциальная) интенсивность излучения (спектральная плотность энергетической светимости) численно равна энергии, излучаемой за единицу времени с единичной площади поверхности тела в единичном интервале длин волн:

(20.2)

. (20.2а)

; .

Монохроматическая интенсивность излучения является функцией длины волны и температуры (20.2) или частоты и температуры (20.2а). Найдём связь между и . Из (20.2) и (20.2а):

. (20.3)

Связь между интегральной и монохроматической интенсивностями излучения:

(20.4)

Это значит, что площадь под графиком зависимости или равна .

Из всей падающей на тело энергии dWпадающ. монохроматического света в интервале длин волн [l; l+dl] часть энергии dWпоглощ. поглощается телом.

3) Спектральная поглощательная способность тела – это величина, показывающая, какую долю энергии падающего излучения в интервале длин волн [l; l+dl] вблизи данной длины волны l тело поглощает:

, (20.5)

.

Тело называется абсолютно чёрным (АЧТ), если поглощает всё излучение, падающее на него. Для абсолютно черного тела

.

В природе не существует абсолютно чёрных тел. Тела, покрытые сажей или платиновой чернью, приближаются по своим свойствам к абсолютно черным лишь в ограниченном интервале длин волн. Наиболее совершенной моделью черного тела может служить небольшое отверстие в непрозрачной стенке замкнутой полости (рис.20.1). Луч света, попадающий внутрь через отверстие, претерпевает многократные отражения от стенок полости, прежде чем он выйдет обратно. При каждом отражении происходит частичное поглощение энергии света стенками. Поэтому независимо от материала стенок интенсивность света, выходящего из полости через отверстие, во много раз меньше интенсивности падающего извне первичного излучения. Эта модель тем ближе по характеристикам к чёрному телу, чем больше отношение площади поверхности полости к площади отверстия.

2. Законы теплового излучения

2.1. Закон Кирхгофа

Исходя из второго начала термодинамики, Кирхгоф показал, что условие теплового равновесия заключается в следующем: отношение монохроматической интенсивности излучения к поглощательной способности тела не зависит от природы тела; является универсальной (одинаковой для всех тел) функцией длины волны и температуры (универсальная функция Кирхгофа):

. (20.6)

Тело, хорошо поглощающее лучи каких-либо длин волн, лучи тех же длин волн будет хорошо излучать; а если данную длину волны не поглощает, то и излучать не будет. Пример: для уменьшения теплоотдачи трубы теплотрассы покрывают фольгой: она не поглощает излучение (хорошо отражает), значит, и излучать энергии будет меньше.

Универсальная функция Кирхгофа не зависит от природы тела и является функцией лишь длины волны и температуры. Для абсолютно черного тела:

.


Следовательно, есть монохроматическая интенсивность излучения абсолютно черного тела. Её график при различных температурах тела дан на рис.20.2. Для сравнения на рис.20.3 приводится график излучения Солнца. С хорошей степенью точности Солнце можно считать абсолютно чёрным телом. Для тел, не являющихся абсолютно чёрными,

(20.7)

Для многих тел поглощательную способность можно считать не зависящей от длины волны:

.

Такие тела называются серыми; величина а называется коэффициентом серости (или коэффициентом черноты).

Эксперименты показали, что с повышением температуры максимум функции смещается в область коротких волн, а интенсивность излучения растет (рис.20.2). Эти закономерности излучения АЧТ описываются законами Вина.

Первый закон Вина (закон смещения Вина). Длина волны , на которую приходится максимум монохроматической интенсивности излучения, обратно пропорциональна абсолютной температуре:

. (20.8)

С повышением температуры максимум излучения смещается в коротковолновую область. Железка при нагреве в пламени костра изменяет цвет: сначала тёмно-бордовая, затем красная, оранжевая; — это значит, что в спектре её излучения появляются более короткое волны (большие частоты – см. рис.20.4). Одновременно растёт полный поток излучаемой энергии и максимальное значение .

