Уравнение фильтрования при постоянной разности давлений

Уравнение фильтрования при постоянных разности давлений и скорости

где V — объем фильтрата, м 3 ; S — поверхность фильтрования, м 2 ; t — продолжительность фильтрования, с; Р — разность давлений, н/м 2 ; m — вязкость жидкой фазы суспензии, н*с/м 2 ; Rос — сопротивление слоя осадка, м -1 ; Rф.п. — сопротивление фильтровальной перегородки, м -1 .

где rо — удельное сопротивление осадка, м -2 ; hос= xо*V/S, где xо — отношение объема отфильтрованного осадка к объему полученного фильтрата.

Тогда Rос = rо*xо*V/S и уравнение фильтрования можно представить в виде:

Приняв сопротивление ФП =0, можно записать:

rо = DP/ m*hосW, т.е. удельное сопротивление осадка числено равно разности давлений, необходимой для того, чтобы жидкая фаза фильтровалась с определенной скоростью через слой осадка единичной толщины.

Нередко вместо xо используют величину хв (отношение массы осадка к объему фильтрата), а вместо rо применяют rв — удельное массовое сопротивление осадка, т.е. удельное сопротивление потоку, оказываемое равномерным слоем частиц, отложившихся на ФП в количестве 1 кг/м 2 . Для перехода от объемных единиц к массовым достаточно заменить в уравнении rоxо на rвxв.

Разделяя переменные V (объем фильтрата) и t (время) и интегрируя уравнение фильтрования в пределах: V(0,V), t(0,t) получим:

Уравнение показывает зависимость времени фильтрования от объема фильтрата или наоборот. Оно применимо для сжимаемых и несжимаемых осадков, т.к. при Р=const, rо и xо также постоянны.

Производную dV/dt заменяем конечным отношением V/t и получим:

W = V/St = DP/ m( rо*xо*V/S + Rфп) и далее можем записать:

т.е. при W = const DР возрастает со временем. Это уравнение работает для несжимаемых осадков. Для сжимаемых rо=f(P).

Такой вид фильтрования осуществим, если чистая жидкость фильтруется через слой осадка постоянной толщины и при постоянном DР. Таким процессом является промывка осадка на фильтре способом вытеснения, когда над осадком находится слой промывной жидкости. Уравнение имеет вид:

Центрифугирование — это процесс механического разделения жидких неоднородных систем в поле центробежных сил, возникающих при сообщении замкнутому объему жидкости вращательного движения. Движущей силой процесса является разность центробежных сил, действующих на частицы твердой фазы, и на окружающую их жидкость: , где — угловая скорость вращения частицы (рад/с), — радиус вращения, — масса частицы и вытесняемой ею жидкости. Центрифуги применяют для разделения суспензий в промышленности не менее широко, чем фильтры. В практике центрифугирования используются два основных способа разделения суспензий: центробежное фильтрование и центробежное осаждение, см. рис. 4.11. Соответственно по физической сущности реализуемого процесса центрифуги подразделяют на фильтрующие и осадительные (отстойные). Рабочим органом центрифуги является ротор (барабан), закрепленный на вращающемся валу, во внутреннюю полость которого подается суспензия. Ротор состоит из кольцевой крышки, цилиндрической или конической обечайки, плоского или выпуклого днища. По расположению его вала центрифуги делятся на вертикальные и горизонтальные.

Неоднородные системы разделения

Батарейный циклон представляет собой пылеулавливающий аппарат, составленный из большого количества параллельно установленных элементов, объединенных в одном корпусе и имеющих общие подвод и отвод газов, а также сборный бункер.

Батарейные циклоны могут быть составлены из прямоточных циклонных элементов.

Батарейные циклоны с обычными элементами (рис. 9). Очищаемый газ через входной патрубок 1 поступает в распределительную камеру 2, откуда он входит в кольцевые зазоры между корпусами элементов3 и входными трубами 4. В этих зазорах установлены направляющие аппараты 5, закручивающие поток газов. Уловленная зола или пыль через пылеотводящие отверстия 6 поступает в общий бункер 7. Обеспыленный газ через выхлопные трубы поступает в камеру очищенного газа 8. Для крепления корпусов элементов и выхлопных труб служат соответственно нижняя и верхняя 9 опорные решетки. Весь аппарат монтируется на опорном поясе 10.

Полые и насадочные скрубберы. Простейшими аппаратами для мокрой очистки и одновременного охлаждения газов являются полые скрубберы – вертикальные колонны круглого (чаще) или прямоугольного сечения. Запыленный газ движется через скруббер снизу вверх со скоростью не более 0,8-1,5 м/с (для уменьшения брызгоуноса) и орошается водой, разбрызгиваемой через форсунки, установленные по всей высоте колонны. При этом все поперечное сечение скруббера перекрывается распыляемой жидкостью. Жидкость с уловленной пылью выводится снизу из конического днища. Расход жидкости на улов пыли составляет от 3 до 10 м 3 на 1000 м 3 газа. Степень улавливания пыли тем больше, чем больше расход орошающей жидкости, запыленность газа и размер частиц пыли, но не превышает 60 – 75%. Гидравлическое сопротивление невелико и составляет 100 – 250 Па.

В насадочных скрубберах объем колонны заполняется насадкой, которая сверху орошается промывной жидкостью. Жидкость стекает по насадке в виде пленки. Противотоком к ней движется газ, подаваемый в нижнюю часть колонны. Смоченная поверхность насадки и является поверхностью контакта фаз. Вода вместе со шламом поступает в коническое днище колонны и через патрубок выводится через него. Для удобства чистки насадки от загрязнения в насадочных скрубберах применяют регулярную насадку с крупными элементами или хордовую насадку, сделанную из деревянных (или другого материала) брусьев.

Расход жидкости в насадочных скрубберах составляет 1,5 – 6 м 3 на 1000 м 3 газа. Гидравлическое сопротивление их (200-300 Па), несколько больше, чем полых скрубберов. Степень улова пыли в насадочных скрубберах зависит от тех же факторов, что и в полых. Улавливается до 70 % частиц размером 2-5 мкм, более крупная пыль улавливается на 80-90%. Частицы 1 мкм и меньше улавливаются плохо.

Центробежные скрубберы. Процесс мокрой очистки может быть интенсифицирован при проведении его в поле центробежных сил. Такую очистку осуществляют в циклонах, стенки которых смачиваются непрерывно стекающей пленкой жидкости (центробежные скрубберы). В центробежном скруббере (рис. 9.23) запыленный газ поступает в цилиндрический корпус 1 через входной патрубок 2, расположенный тангенциально, и приобретает вращательное движение. Стенки корпуса орошаются через сопла 3 водой, которая пленкой стекает по внутренней поверхности колонны сверху вниз. Взвешенные в поднимающемся по винтовой линии потоке газа частицы пыли под действием центробежной силы отбрасываются к стенкам скруббера, смачиваются водяной пленкой и уносятся с водой через коническое днище 4. Очищенный и одновременно охлажденный газ удаляется через выходной патрубок 5. В центробежных скрубберах достигается более высокая степень очистки, чем в полых и насадочных. Она превышает 95% для частиц

Рис. 9.23. Центробежный скруббер:

1 – корпус; 2 – входной патрубок; 3 – сопла; 4 – коническое днище; 5 – выходной патрубок

пыли 5-30 мкм и составляет 85-90% для частиц размером 2-5 мкм. Расход жидкости в них составляет 0,1-0,2 м 3 на 1000 м 3 очищаемого газа. Гидравлическое сопротивление зависит от скорости газа во входном патрубке и диаметра скруббера. При скорости газа при входе в скруббер 20 м/с оно составляет 500-800 Па.

Барботажные (пенные) пылеуловители. Их используют для очистки сильно запыленных газов. В таких аппаратах жидкость, взаимодействующая с газом, приводится в состояние подвижной пены, что обеспечивает большую поверхность контакта фаз. Тарелки в пенных аппаратах делаются провальными, т.е. через отверстия тарелки одновременно проходят газ (снизу вверх) и жидкость (сверху вниз).

