Уравнение эйнштейна для фотоэффекта выражает собой

Уравнение эйнштейна для фотоэффекта выражает собой

Уравнение Эйнштейна для фотоэффекта выражает собой

1) закон сохранения импульса для падающего фотона и выбиваемого им электрона

2) закон сохранения электрического заряда для падающего фотона и выбиваемого электрона

3) закон сохранения энергии для падающего фотона и выбиваемого им электрона

4) все три перечисленных закона для падающего фотона и выбиваемого им электрона

Уравнение Эйнштейна выражается закон сохранения энергии: энергия фотона идет на работу выхода и сообщение фотоэлектрону кинетической энергии Верно утверждение 3.

Уравнение Эйнштейна для фотоэффекта.

Эйнштейн в 1905 г. дал объяснение фотоэффекта, развив идею Планка о преры­вающемся испускании света:

Исходя из заявления Эйнштейна, из явления фотоэффекта вытекает, что свет имеет прерывистую структуру: излученная порция световой энергии E = hv сохраняет свою ин­дивидуальность и далее. Поглотиться может лишь вся порция полностью. Эта порция имеет название фотона.

Если фотон передает электрону энергию hv, которая является больше или равной величине работы А по удале­нию электрона с поверхности металла, значит, электрон покидает поверхность этого металла. Разность между hv и А приводит к образованию кинетической энергии электрона. Следствие из закона сохранения энергии:

.

Эта формула является уравнением Эйнштейна, которое описывает каждый из законов фотоэффекта. Следствием из уравнения Эйнштейна является то, что кинетическая энергия электрона линейно зависит от частоты v и никак не зависит от интенсивности излучения. Так как общее число электронов n, которые покидают по­верхность металла, пропорционально числу падающих фотонов, значит, величина n оказывается пропорциональной интенсивности падающего излучения.

Красную границу фотоэффекта можно получить из , если скорость электрона, который покидает металл, приравнять к нулю:

,

то есть красная граница фотоэффекта зависит лишь от работы выхода А. С учетом того, что , из получаем значение предельной длины волны:

.

При длинах волн, больших λmin, то есть расположенных ближе к красным волнам, фотоэффект не наблюдается. Именно поэтому и появилось название предельной длины волны λminкрасная граница фотоэффекта.

Уравнение эйнштейна для фотоэффекта выражает собой

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию A , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решетки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

А если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряженность электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Но эксперимент показывает иное.

Откуда берется красная граница фотоэффекта? чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растет и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жесткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно в момент включения освещения. Между тем, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придется их раскачивать до заданной амплитуды. Выглядит опять-таки логично, но опыт единственный критерий истины в физике! этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашел простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлек к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошел еще дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями квантами, обладающими энергией E = h ν .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц фотонов, движущихся в вакууме со скоростью c . Каждый фотон монохроматического света, имеющего частоту, несет энергию h ν .

Фотоны могут обмениваться энергией и импульсом с частицами вещества; в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передает ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идет энергия фотона h ν при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода A по извлечению электрона из вещества и на придание электрону кинетической энергии mv 2 /2: h ν = A + mv 2 /2 (4)

Слагаемое mv 2 /2 оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадет на свободный электрон в поверхностном слое металла тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придется затрачивать дополнительную энергию на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности. Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта:

1. число выбиваемых электронов пропорционально числу поглощенных фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает. Стало быть, пропорционально возрастает число поглощенных фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию: mv 2 /2 = h ν — A

Действительно, кинетическая энергия выбитых электронов линейно растет с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку ( A / h ; 0). Этим полностью объясняется ход графика на рис. 3.

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: h ν > A . Наименьшая частота ν 0, определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта ν 0 = A / h определяется только работой выхода, т. е. зависит лишь от вещества облучаемой поверхности катода.

Уравнение Эйнштейна (4) дает возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение h , в точности совпадающее с (2). Такое совпадение результатов двух независимых экспериментов на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике теории микромира, построение которой продолжается и сегодня.


источники:

http://www.calc.ru/Uravneniye-Eynshteyna-Dlya-Fotoeffekta.html

http://www.sites.google.com/site/opatpofizike/teoria/teoria-11-klass/teoria-fotoeffekta-uravnenie-ejnstejna-dla-fotoeffekta