Второй закон Вина: максимальное значение спектральной плотности энергетической светимости прямо пропорционально пятой степени абсолютной температуры:

. (20.9)

Первая и вторая константы Вина в (20.7.) и (20.8) равны соответственно:

, .

2.3. Закон Стефана-Больцмана

Полная энергетическая светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры:

. (20.10)

Постоянная Стефана-Больцмана s была определена опытным путем:

.

Излучение серых тел подчиняется аналогичной закономерности, однако излучение их для каждой длины волны меньше, чем для абсолютно черного тела (см.(20.7); а

Фотоэффект. Фотоны

В 1887 году Г. Герцем был открыт фотоэлектрический эффект, а продолжить его исследования довелось А.Г. Столетову. Ф. Леонард в 1900 году серьезно занялся данным проектом. К тому времени был открыт электрон. Это говорило о том, что фотоэффект состоял в вырывании электронов из вещества под действием падающего на него света.

Данное исследование законов Столетова изображено на рисунке 5 . 2 . 1 .

Рисунок 5 . 2 . 1 . Схема экспериментальной установки для изучения фотоэффекта.

В лабораторных условиях применили стеклянный вакуумный баллон с двумя металлическими электродами с очищенной поверхностью. К ним прикладывали напряжение U с возможностью изменения полярности с помощью ключа. Катод освещали монохроматическим светом с длиной волны λ через кварцевое окошко. Так как световой поток оставался неизменным, то зависимость силы тока I от напряжения ослабевала. Рисунок 5 . 2 . 2 . наглядно демонстрирует кривые зависимости при интенсивном свете, попадающем на катод.

Рисунок 5 . 2 . 2 . Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н 1 и I н 2 – токи насыщения, U з – запирающий потенциал.

По графику видно, что при подаче большого напряжения фототок анода А достигает насыщения, потому как при вырывании светом из катода они в состоянии достичь его.

Ток насыщения. Закономерности фотоэффекта

Ток насыщения I н прямо пропорционален интенсивности падающего света.

При наличии отрицательного напряжения на аноде, электрическое поле, находящееся между катодом и анодом, тормозится электронами. К аноду могут добраться электроны, у которых кинетическая энергия превышает значение | e U | . При наличии напряжения меньше, чем – U з , происходит прекращение фототока. После измерения – U з определяется максимальная кинетическая энергия фотоэлектронов:

m υ 2 2 m a x = e U 3 .

Из формулы видно, что оно не зависит от интенсивности падающего света. После глубоких исследований стало ясно, что при возрастании запирающего потенциала происходит линейное увеличение частоты света ν .

Рисунок 5 . 2 . 3 . Зависимость запирающего потенциала U з от частоты ν падающего света.

После многочисленных экспериментов были установлены закономерности формул фотоэффекта:

  1. При увеличении частоты света ν происходит возрастание кинетической энергии, независящей от ее интенсивности.
  2. Наименьшей частотой ν m i n с внешним фотоэффектом называют красную границу фотоэффекта каждого вещества.
  3. Количество фотоэлектронов за 1 с вырывания из катода прямо пропорционально интенсивности света.
  4. Фотоэффект возникает после освещения катода с условием, что ν > ν m i n .

Данные закономерности не соответствовали представлениям классической физики о взаимодействии света с веществом. Исходя из волновых представлений, взаимодействие световой волны с электроном должно действовать по принципу постепенного накапливания энергии. Чтобы он смог вылететь из катода, необходимо иметь достаточное количество энергии, накапливаемой за определенный промежуток времени, не зависящий от интенсивности света.

Появление фотоэлектронов происходит сразу после освещения катода. Данная модель не давала четкого представления нахождения красной границы фотоэффекта. Волновая теория света не могла дать объяснение независимости энергии фотоэлектронов от интенсивности светового потока и пропорциональности максимальной кинетической энергии частоты света. Поэтому электромагнитная теория была не способна объяснить эти изменения.