На рис. 9.24 приведена схема барботажного пенного пыле-уловителя. В корпусе 1 круглого или прямоугольного сечения установлена перфорированная тарелка 3. Вода или другая жидкость через приемную коробку 2 поступает на тарелку, а загрязненный газ подается в аппарат через диффузор 4. Проходя через отверстия тарелки, газ барботирует сквозь жидкость и превращает ее в слой подвижной пены 6. В слое пены пыль поглощается жидкостью, основная часть которой (

80%) удаляется вместе с пеной (пульпа) через порог 7 и сливную коробку (8). Оставшаяся часть жидкости (

20%) сливается через отверстия в тарелке и улавливает в подтарелочном пространстве более крупные частицы пыли. Образующаяся при этом пульпа стекает в бункер 5 и отводится из него через нижний патрубок. Очищенный газ выходит из аппарата через верхний патрубок. В таких аппаратах применяют также несколько перфорированных тарелок, установленных последовательно по высоте аппарата, число их зависит от требуемой степени очистки газа. Расход жидкости составляет 0,2-0,3 м 3 на 1000 м 3 газа. Гидравлическое сопротивление однотарелочных аппаратов составляет 500-1000 Па. Частицы пыли размером более 20-30 мкм улавливаются в барботажных аппаратах практически полностью. Частицы размером 5 мкм улавливаются на 80-90%, частицы меньших размеров улавливаются значительно хуже. При работе барботажных пылеуловителей недопустимы значительные колебания расхода газа, так как это может привести к нарушению пенного режима и загрязнению отверстий тарелки.

Рис. 9.24. Барботажный (пенный) пылеуловитель:

1 – корпус; 2 – приемная коробка; 3 – тарелка; 4 – диффузор для входа запыленного газа; 5 – бункер; 6 – подвижная пена; 7 – порог; 8 – сливная коробка

Скрубберы Вентури. Основным устройством для улова пыли из газа в этих аппаратах является труба Вентури, на основе которой работают и струйные насосы (см. раздел «Динамические насосы»). На рис. 9.25 приведена схема устройства очистки газа со скруббером Вентури.

Рис. 9.25. Установка очистки газа со скруббером Вентури: 1 – труба Вентури (1а – конфузор, 1б – диффузор); 2 – распределительное устройство для подачи воды; 3 – циклонный сепаратор; 4 – отстойник для суспензии; 5 – промежуточная емкость; 6 – насос

Запыленный газ поступает в трубу Вентури 1, в конфузоре которой расположен распределитель воды 2. В горловине трубы скорость газа достигает порядка 100 м/с, что обеспечивает высокую турбулентность газового потока. Подаваемая в этот поток газа вода распыляется на мелкие капли и улавливает частицы пыли из газа. При этом происходит коагуляция твердых частиц (их слипание). Из горловины газо-жидкостный поток с уловленными частицами пыли поступает в диффузор 1б, где скорость газа снижается до 20-25 м/с. В диффузоре капли жидкости коалесцируют (сливаются) и уносятся потоком газа в циклонный сепаратор 3. Здесь капли жидкости под действием центробежной силы отделяются от газа и в виде суспензии стекают в коническое днище, откуда суспензия поступает в отстойник 4. В отстойнике твердые частицы осаждаются образуя шлам, который отводится из отстойника через нижний патрубок. Осветленная вода поступает в промежуточную емкость 5. Туда же поступает в небольшом количестве и свежая вода, которая компенсирует потери воды со шламом. Из емкости 5 насосом 6 вода вновь подается в трубу Вентури. Такая схема установки со скруббером Вентури позволяет достигнуть значительной экономии промывной воды.

Для эффективной работы скруббера Вентури необходимо очищаемый газ предварительно охладить и насытить водяными парами, например в полом скруббере. В противном случае в трубе Вентури будет происходить испарение мелких капель жидкости, которые наиболее активно взаимодействуют с частицами пыли.

Расход воды в скрубберах Вентури относительно высок (0,7-3 м 3 на 1000 м 3 газа), высоко и гидравлическое сопротивление (3000- 7000 Па). В скрубберах Вентури улавливаются весьма мелкие частицы пыли: на 95-99% – твердые частицы размером 1-2 мкм и капли тумана диаметром 0,2-1 мкм. Такие аппараты применяют для очистки газов с преимущественным содержанием фракций мелких частиц.

Расчет аппаратов мокрой очистки газов. В большинстве случаев степень очистки газов определяют по эмпирическим зависимостям, характерным для аппаратов соответствующего типа. Если степень очистки hзадана, то по уравнениям материального баланса рассчитывают концентрацию пыли в очищенном газе и расход уловленной пыли:

, (9.56) , (9.57)

где сис, сkконцентрации пыли соответственно в исходном и в очищенном газе (конечная), кг/м 3 ; Gпмассовый расход уловленной пыли, кг/с; – объемный расход газа, м 3 /с. Далее, исходя из типа аппарата и условий его работы, по эмпирическим зависимостям рассчитывают расход промывной жидкости и основные размеры аппарата.

Барботажный (пенный) пылеуловитель

Барботажные пылеуловители используют для очистки сильно запылённых газов. В таких аппаратах жидкость, взаимодействующая с газом, приводится в состояние подвижной пены, что обеспечивает большую поверхность контакта фаз. Барботажный пылеуловитель (рис. 70) выполняется в виде цилиндрического или прямоугольного корпуса, в котором находится перфорированная тарелка. Промывная жидкость подаётся на тарелку через боковой штуцер, а в нижнюю часть аппарата подаётся запылённый газ, который проходит через отверстия в тарелке и барботирует через жидкость, превращая её в слой подвижной пены. В слое пены пыль поглощается жидкостью, часть которой удаляется из аппарата через переливной порог, а другая часть сливается через отверстия в тарелке, промывая их и улавливая в подтарелочном пространстве крупные частицы пыли. Образующаяся суспензия выводится через штуцер в коническом днище аппарата. Обычно для очистки газов достаточно одной тарелки, но при большом пылесодержании и высоких требованиях к качеству очистки возможно использование аппаратов с двумя-тремя тарелками.

Расход жидкости в барботажных пылеуловителях выше, чем в центробежных скрубберах (0,2-0,3 м 3 на 1000 м 3 очищаемого газа). Также выше гидравлическое сопротивление (500-1000 Па для однотарелочных аппаратов). При работе пенных пылеуловителей недопустимы значительные колебания нагрузки, так как это может привести к нарушению пенного режима работы. Увлажнение очищаемого воздуха и образование суспензии, требующей дальнейшего разделения или утилизации, также относятся к недостаткам пенных пылеуловителей.

Барботажные пылеуловители хорошо справляются с очисткой сильно загрязнённых газов. При этом пыль с частицами размером 20-30 мкм улавливается практически полностью, частицы размером 5 мкм улавливается на 80-90 %.

Рис. 70. Барботажный (пенный) пылеуловитель:

1 – корпус, 2 – перфорированная тарелка, 3 – переливной порог, 4 – барботажный слой

Трубчатый электрофильтр (рис. 72) представляет собой аппарат, в котором расположены осадительные электроды, выполненные в виде труб диаметром 150-300 мм и длиной 3-4 м. По оси труб проходят коронирующие электроды из проволоки, которые подвешены к раме. Запылённый газ подаётся в нижнюю часть аппарата и движется вверх внутри труб-электродов. Под действием электростатического поля взвешенные в газе частицы пыли поляризуются и оседают на электродах. С электродов пыль удаляют путём их встряхивания, при

Рис. 71. Рукавный фильтр (а) и участок рукава с кольцами жёсткости (б):

1 – рукава, 2 – трубная решётка, 3 – разгрузочный бункер, 4 – устройство для встряхивания рукавов

этом пыль ссыпается в бункер и выводится через нижний штуцер. Очищенный газ выходит из аппарата сверху

Конструкции фильтровального оборудования весьма разнообразны. По режиму работы различают фильтры периодического и непрерывного действия. Для процессов фильтрования суспензий, частицы которых значительно закупоривают поры фильтрующей перегородки, используется периодическая фильтрация с очисткой (регенерацией) перегородки после каждой стадии фильтрации. Фильтры непрерывного действия работают,как правило,при постоянной разности давлений по обе стороны от фильтрующейперегородки.

По способу создания разности давлений различают вакуум-фильтры, в которых со стороны разделяемой суспензии давление атмосферное, а с другой стороны перегородки поддерживается разрежение, и фильтры, работающиепод избыточным давлением, создаваемым со стороны суспензии, при этом со стороны фильтрата давление обычно бывает атмосферное.

Существенная особенность вакуум-фильтров любой конструкции – ограниченность разности давлений DP = P1 – P2 значением,не превышающим одной атмосферы (0,1 МПа), посколькуP1 = 0,1 МПа, а давление P2 лишь в пределе может стремиться к нулевому значению; на практике P2 обычно не бывает менее 0,005 МПа.В фильтрах, работающих с избыточным давлением, значениеDPможет достигать 10–12 атм (1,0–1,2 МПа), что на порядок увеличивает скорость фильтрации по сравнению с вакуум-фильтрами,но зато требует соответствующего упрочнения и усложнения конструкциитакого аппарата.

Простейший фильтр периодического действия, так называемый нутч-фильтр, работающий чаще всего за счет создаваемого под перегородкой вакуума, изображен на рис. 6, где лишь не показана жесткая металлическая решетка под фильтрующей перегородкой.

Р ис. 9. Фильтр-пресс периоди-ческого действия:

1 – рамы; 2 – плиты; 3 – фильтрующая ткань; 4 – вертикальные канавки для стекания фильтрата; С – подача суспензии под избыточным давлением; Ф – фильтрат

Как и при любой периоди-ческой фильтрации, после ос-новного процесса фильтрования(или после также периодическойпромывки осадка, если она необходима) производится выгрузка осадка.В нутч-фильтрах эта операция совершается сверху вручную, поэтому такие фильтры используются в технологическихлиниях небольшой производительности по разделяемой суспензии.

Еще одна конструкция для периодической фильтрации, работающая под избыточным давлением до 1,0–1,2 МПа – это так называемый фильтрпресс, показанный на рис. 9.

Аппарат состоит из чередующихся рам 1 и плит 2, плотно прижимаемых друг к другу с помощью ручного или гидравлического устройства. Между каждой парой плита – рама зажата фильтрующая ткань 3 (салфетка). В верхних частях плит и рам имеются отверстия, образующие при сборке всех плит и рам сплошной канал, по которому под избыточным давлением в полые объемы рам1подается исходная суспензия.

По действием избыточного давления сплошная жидкая фаза фильтруется через салфетки 3и оказывается в вертикальных канавках4, по которым жидкость стекает вниз и выводится через отверстия в нижних частях плит2. Твердая фаза откладывается на каждой салфетке в виде вертикального слоя осадка, толщина которого непрерывно увеличивается. Фильтрация прекращается, когда каждая пара слоев заполнит весь объем рамы.

Скорость фильтрации и количество полученного фильтрата описываются уравнениями периодической фильтрации (8) и(11).

Промывка осадка, заполнившего все рамы фильтр-пресса,может производиться при подаче промывной жидкости через тот же канал, по которому на стадии фильтрации подавалась суспензия; при этом промывная жидкость выходит через те же отверстия в нижней части плит.

Преимущества фильтр-прессов – значительная поверхность фильтрования, приходящаяся на единицу объема конструкции, возможность

Рис. 10. Барабанный вакуум-фильтр непрерывного действия:

1 – барабан с перфорированной цилиндрической поверхностью; 2 – фильтровальная ткань; 3 – герметично отделенные друг от друга секторы внутри барабана; 4 – выводные каналы из пространства секторов; 5 – корыто для исходной суспензии; 6 – суспензия; 7 – неподвижная часть распределительной головки; 8 – слой осадка; 9 – нож для снятия осадка; 10 – диспергатор промывной жидкости (дуршлаг); Ф – фильтрат; ОС – осадок; ПЖ – промывная жидкость; а, б, в, г и д – фигурные отверстия для вывода фильтрата, отсоса жидкой фазы из влажного осадка, вывода промывной жидкости (и поддержания разрежения внутри соответствующих секторов), пропарки и отдувки осадка соответственно

использования высоких избыточных давлений и отсутствие движущихся частей. Недостатки – ручное обслуживание, низкое качество промывки осадка и быстрый износ фильтровальной ткани в результате частой разборки и сборки всей конструкции.

Наиболее распространенной конструкцией фильтра непрерывного действия является барабанный вакуум-фильтр (рис. 10), основным элементом которого является полый барабан 1 с перфорированной цилиндрической поверхностью, покрытой фильтровальной тканью 2. Внутренний объем барабана разделен на несколько секторов 3, каждый из которых имеет свой вывод 4 внутри вращающейся вместе с барабаном центральной его части. Нижняя часть медленно вращающегося барабана постоянно погружена в корыто 5 с суспензией6. Внутри тех секторов, наружная цилиндрическая поверхность которых погружена в суспензию, поддерживается давление ниже атмосферного. Поэтому жидкая фаза суспензии фильтруется через ткань на барабане, попадает внутрь соответствующих секторов и непрерывно отводится через отверстия неподвижной распределительной головки 7 и нижний фигурный вырез а; фильтрат собирается в сборник; вакуум создается насосом (на рисунке не показаны). На наружной поверхности фильтровальной ткани откладывается слой осадка8, непрерывно срезаемый ножом9, который плотно прижимается к ткани.

Промывка осадка может осуществляться в верхней части барабана с помощью промывной жидкости, подаваемой через распределитель 10. Использованная промывная жидкость отводится через канал, ведущий из объема верхнего сектора и соединяющийся с фигурным вырезомвв распределительной головке7(см. вид поББ); это же отверстие соединяется с источником разрежения и сборником промывной жидкости.

Если осадок перед его удалением с поверхности ножом 9требует предварительной отдувки воздухом или пропарки паром, а между стадиями фильтрации и промывки – отсасывания оставшейся в осадке сплошной фазы, то эти вспомогательные операции могут быть проведены с помощью отверстийг,дибв распределительной головке7соответственно.

Барабанные вакуум-фильтры имеют диаметр барабана до 2,5 м,длину – до 4 м, частота вращения барабана 1–10 мин –1 .

Преимущества барабанных фильтров – относительная простота конструкции, удобство обслуживания, непрерывность работы, хорошие условия промывки осадка. Недостатки – значительная металлоемкость конструкции, небольшая движущая разность статических давлений, всегда меньшая атмосферного давления (DP ¢ льшую движущую силу процесса по сравнению с вакуум-фильтрацией, но и значительно повышает требования к механической прочности конструкции наружного кожуха.

У дельная поверхность фильтрации на единицу объема конструкции может быть увеличена в 10 и более раз вдисковых вакуум-фильтрах (рис. 11), где фильтрующей поверхностью являются плоские перфорированные поверхности дисков1, на которые натягивается фильтрующая ткань2. Принцип работы дискового вакуум-фильтра и его распределительной головки 3 аналогичен принципу работы

Рис. 11. Дисковый вакуум-фильтр непрерывного действия:

1 – перфорированная поверхность дисков; 2 – фильтрующая ткань; 3 – неподвижная часть распределительной головки; 4 – корыто для фильт- руемой суспензии; 5 – суспензия

барабанного фильтра. По сравнению с барабанным фильтром дисковому присущи некоторые недостатки. Так, вертикально расположенные слои осадка практически невозможно промывать; трудно регулировать работу большого числа ножей, снимающих осадок с двух поверхностей каждого диска.

В ленточном вакуум-фильтре поверхностью фильтрации является плоская горизонтальная поверхность пористой, покрытой фильтрующей тканью бесконечной ленты, под которой создается разрежение. На горизонтальной поверхности легко производятся последовательные операции фильтрования и промывки; осадок сбрасывается с фильтрующей поверхности в месте ее перегиба за счет собственного веса либо относительно простоснимается ножом. Ширина ленты достигает 3 м, а ее длина – 9 м. Преимущество ленточного фильтра – отсутствие распределительной головки, а существенный недостаток – большие габариты по отношению к полезной поверхности фильтрации.

Карусельный фильтр непрерывного действия, имеющий плоские горизонтальные поверхности фильтрования, удобные для промывки осадков, по существу представляет собой несколько нутч-фильтров (рис. 6), перемещающихся по кругу. В каждом из нутчей выполняется та или иная операция: фильтрация, просушка, промывка, пропарка и отдувка осадка; после этого каждый из фильтров переворачивается и осадок под действием собственного веса падает в приемник; затем производятся операции по регенерации фильтрующей ткани, т. е. ее промывка, пропарка и сушка. Последовательность операций многократно повторяется. Значительная громоздкость карусельных фильтров компенсируется удобством проведения отдельных операций.