В 1905 году А. Эйнштейн дает теоретическое объяснение наблюдаемых закономерностей фотоэффекта, основываясь на гипотезе М. Планка.

Постоянная Планка. Уравнение Эйнштейна

Излучение и поглощение света происходит определенными порциями, где она определяется формулой E = h ν , h принято называть постоянной Планка.

Основной шаг в развитии квантовых представлений относится к Эйнштейну:

Свет обладает прерывистой структурой. Электромагнитная волна состоит из порций, называемых, кварками, спустя время которые зафиксировали как фотоны.

После взаимодействия с веществом фотон передает свою энергию h ν одному электрону, одна часть которой рассеивается при столкновениях с атомами, а другая затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого ему необходимо совершить работу выхода А , зависящую от свойств материала катода.

Наибольшую кинетическую энергию, вылетевшую из катода фотоэлектроном, определяют законом сохранения энергии:

m ν 2 2 m a x = e U e = h ν — A .

Формула получила название уравнения Эйнштейна для фотоэффекта.

Благодаря ему, закономерности внешнего явления фотоэффекта могут быть объяснены.

Линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта следуют из данного выражения.

Общее количество фотоэлектронов, которые покидают поверхность катода в течение 1 с , пропорционально числу фотонов, падающих на поверхность. Можно сделать вывод, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

По уравнению фотоэффекта Эйнштейна тангенс угла наклона прямой, выражающий зависимость запирающего потенциала U з от частоты ν , равняется отношению постоянной Планка h к заряду электрона e :

Формула позволяет вычислить значение постоянной Планка.

Р. Милликенн проводил измерения в 1914 году, после чего смог определить работу выхода А :

A = h ν m i n = h c λ к р ,

где c – скорость света, λ к р – длина волны, которая соответствует красной границе фотоэффекта.

Большинство металлов имеет работу выхода А и составляет несколько электрон-вольт ( 1 э В = 1 , 602 · 10 – 19 Д ж ) .

Квантовая физика использует электрон-вольт как энергетическую единицу измерения. Тогда значение постоянной Планка равняется

h = 4 , 136 · 10 — 15 э В · с .

Наименьшая работа выхода наблюдается у щелочных элементов. Натрий при A = 1 , 9 э В соответствует красной границе фотоэффекта λ к р ≈ 680 н м . Такие соединения применяют для создания катодов в фотоэлементах, используемых для регистрации видимого света.

Законы фотоэффекта говорят о том, что при пропускании и поглощении свет ведет себя подобно потоку частиц, называемых фотонами или световыми квантами.

Энергия фотонов записывается в виде формулы E = h ν .

При движении в вакууме фотон обладает скоростью с , а его масса m = 0 . Общее соотношение теории относительности, связывающее энергию, импульс и массу любой частицы, записывается как E 2 = m 2 c 4 + p 2 c 2 .

Отсюда следует, что фотон обладает импульсом, значит:

Можно сделать вывод, что учение о свете вернулось к представлениям о световых частицах – корпускулах. Но это не расценивается как возврат к корпускулярной теории Ньютона. В XX было известно о двойственной природе света. Когда он распространялся, то проявлялись его волновые свойства (интерференция, дифракция, поляризация), при его взаимодействии с веществом – корпускулярные, то есть явление фотоэффекта. Это и получило название корпускулярно-волнового дуализма.

Спустя время, данная теория была подтверждена у других элементарных частиц. Классическая физика не дает наглядную модель сочетаний волновых и корпускулярных свойств микрообъектов. Их движениями управляют законы квантовой механики. В основе этой науки лежит теория абсолютно черного тела, доказанная М. Планком, и квантовая, предложенная Эйнштейном.

Рисунок 5 . 2 . 4 . Модель фотоэффекта


источники:

http://pandia.ru/text/78/094/7744.php

http://zaochnik.com/spravochnik/fizika/kvantovaja-fizika/fotoeffekt-fotony/