Ф ильтрационнаяочистка газов от мелкодисперсной пыли производится в рукавных фильтрах (рис. 12). Фильтрующаяткань 2 в форме цилиндра (рукава) надета на каркас жесткости 3; несколько десятков таких элементов помещены в корпус1аппарата. Запыленный

Рис. 2.12. Рукавный фильтр для очистки запыленных газов:

1 – корпус; 2 – фильтрующая ткань; 3 – гибкий каркас жесткости; 4 – слой пыли; 5 – рычаг встряхивающего устройства; 6 – секторный затвор на линии выгрузки пыли

газ (Г + Т) фильтруется через ткань рукавов под действиемразрежения, создаваемого с помощью вентилятора, устанавливаемого после фильтра. Слои пыли откладываются на наружной поверхности рукавов, а очищенный от дисперсной твердой фазы газ из внутренних объемов рукавов через общий коллектор отводится из аппарата. Слои пыли удерживаются на наружных поверхностях фильтровальных рукавов той же разностью давлений, под действием которой происходит и процессфильтрования газа через слой пыли и фильтрующую ткань.

Слои пыли удаляют периодическим встряхиванием рукавов с помощью рычажного механизма 5. По коническому днищу аппарата пыль под действием собственного веса перемещается к центру, откуда выводится с помощью секторного питателя6.

Принцип действия аппаратов для очистки газов фильтрованием тот же, что и для разделения суспензий. Однако при фильтровании газов в подавляющем большинстве случаев происходит закупоривание пор фильтровальной перегородки частицами. В результате закупоривания пор гидравлическое сопротивление фильтра возрастает, а также несколько повышается степень очистки.

Рукавный фильтр (рис. 71) представляет собой корпус, в котором находятся тканевые мешки (рукава). Нижние открытые концы рукавов закреплены на патрубках трубной решётки. Для сохранения формы рукава снабжены кольцами жёсткости. Верхние закрытые концы рукавов подвешены на общей раме. Запылённый газ вводится в аппарат через штуцер и попадает внутрь рукавов. Проходя через ткань, из которой сделаны рукава, газ очищается от пыли и выходит из аппарата через верхний штуцер. Пыль осаждается на внутренней поверхности и в порах ткани. Для удаления пыли из рукавов их встряхивают с помощью специального устройства, пыль высыпается из рукавов в бункер и выводится через нижний штуцер. Кроме того рукава продувают воздухом, подаваемым с их наружной стороны.

Для изготовления рукавов обычно используют хлопчатобумажные и шерстяные ткани, что ограничивает возможную температуру газа. К недостаткам рукавных фильтров относятся также высокое гидродинамическое сопротивление, сравнительно быстрый износ ткани и непригодность для очистки влажных газов, поскольку намокание ткани приводит к закупориванию пор.

Подвесные центрифуги. Эти центрифуги также относятся к числу нормальных отстойных или фильтрующих центрифуг периодического действия с вертикальным ротором и устройством для выгрузки осадка вручную.

На рис. V-29 показана подвесная отстойная центрифуга с нижней выгрузкой осадка. Исходная суспензия подается по трубопроводу 1 в ротор 2 со сплошными стенками, укрепленный на нижнем конце вала 3. Верхний конец вала имеет коническую или шаровую опору (часто снабженную резиновой прокладкой) и приводится в действие непосредственно соединенным с ним электродвигателем. Твердая фаза суспензии, поскольку ее плотность больше плотности жидкой фазы, отбрасывается под действием центробежной силы к стенкам ротора и осаждается на них. Жидкая фаза располагается в виде кольцевого слоя ближе к оси ротора и по мере разделения вновь поступающих порций суспензии переливается через верхний край ротора в пространство между ним и неподвижным кожухом 4. Жидкость удаляется из центрифуги через штуцер 5. Для выгрузки осадка поднимают на цепи коническую крышку 6 и проталкивают его вручную между ребрами 7, которые служат для соединения ротора с валом.

Рис. V-29. Подвесная центрифуга:

1— трубопровод для подачи суспензии; 2 — ротор со сплошными стенками; 3 — вал; 4 — неподвижный кожух; 5 — штуцер для удаления жидкости; 6 — коническая крышка; 7 — соединительные ребра.

Подвесные отстойные центрифуги предназначены для разделения тонкодисперсных суспензий небольшой концентрации, что позволяет подавать суспензию во вращающийся ротор непрерывно до получения слоя осадка достаточной толщины.

В подвесных фильтрующих центрифугах удаление осадка из ротора облегчено и поэтому их используют для проведения коротких процессов центрифугирования.

Современные подвесные центрифуги полностью автоматизированы и имеют программное’ управление. Достоинством этих центрифуг является допустимость некоторой вибрации ротора. Кроме того, в них предотвращается попадание на опору и привод агрессивных жидкостей.

В настоящее время подвесные центрифуги с выгрузкой осадка вручную постепенно заменяются центрифугами более совершенных конструкций.

В подвесных саморазгружающихся центрифугах нижняя часть ротора имеет коническую форму, причем угол наклона ее стенок больше угла естественного откоса получаемого осадка. При таком устройстве ротора осадок сползает с его стенок при остановке центрифуги.

Для предотвращения вибраций, возникающих в результате неравномерной загрузки ротора в подвесных центрифугах, используют кольцевой клапан, через который поступающая суспензия распределяется равномерно по всему периметру ротора. Для облегчения выгрузки осадка из подвесных центрифуг иногда применяются скребки, срезающие осадок со стенок ротора при пониженной скорости его вращения.

Горизонтальные центрифуги с ножевым устройством для удаления осадка. Центрифуги такой конструкции являются нормальными отстойными или фильтрующими центрифугами периодического действия с автоматизированным управлением.

В горизонтальной фильтрующей центрифуге с ножевым устройством (рис. V-30) операции загрузки суспензии, центрифугирования, промывки, механической сушки осадка и его разгрузки выполняются автоматически. Центрифуга управляется электрогидравлическим автоматом, позволяющим по толщине слоя осадка контролировать степень заполнения ротора.

Рис. V-30. Горизонтальная центрифуга с ножевым устройством для удаления осадка:

1— перфорированный ротор; 2 — труба для подачи суспензии; 3 — кожух; 4 — штуцер для удаления фугата; 5 — нож; 6 — гидравлический цилиндр для подъема ножа: .7 — наклонный желоб; 8 — канал для удаления осадка.

Суспензия поступает в перфорированный ротор 1 по трубе 2 и равномерно распределяется в нем. На внутренней поверхности ротора расположены подкладочные сита, фильтровальная ткань и решетка, которая обеспечивает плотное прилегание сит к ротору во избежание их выпучивания, что недопустимо при ножевом съеме осадка. Ротор находится в литом кожухе 3, состоящем из нижней стационарной части и съемной крышки. Фугат удаляется из центрифуги через штуцер 4. Осадок срезается ножом 5 (который при вращении ротора поднимается при помощи гидравлического цилиндра 6), падает в направляющий наклонный желоб 7 и удаляется из центрифуги через канал 8. Описанная центрифуга предназначается для разделения средне- и грубодисперсных суспензий.

Центрифуги с пульсирующим поршнем для выгрузки осадка. Эти аппараты относятся к фильтрующим центрифугам непрерывного действия с горизонтальным ротором (рис. V-31). Суспензия по трубе 1 поступает в узкую часть конической воронки 2, вращающейся с такою же скоростью, как и перфорированный ротор 3, покрытый изнутри металлическим щелевым ситом 4. Суспензия перемещается по внутренней поверхности воронки и постепенно приобретает скорость, почти равную скорости вращения ротора. Затем суспензия отбрасывается через отверстия в воронке на внутреннюю поверхность сита в зоне перед поршнем 5. Под действием центробежной силы жидкая фаза проходит сквозь щели сита и удаляется из кожуха центрифуги по штуцеру 6. Твердая фаза задерживается на сите в виде осадка, который периодически перемещается к краю ротора при движении поршня вправо приблизительно на г /1о длины ротора. Таким образом, за каждый ход поршня из ротора удаляется количество осадка, соответствующее длине хода поршня; при этом поршень совершает 10—16 ходов в 1 мин. Осадок удаляется из кожуха через канал 7.

Основное уравнение фильтрования

Фильтрование воды, а особенно доведение воды до питьевого качества — задача сложная и интересная. Достаточно часто специалисты в области водоподготовки рассчитывают те или иные фильтрационные установки не с помощью формул, а используя эмпирические коэффициенты, основанные на усредненных данных.

Рис. 1. Вычисляем константы уравнения фильтрования A и В

Табл. 1. Исходные данные

Табл. 2. Данные для графика

Введение

Однако не стоит забывать, что для действительно тщательного и правильного выбора систем фильтрации необходимо воспользоваться соответствующими формулами, грамотно рассчитать все коэффициенты и константы, характерные для данной ситуации. Кроме того, нужно проверить свои расчеты на образце планируемой к очистке воды. Как известно, фильтрование представляет собой процесс отделения твердых веществ от жидкости, происходящий при разности давлений над фильтрующей средой и под ней.

Разность давлений по обе стороны фильтрованной перегородки создают разными способами. В рассматриваемом случае [1] под фильтрованной перегородкой непрерывно создается вакуум, так что процесс фильтрования происходит при постоянной разности давлений. При этом скорость процесса уменьшается в связи с увеличением сопротивления слоя осадка возрастающей толщины. Основное уравнение любого процесса базируется на принципе движущей силы.

В данном случае движущей силой будет являться разница давлений над и под фильтрующей перегородкой. Основной характеристикой процесса фильтрации является ее скорость. Скорость фильтрования определяется как количество жидкости, отфильтрованной за единицу времени через единицу поверхности и зависит от многих параметров: разности давлений, параметров исходной воды, типа перегородки. Все это учитывается в основном уравнении фильтрования.

Данная статья посвящена поиску констант для расчета сетчатых фильтров и мембран микрофильтрации по основному уравнению фильтрования.

Основное уравнение фильтрования

Основное уравнение фильтрования:

где V — количество фильтрата; S — поверхность фильтра; τ — время фильтрации; Δp — разница давлений, движущая сила процесса; μ — вязкость фильтрата; Rос — сопротивление слоя осадка; Rфп — сопротивление фильтровальной перегородки (считаем его величиной постоянной). Cопротивление слоя осадка:Roc = rohoc, (2)где ro — удельное объемное сопротивление слоя осадка (1/м2), т.е. сопротивление, оказываемое потоку жидкой фазы слоем осадка толщиной 1 м.

Для того, чтобы произвести расчет процесса с помощью основного уравнения фильтрования, нам необходимо знать Rос и Rфп, т.к. остальные данные обычно известны. Поскольку слой осадка hос — величина постоянно меняющаяся, для расчета Rос необходимо установить удельное сопротивление ro. Таким образом, задача сводится к вычислению ro и Rфп. Для этого проведем некоторые видоизменения уравнения (1).

Cопротивление слоя осадка

Мы рассматриваем постоянный состав фильтрата, поэтому количество осадка пропорционально объему фильтрата:

Интегрируем основное фильтрования

В связи с тем, что в общем случае в процессе фильтрования значения разности давлений и гидравлического сопротивления осадка с течением времени изменяются, переменную «скорость фильтрования» или «интенсивность» выражают в дифференциальной форме. Так как основное уравнение фильтрования имеет дифференциальный вид, т.е. описывает мгновенную скорость (объем воды, прошедший через единицу площади за единицу времени), а нас интересует получение зависимости для всего процесса в целом, необходимо проинтегрировать это уравнение. Для того, чтобы проинтегрировать уравнение (1), произведем следующие действия:

μdVRос + μdVRфп = ΔpSdt. (8)

Подставим уравнение (7) в уравнение (8), получим:

μdV(rоxоV) + μdVRфп = ΔpSdt. (9)

Проинтегрируем уравнение (9):

Строим график τ/V

Безусловно, существует несколько способов расчета Rфп и rо. В данной статье нам бы хотелось остановиться на наиболее интересном, геометрическом методе, основанном на построении графика зависимости времени, затраченного на фильтрование каждого следующего литра воды, от объема этой воды. Для того, чтобы найти Rфп и rо, необходимо полу чить зависимость τ/V. Для этого разделим уравнение (12) на дробь:

По экспериментальным данным построим график зависимости τ/V от V. Для этого воспользуемся исходными данными, которые были получены при фильтровании воды с содержанием железа 11,2 мг/л на установке фильтрования с использованием трековой мембраны, которые были получены в материале [1]. Исходные данные приведены в табл. 1. Произведем необходимые расчеты, и полученные данные занесем в табл. 2. Полученная зависимость показано на рис. 1 (линия 1).

Вычисляем константы уравнения фильтрования

Теперь найдем А и В (рис. 1). Для того, чтобы вычислить A, необходимо построить прямую, параллельную оси абсцисс OX и найти тангенс угла экспериментальной зависимости 1 и этой прямой. В данном случае А = 3,49.Для того, чтобы вычислить B, необходимо достроить нашу зависимость до пересечения с осью ординат OY и найти величину, которая отсекается на этой оси ординат. В данном случае В = 300.Используем полученные данные для вычисления констант фильтрования. Из уравнения (15):

Подставляя данные, получаем:

Заключение

Зная полученные величины и подставив их в основное уравнение фильтрования, можно рассчитать предельный слой осадка, время работы фильтра, а также другие не менее важные параметры работы фильтрационной установки, что играет решающую роль для правильного выбора фильтрующей установки.

Лекция 4. Фильтрование

4.1. ОБЩИЕ СВЕДЕНИЯ

Фильтрованием называется процесс разделения суспензий, пылей и туманов через пористую, так называемую фильтровальную перегородку, способную пропускать жидкость или газ, но задерживать взвешенные в них частицы (фильтрация в отличие от фильтрования — это движение жидкости или газа сквозь пористую среду, например просачивание воды сквозь грунт основания плотины). Фильтрование осуществляется под действием разности давлений перед фильтрующей перегородкой и после нее или в поле центробежных сил.

Интенсивность фильтрования зависит от качества суспензий, полученных на предыдущих стадиях технологического процесса: дисперсной системы с пониженным сопротивлением осадка, без смолистых, слизистых и коллоидных веществ.

При разделении неоднородных систем фильтрованием возникает необходимость выбора конструкции фильтра или фильтрующей центрифуги, фильтровальной перегородки, режима фильтрования.

В качестве фильтрующих материалов применяют зернистые материалы — песок, гравий для фильтрования воды, различные ткани, картон, сетки, пористые полимерные материалы, керамику и т. д.

По целевому назначению процесс фильтрования может быть очистным или продуктовым.

Очистное фильтрование применяют для разделения суспензий, очистки растворов от различного рода включений. В этом случае целевым продуктом является фильтрат. В пищевой промышленности очистное фильтрование используют при осветлении вина, виноматериалов, молока, пива и других продуктов.

Назначение продуктового фильтрования — выделение из суспензии диспергированных в них продуктов в виде осадка. Целевым продуктом является осадок. Примером такого фильтрования является разделение дрожжевых суспензий.

4.2. ВИДЫ ФИЛЬТРОВАНИЯ

При разделении суспензий в зависимости от вида фильтровальной перегородки и свойств самой суспензии фильтрование может происходить с образованием осадка на поверхности перегородки, с закупориванием пор фильтрующей перегородки и с тем и другим явлениями одновременно (промежуточный вид фильтрования).

Фильтрование с образованием осадка на поверхности фильтрующей перегородки имеет место, когда диаметр твердых частиц больше диаметра пор перегородки (рис. 4.1,а). Этот способ осуществим при концентрации твердой фазы суспензии более 1 мас. %, когда создаются благоприятные условия для образования сводиков над входами в поры фильтровальной перегородки. Образованию сводиков способствует увеличение скорости осаждения и концентрации твердой фазы в суспензии.

Фильтрование с закупориванием пор (рис. 4.1,б) происходит, когда твердые частицы проникают в поры фильтровальной перегородки. Закупоривание пор твердыми частицами наблюдается уже в начальный период процесса фильтрования, что снижает производительность фильтра. Для поддержания ее на должном уровне фильтр регенерируют, промывая обратным током жидкости либо прокаливая металлические фильтровальные перегородки.

Промежуточный вид фильтрования имеет место в случае одновременного закупоривания пор фильтровальной перегородки и отложения осадка на поверхности фильтровальной перегородки.

Рис. 4.1. Схемы фильтрования:

а — с образованием осадка; б — с закупориванием пор

Для повышения скорости фильтрования при разделении суспензий с небольшой концентрацией твердой фазы либо содержащих слизистые вещества фильтрование проводят в присутствии вспомогательных веществ, препятствующих закупориванию пор фильтровальной перегородки. Слой вспомогательного вещества наносят на фильтровальную перегородку перед фильтрованием суспензии. В качестве вспомогательных веществ используют тонкодисперсные угли, перлит, асбест, кизельгур, фиброфло, аксанит и другие материалы.

4.3. ДВИЖУЩАЯ СИЛА И СКОРОСТЬ ПРОЦЕССА

Движущая сила процесса фильтрования — разность давлений по обе стороны фильтровальной перегородки либо центробежная сила. Разность давлений можно получить разными способами: созданием избыточного давления над фильтровальной перегородкой либо подсоединением пространства под фильтровальной перегородкой к вакуумной линии. В этих случаях фильтрование происходит при постоянном перепаде давлений и скорость процесса прямо пропорциональна разности давлений и обратно пропорциональна сопротивлению осадка. Процесс описывается кинетическим уравнением

(4.1)

где: V – объем фильтрата, м3; F – площадь поверхности фильтрования, м2; — продолжительность фильтрования, с; — перепад давлений, Н/м2; — вязкость жидкой фазы, и Rф. п – сопротивление соответственно осадка и фильтровальной перегородки, м-1.

Примем, что при прохождении 1 м3 фильтрата образуется осадка, тогда

(4.2)

где: hо– высота слоя осадка, м.

Допустим, что сопротивление слоя осадка пропорционально его высоте:

(4.3)

где: rо – удельное сопротивление осадка, м-2.

Подставим полученное соотношение в уравнение (4.1)

(4.4)

Для начального момента фильтрования (V=0) Rф. n=p/(). Для случая фильтрования при из уравнения (4.4) после его интегрирования в пределах 0-V и 0- получим

(4.5)

Решая уравнение (4.5) относительно продолжительности фильтрования , получим

(4.6)

или с учетом выражения (4.2)

(4.7)

Таким образом, продолжительность фильтрования прямо пропорциональна квадрату объема полученного фильтрата.

Решая его же относительно удельной производительности фильтра (в м3/м2), получим

(4.8)

Для случая фильтрования при v= const из уравнения (4.4) получим

(4.9)

(4.10)

или

Таким образом, перепад давления возрастает с увеличением продолжительности фильтрования:

Удельная производительность фильтра (в м3/м2)

(4.11)

Фильтрование под действием центробежной силы проводят в фильтрующих центрифугах. Фильтрующая центрифуга в отличие от отстойной имеет перфорированный барабан, обтянутый внутри фильтровальной тканью. Суспензия под действием центробежной силы отбрасывается на фильтровальную ткань. Дисперсионная жидкая фаза фильтруется через ткань, фильтрат выводится из центрифуги, а взвешенные частицы задерживаются на фильтровальной ткани, образуя осадок.

Процесс фильтрования можно разделить на три периода: образование осадка, его уплотнение и отжим.

При центробежном фильтровании на массу элементарного кольца суспензии действует центробежная сила

dGц=dmr,

где: dm — масса элементарного кольца, кг; — угловая скорость (=πn/30), с -1; r — расстояние кольца от оси вращения, м.

Отношение центробежной силы к силе тяжести, как было указано выше, является фактором разделения, характеризующим эффективность разделения суспензии в центрифуге. Фактор разделения растет пропорционально квадрату угловой скорости вращения барабана центрифуги и уменьшению его диаметра.

Производительность фильтрующих центрифуг рассчитывают на основании теории фильтрования. Движущая сила процесса, действующая на элементарный объем суспензии (рис. 4.2),

(4.12)

где: L – высота барабана центрифуги, м; С – плотность суспензии, кг/м.

Движущую силу найдем, проинтегрировав полученное выражение в пределах

от R0 до R:

Скорость центробежного фильтрования

(4.13)

где: Rф. п. — сопротивление фильтрующей перегородки; r0 — удельное сопротивление слоя осадка; x0 — толщина слоя осадка, которая для непрерывнодействующих центрифуг не изменяется во времени; R, Ro — соответственно внешний и внутренний радиусы барабана центрифуги.

Продолжительность фильтрования определим из уравнения (4.5)

Отметим, что уравнения (4.5), (4.9) и (4.13) являются приближенными, так как не учитывают осаждения твердых частиц под действием гравитационных сил, благодаря чему слой осадка растет быстрее, чем отбираемый фильтрат; кроме того, осадки на фильтровальной перегородке сжимаются под действием перепада давлений и их сопротивление растет быстрее, чем высота слоя осадка.

На практике отношение объема осадка к объему фильтрата x0, удельное объемное сопротивление осадка r0 и сопротивление фильтровальной перегородки Rф. п. определяют экспериментальным путем

.

Рис.4.2. К расчету производительности фильтрующих центрифуг

Уравнение (4.5) при F=1 м2может быть представлено в виде

(4.14)

где: С — константа фильтрования, характеризующая гидравлическое сопротивление фильтрующей перегородки, м3/м2; К: — константа фильтрования, учитывающая режим фильтрования и физико-химические свойства осадка в жидкости, м2/с.

(4.15)

(4.16)

Преобразуем уравнение (4.14)

(4.17)

Уравнение (4.17) является уравнением прямой линии, наклоненной к горизонтальной оси под углом , тангенс которого , и отсекающей на оси ординат отрезок m=2С/К (рис. 4.3).

Рис.4.3. К определению констант фильтрования

Для построения этой линии откладывают по оси абсцисс измеренные значения V1, V2,…Vn, а по оси ординат — соответствующие значения

По найденным значениям К и С по уравнениям (4.15) и (4.16) определяют r0 и Rф. п.

Величину х0 находят в результате измерения объемов фильтрата и осадка.

4.4. ОБОРУДОВАНИЕ ДЛЯ ФИЛЬТРОВАНИЯ

По принципу действия фильтровальное оборудование делится на оборудование, работающее при постоянном перепаде давления либо при постоянной скорости фильтрования; по способу создания перепада давления на фильтровальной перегородке — на работающее под вакуумом либо под избыточным давлением; в зависимости от организации процесса — на оборудование непрерывного и периодического действия.

Избыточное давление может создаваться силами давления или центробежной силой. В зависимости от способа создания перепада давления фильтровальное оборудование может быть разделено на фильтры и центрифуги.

Фильтры, используемые для разделения суспензии, работают как под вакуумом, так и под избыточным давлением, периодически и непрерывно. К фильтрам, работающим под давлением, предъявляют повышенные требования к механической прочности. Их изготовляют по нормам Госгоркотлонадзора для сосудов, работающих под давлением.

В фильтрах периодического действия осадок удаляется после прекращения процесса фильтрования, в фильтрах непрерывного действия — по мере необходимости без остановки процесса.

При разработке новых видов фильтровального оборудования следует ориентироваться на создание компактных аппаратов с развитой фильтровальной поверхностью, позволяющих проводить ее регенерацию без остановки технологического процесса.

Нутч-фильтр (рис. 4.4), работающий как под вакуумом, так и под избыточным давлением, широко распространен в малотоннажных производствах. Выгрузка из него осадка механизирована. Для сброса осадка фильтр снабжен перемешивающим устройством в виде однолопастной мешалки. Для удаления осадка из фильтра на цилиндрической части корпуса предусмотрен люк.

Рис.4.4. Нутч-фильтр с перемешивающим устройством:

1-привод, 2-корпус фильтра, 3-мешалка, 4- спускной кран, 5-фильтровальная перегородка, 6- фильтровальная ткань

Суспензия и сжатый воздух подаются через раздельные штуцера, фильтрат удаляется через спускной кран 4. Фильтр снабжен предохранительным клапаном.

Цикл работы фильтра состоит из заполнения его суспензией, фильтрования суспензии под давлением, удаления осадка с фильтровальной перегородки при вращающейся мешалке и регенерации фильтровальной перегородки. В таких фильтрах может проводиться одновременно промывка осадка.

Для фильтрования суспензии применяют фильтровальные перегородки из картона, бельтинга и синтетических волокон. Преимуществами фильтровальных перегородок из синтетических волокон являются высокая механическая прочность, термическая и химическая стойкость.

Из синтетических волокон изготовляют фильтровальные перегородки с постепенно изменяющейся плотностью, что обеспечивает глубинное фильтрование суспензий, содержащих малое количество твердой фазы. Меняющаяся по глубине плотность фильтровального материала позволяет захватывать частицы по всей глубине фильтра. При этом крупные частицы задерживаются в наружных, а мелкие — в глубинных слоях фильтра. Селективное фильтрование обеспечивает высокую скорость фильтруемой среды, предотвращает закупоривание поверхностных пор и продлевает срок службы фильтров.

Рамный фильтр-пресс (рис. 4.5) используется для осветления виноматериалов, вина, молока и пива. Фильтрующий блок состоит из чередующихся рам и плит с зажатой между ними фильтровальной тканью или картоном. Рамы и плиты зажимаются в направляющих 6 зажимным винтом 7. Фильтр монтируют на металлической станине.

Рис.4.5 Рамный фильтр-пресс:

1 — опорная плита; 2 – рама; 3 – плита; 4 — фильтровальная перегородка; 5 — подвижная плита; 6 — горизонтальная направляющая; 7 – винт; 8 – станина; 9 — желоб

Каждая рама и плита (рис. 4.6) имеют каналы для ввода суспензии и промывной жидкости. На поверхности плит с обеих сторон расположены сборные каналы 4, ограниченные сверху дренажными каналами, а снизу отводным каналом.

Рис.4.6 Рама (а) и плита (б) фильтр-пресса:

1,2 — каналы для ввода суспензии и промывной жидкости; 3 — жренажный канал; 4 — сборный канал; 5 — отводной канал

При фильтровании (рис. 4.7, а) суспензия под давлением подается через каналы в рамах и плитах и распределяется по всем рамам. Фильтрат стекает по дренажным и сборным каналам в плитах и удаляется через отводные каналы. При промывке осадка (рис. 4.7, б) промывная жидкость под давлением вводится через соответствующие каналы, распределяется по рамам и проходит обратным током через фильтровальную перегородку, промывает осадок, а затем удаляется из фильтра через отводные каналы. При промывке отводные каналы всех нечетных плит блока должны быть закрыты.

Основной недостаток рамных фильтр-прессов — трудоемкость выгрузки осадка и замены фильтровальной перегородки. Для выгрузки осадка необходимы разборка вручную фильтровального блока и промывка плит и рам.

Рис. 4.7 Схема работы фильтр-пресса:

а – фильтрование; б — промывка осадка; 1 – рама; 2 — плита

Фильтр-пресс автоматизированный камерный с механизированной выгрузкой осадка (ФПАКМ) используют для разделения тонкодисперсных суспензий концентрацией 10. 500 кг/м3 при температурах до 80 °С. Является фильтром периодического действия. Он состоит из ряда прямоугольных фильтров (рис. 4.8), расположенных вплотную один под другим, благодаря чему возрастает удельная площадь поверхности фильтрования по отношению к площади, занимаемой фильтром.

Рис.4.8 Фильтр-пресс с горизонтальными камерами (ФПАКМ):

1 — нижняя плита; 2 — верхняя плита; 3 — пространство для суспензии и осадка; 4 — перфорированный лист; 5 — пространство для фильтрата; 6 — эластичная диафрагма; 7, 9, 12 — каналы; 8 — коллектор для суспензии; 10 — коллектор для отвода фильтрата; 11 — пространство для воды; 13 — фильтровальная ткань

В положении А в камеру из коллектора 8 последовательно поступают суспензия на разделение, жидкость для промывки и сжатый воздух для подсушки осадка. Фильтрат, промывная жидкость и воздух отводятся по каналам 12 в коллектор 10. В пространстве 11 по каналам 9 подается вода под давлением, которая с помощью водонепроницаемой диафрагмы 6 отжимает осадок (положение Б). Затем плиты раздвигаются и осадок удаляется из фильтра через образовавшиеся щели (положение В).

Барабанные вакуум-фильтры применяют при непрерывном разделении суспензий концентрацией 50. 500 кг/м3. Твердые частицы могут иметь кристаллическую, волокнистую, аморфную, коллоидальную структуру. Производительность фильтра зависит от структуры твердых частиц и снижается в указанной выше последовательности.

Барабанные вакуум-фильтры (рис. 4.9) выпускают с внешней и внутренней фильтрующей поверхностью, которая обтягивается текстильной фильтровальной тканью. Вращающийся горизонтальный перфорированный барабан разделен перегородками на несколько секций одинаковой формы, которые за оборот барабана проходят несколько рабочих зон: фильтрования, обезвоживания, промывки, удаления осадка и регенерации фильтровальной ткани. Устройством, управляющим работой фильтра, является распределительная головка, через которую секции барабана в определенной последовательности подсоединяют к магистралям вакуума, сжатого воздуха и промывной жидкости.

Рис.4.9 Барабанный вакуум-фильтр с распределительной головкой:

1 — перфорированный барабан; 2 — фильтровальная ткань; 3 — ножевое устройство; 4 – секция; 5 – корыто; 6 – мешалка; 7 – труба; 8 – разбрызгиватель; 9 — распределительная головка

В стадии фильтрования зона фильтра под фильтрующей тканью соединяется с вакуумом и фильтрат, находящийся в корыте, проходит через фильтровальную ткань. Осадок откладывается на ее поверхности. Промытый и подсушенный осадок непрерывно срезается ножом. Чтобы взвешенные частицы не отстаивались, корыто снабжено качающейся мешалкой.

Для извлечения пива и дрожжей из дрожжевой суспензии, образующейся при седиментации в бродильных чанах и танках, применяют барабанный вакуум-фильтр, изображенный на рис. 4.10. Фильтровальный элемент состоит из крупноячеистой сетки, на которую накладывается мелкоячеистая сетка. Для улучшения условий фильтрования на мелкоячеистую сетку намывается слой вспомогательного материала — кизельгура либо картофельного крахмала. Пивная или дрожжевая суспензия, подаваемая из бака, при вращении барабана равномерно распределяется по фильтровальной поверхности, а дрожжевой осадок (лепешка) срезается ножом, установленным над баком.

Рис.4.10 Барабанный вакуум-фильтр:

1 — насос для фильтрата; 2 — вакуум-насос; 3 – пеногаситель; 4 — фильтровальный элемент; 5 – барабан; 6 — труба для фильтрата

Содержание сухих веществ в дрожжевой лепешке достигает 25. 28 %. Обрызгивание подсыхающей лепешки водой способствует увеличению выхода пива примерно на 20 %.

Детали фильтра, находящиеся в контакте с фильтрующей средой, выполнены из нержавеющей стали. Все детали фильтра легко очищаются.

Схема фильтровальной установки с барабанным вакуум-фильтром показана на рис. 4.11. Суспензия подается в корыто фильтра, где установлена качающаяся мешалка, препятствующая сепарации крупных твердых частиц большой плотности. При погружении 30 % поверхности барабана в суспензию он подключается к вакуум-насосу. Фильтрат и промывная жидкость собираются в сборниках 3, где от них отделяется воздух, поступивший в фильтр во время обезвоживания и промывки осадка, и затем откачиваются насосами.

Дисковые фильтры (рис. 4.12) применяют для разделения тонкодисперсных суспензий; они работают под давлением с намывным слоем вспомогательного вещества. Дисковый фильтр представляет собой вертикальную емкость с обогреваемой рубашкой. Внутри фильтра на полый вал 6 насажены дисковые металлические перфорированные фильтровальные элементы 7. На диски натягивают полипропиленовую или другую фильтровальную ткань, закрепляемую хомутами. Рабочее давление в фильтре достигает 0,5 МПа, в рубашке — 0,3 МПа.

Рис.4.11 Схема фильтровальной установки:

1 — барабанный вакуум-фильтр; 2 — приемник осадка; 3 — сборники фильтрата и промывной жидкости; 4 – воздуходувка; 5 — вакуум-насос; 6 — насосы для отбора фильтрата и промывной жидкости; 7 — насос для суспензии; 8- ёмкость для суспензии

В дисковых фильтрах предусмотрен центробежный сброс подсушенного осадка. Полый вал вместе с фильтровальными дисками приводится во вращение электро — и гидродвигателем. Частота вращения вала достигает 250 мин-1. Вал имеет сальниковые тефлоновые уплотнения.

Рис 4.12 Дисковый фильтр:

1 – шкив; 2 — сальниковое уплотнение; 3 – крышка; 4 — корпус фильтра; 5 – рубашка; 6 – вал; 7 — фильтровальный элемент; 8 — подпятник

Перед фильтрованием на фильтровальные элементы намывают слой вспомогательного вещества, суспензия которого готовится в суспензаторе. Готовая суспензия прокачивается насосом через фильтровальные элементы до образования намывного слоя толщиной 15. 30 мм. Фильтрат из дисков через отверстия в полом валу поступает внутрь вала и выводится из фильтра в суспензатор. Аналогичным образом проводится фильтрование суспензии. После окончания фильтрования осадок промывается обратным током фильтрата и подсушивается воздухом.

Ленточный фильтр (рис. 4.13) состоит из рамы, приводного и натяжного барабанов, между которыми натянута бесконечная перфорированная резиновая лента. Под ней расположены вакуум-камеры, соединенные в нижней части с коллекторами для отвода фильтрата и промывной жидкости. За счет вакуума лента прижимается к верхней части вакуум-камер. К резиновой ленте натяжными роликами 7 прижимается фильтровальная ткань, выполненная также в виде бесконечной ленты.

Суспензия подается на фильтровальную ткань из лотка 5. Фильтрат под вакуумом отсасывается в камеры и отводится через коллектор в сборник. Промывная жидкость подается через форсунки 2 на образовавшийся осадок и отсасывается в камеры, из которых через коллектор 9 отводится в сборник.

На приводном барабане фильтрующая ткань отделяется от резиновой ленты и огибает направляющий ролик. При этом осадок соскальзывает с фильтровальной ткани и падает в сборник осадка.

Рис 4.13 Ленточный вакуум-фильтр:

1 — приводной барабан; 2 – форсунка; 3 — вакуум-камера; 4 — резиновая лента; 5 – лоток; 6 — натяжной барабан; 7 — натяжные ролики; 8 — коллектор для отвода фильтра; 9 — коллектор для отвода промывной жидкости; 10 — сборник осадка; 11 — фильтровальная ткань

При прохождении фильтровальной ткани между роликами 7 она промывается, просушивается и очищается.

Фильтрующие центрифуги периодического и непрерывного действия разделяются по расположению вала на вертикальные и горизонтальные, по способу выгрузки осадка — на центрифуги с ручной, гравитационной, пульсирующей и центробежной выгрузкой осадка. Главным отличием фильтрующих центрифуг от отстойных является то, что они имеют перфорированный барабан, обтянутый фильтровальной тканью.

В фильтрующей центрифуге периодического действия (рис. 4.14) суспензия загружается в барабан сверху. После загрузки суспензии барабан приводится во вращение. Суспензия под действием центробежной силы отбрасывается к внутренней стенке барабана. Жидкая дисперсионная фаза проходит через фильтровальную перегородку, а осадок выпадает на ней. Фильт — рат по сливному патрубку направляется в сборник. Осадок после окончания цикла фильтрования выгружают вручную через крышку 3.

Рис.4.14 Фильтрующая центрифуга периодического действия:

1 – станина; 2 — перфорированный барабан; 3 – крышка; 4 – кожух; 5 – ступица; 6 — подшипник; 7 – электродвигатель; 8 — шкив с ременной передачей; 9 — дренажная сетка; 10 — фильтрующая ткань

Конструкция фильтрующей центрифуги с перфорированным барабаном аналогична конструкции автоматической отстойной центрифуги с непрерывным ножевым съемом осадка.

В саморазгружающихся центрифугах (рис. 4.15) осадок удаляется под действием гравитационной силы. Такие центрифуги выполняют с вертикальным валом, на котором располагается перфорированный барабан. Суспензия подается на загрузочный диск при вращении барабана с низкой частотой. Нижняя часть барабана имеет коническую форму, причем угол наклона делается большим, чем угол естественного откоса осадка. После окончания цикла фильтрования и остановки барабана осадок под действием гравитационной силы сползает со стенок барабана и удаляется из центрифуги через нижний люк.

Рис 4.15 центрифуга с гравитацонной выгрузкой осадка:

1 — вал; 2 – барабан; 3 — распределительный диск, 4 — упорная втулка

В непрерывно действующих фильтрующих центрифугах с пульсирующей выгрузкой осадка (рис. 4.16) фильтрат из центрифуги выводится непрерывно, а осадок периодически выгружается из барабана пульсирующим поршнем.

Поршень-толкатель перемещается в горизонтальном направлении в барабане с помощью штока, который находится внутри полого вала барабана. Шток вращается вместе с валом и совершает одновременно возвратно-поступательные движения (10ходов в минуту, длина каждого хода составляет примерно 0,1 длины барабабана). Сервомеханизм автоматически изменяет направление движения поршня.

Рис 4.16 Центрифуга непрерывного действия с пульсирующей выгрузкой осадка:

1 — полый вал; 2 – шток; 3 – корпус; 4 — поршень – толкатель; 5 — приемный конус; 6 – барабан; 7 — сито

Суспензия подводится по оси вала в приемный конус. В конусе имеются отверстия, по которым суспензия поступает в барабан. Внутренняя поверхность барабана покрыта фильтровальным ситом. Осадок, отложившийся на поверхности сита, промывается и перемещается поршнем к открытому концу барабана. Из барабана осадок выгружается в камеру для осадка.

Центрифуга непрерывного действия с центробежной выгрузкой осадка имеет конический перфорированный барабан, внутри которого вращается шнек со скоростью, несколько меньшей скорости вращения барабана. При вращении витки шнека снимают с барабана отложившийся осадок и перемещают его в нижнюю часть барабана, в камеру для осадка. Выгрузка осадка происходит под действием центробежной силы. При этом осадок не измельчается, его структура не изменяется, как, например, в центрифугах с ножевым срезом и выгрузкой осадка пульсирующим поршнем.

4.5. РАСЧЕТ ФИЛЬТРОВАЛЬНОГО ОБОРУДОВАНИЯ

Расчет фильтровального оборудования периодического действия заключается в определении количества аппаратов для обеспечения заданной суточной производительности по фильтрату. Для этого выбирают или рассчитывают площадь поверхности фильтрования и производительность одного аппарата.

Продолжительность фильтрования при ∆р = const определяют по уравнению

где: — продолжительность собственно фильтрования; — продолжительность вспомогательных операций (подготовка аппарата к работе, загрузка суспензии, удаление осадка); r0 и x0 принимаются на основании экспериента

Наибольшая производительность аппарата периодического действия при значительном сопротивлении фильтровальной перегородки достигается при . Для ориентировочного расчета оптимальной продолжительности цикла можно пользоваться зависимостью (для и

Производительность по фильтрату за один цикл определяют по уравнению (4.5), подставляя в него выбранную площадь поверхности фильтра F и.

Производительность центрифуги но суспензии за один цикл (в кг) , где — рабочий объем центрифуги или объем загружаемой за один цикл суспензии; D и D0 — соответственно внешний и внутренний диаметры барабана.

Число циклов работы фильтровальной установки в сутки находят по уравнению nобщ = Qобщ/V, зная суточную производительность установки по фильтрату или суспензии.

Число циклов работы одного аппарата в сутки

Необходимое количество фильтров Ф = nобщ / n1

Расчет фильтровального оборудования непрерывного действия при заданной или принятой площади поверхности фильтрования сводится к определению по заданной производительности скорости перемещения поверхности фильтрования, а также необходимого числа аппаратов для обеспечения заданной производительности.

На основании экспериментальных данных принимают наименьшую толщину осадка, чтобы обеспечить максимальную производительность.

Из уравнения (4.2) определяют объем фильтрата V =h0F/x0.

Подставляя найденную величину V в уравнение (4.4), определяют продолжительность фильтрования для получения слоя осадка заданной толщины .

На основании экспериментальных или расчетных данных определяют продолжительность промывки осадка, общую продолжительность цикла и производительность аппарата.

Производительность по фильтрату при центробежном фильтровании , где vц — скорость центробежного фильтрования, определяемая по формуле (4.13).

Число аппаратов для обеспечения заданной производительности Qобщ определяют из соотношения Ф=Qобщ/Qi где Qi — производительность одного аппарата.

1. Какие неоднородные системы разделяют фильтрованием? 2. Что является движущей силой фильтрования? 3. Какие меры принимают для увеличения эффективности фильтрования? 4. В чем зак­лючается расчет фильтров периодического и непрерывного действия? 5. Какое оборудование применяют для разделения неоднородных систем методом фильтрования? 6. Какие конструкции фильтров используют в пищевой промыш­ленности? 7. Какие конструкции фильтрующих центрифуг применяют в пищевой промышленности? 8. Что является движущей силой в фильтрующих цент­рифугах? Чем она определяется? 9. В чем заключается расчет фильтрующих цент­рифуг периодического и непрерывного действия? 10. Проведите сравнительную оценку эффективности фильтрования в фильтрах и фильтрующих центрифугах.


источники:

http://www.c-o-k.ru/articles/osnovnoe-uravnenie-fil-trovaniya

http://pandia.ru/text/78/378/606.php