Уравнение фотоэффекта в общем виде

Фотоэффект. Фотоны

В 1887 году Г. Герцем был открыт фотоэлектрический эффект, а продолжить его исследования довелось А.Г. Столетову. Ф. Леонард в 1900 году серьезно занялся данным проектом. К тому времени был открыт электрон. Это говорило о том, что фотоэффект состоял в вырывании электронов из вещества под действием падающего на него света.

Данное исследование законов Столетова изображено на рисунке 5 . 2 . 1 .

Рисунок 5 . 2 . 1 . Схема экспериментальной установки для изучения фотоэффекта.

В лабораторных условиях применили стеклянный вакуумный баллон с двумя металлическими электродами с очищенной поверхностью. К ним прикладывали напряжение U с возможностью изменения полярности с помощью ключа. Катод освещали монохроматическим светом с длиной волны λ через кварцевое окошко. Так как световой поток оставался неизменным, то зависимость силы тока I от напряжения ослабевала. Рисунок 5 . 2 . 2 . наглядно демонстрирует кривые зависимости при интенсивном свете, попадающем на катод.

Рисунок 5 . 2 . 2 . Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н 1 и I н 2 – токи насыщения, U з – запирающий потенциал.

По графику видно, что при подаче большого напряжения фототок анода А достигает насыщения, потому как при вырывании светом из катода они в состоянии достичь его.

Ток насыщения. Закономерности фотоэффекта

Ток насыщения I н прямо пропорционален интенсивности падающего света.

При наличии отрицательного напряжения на аноде, электрическое поле, находящееся между катодом и анодом, тормозится электронами. К аноду могут добраться электроны, у которых кинетическая энергия превышает значение | e U | . При наличии напряжения меньше, чем – U з , происходит прекращение фототока. После измерения – U з определяется максимальная кинетическая энергия фотоэлектронов:

m υ 2 2 m a x = e U 3 .

Из формулы видно, что оно не зависит от интенсивности падающего света. После глубоких исследований стало ясно, что при возрастании запирающего потенциала происходит линейное увеличение частоты света ν .

Рисунок 5 . 2 . 3 . Зависимость запирающего потенциала U з от частоты ν падающего света.

После многочисленных экспериментов были установлены закономерности формул фотоэффекта:

  1. При увеличении частоты света ν происходит возрастание кинетической энергии, независящей от ее интенсивности.
  2. Наименьшей частотой ν m i n с внешним фотоэффектом называют красную границу фотоэффекта каждого вещества.
  3. Количество фотоэлектронов за 1 с вырывания из катода прямо пропорционально интенсивности света.
  4. Фотоэффект возникает после освещения катода с условием, что ν > ν m i n .

Данные закономерности не соответствовали представлениям классической физики о взаимодействии света с веществом. Исходя из волновых представлений, взаимодействие световой волны с электроном должно действовать по принципу постепенного накапливания энергии. Чтобы он смог вылететь из катода, необходимо иметь достаточное количество энергии, накапливаемой за определенный промежуток времени, не зависящий от интенсивности света.

Появление фотоэлектронов происходит сразу после освещения катода. Данная модель не давала четкого представления нахождения красной границы фотоэффекта. Волновая теория света не могла дать объяснение независимости энергии фотоэлектронов от интенсивности светового потока и пропорциональности максимальной кинетической энергии частоты света. Поэтому электромагнитная теория была не способна объяснить эти изменения.

В 1905 году А. Эйнштейн дает теоретическое объяснение наблюдаемых закономерностей фотоэффекта, основываясь на гипотезе М. Планка.

Постоянная Планка. Уравнение Эйнштейна

Излучение и поглощение света происходит определенными порциями, где она определяется формулой E = h ν , h принято называть постоянной Планка.

Основной шаг в развитии квантовых представлений относится к Эйнштейну:

Свет обладает прерывистой структурой. Электромагнитная волна состоит из порций, называемых, кварками, спустя время которые зафиксировали как фотоны.

После взаимодействия с веществом фотон передает свою энергию h ν одному электрону, одна часть которой рассеивается при столкновениях с атомами, а другая затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого ему необходимо совершить работу выхода А , зависящую от свойств материала катода.

Наибольшую кинетическую энергию, вылетевшую из катода фотоэлектроном, определяют законом сохранения энергии:

m ν 2 2 m a x = e U e = h ν — A .

Формула получила название уравнения Эйнштейна для фотоэффекта.

Благодаря ему, закономерности внешнего явления фотоэффекта могут быть объяснены.

Линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта следуют из данного выражения.

Общее количество фотоэлектронов, которые покидают поверхность катода в течение 1 с , пропорционально числу фотонов, падающих на поверхность. Можно сделать вывод, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

По уравнению фотоэффекта Эйнштейна тангенс угла наклона прямой, выражающий зависимость запирающего потенциала U з от частоты ν , равняется отношению постоянной Планка h к заряду электрона e :

Формула позволяет вычислить значение постоянной Планка.

Р. Милликенн проводил измерения в 1914 году, после чего смог определить работу выхода А :

A = h ν m i n = h c λ к р ,

где c – скорость света, λ к р – длина волны, которая соответствует красной границе фотоэффекта.

Большинство металлов имеет работу выхода А и составляет несколько электрон-вольт ( 1 э В = 1 , 602 · 10 – 19 Д ж ) .

Квантовая физика использует электрон-вольт как энергетическую единицу измерения. Тогда значение постоянной Планка равняется

h = 4 , 136 · 10 — 15 э В · с .

Наименьшая работа выхода наблюдается у щелочных элементов. Натрий при A = 1 , 9 э В соответствует красной границе фотоэффекта λ к р ≈ 680 н м . Такие соединения применяют для создания катодов в фотоэлементах, используемых для регистрации видимого света.

Законы фотоэффекта говорят о том, что при пропускании и поглощении свет ведет себя подобно потоку частиц, называемых фотонами или световыми квантами.

Энергия фотонов записывается в виде формулы E = h ν .

При движении в вакууме фотон обладает скоростью с , а его масса m = 0 . Общее соотношение теории относительности, связывающее энергию, импульс и массу любой частицы, записывается как E 2 = m 2 c 4 + p 2 c 2 .

Отсюда следует, что фотон обладает импульсом, значит:

Можно сделать вывод, что учение о свете вернулось к представлениям о световых частицах – корпускулах. Но это не расценивается как возврат к корпускулярной теории Ньютона. В XX было известно о двойственной природе света. Когда он распространялся, то проявлялись его волновые свойства (интерференция, дифракция, поляризация), при его взаимодействии с веществом – корпускулярные, то есть явление фотоэффекта. Это и получило название корпускулярно-волнового дуализма.

Спустя время, данная теория была подтверждена у других элементарных частиц. Классическая физика не дает наглядную модель сочетаний волновых и корпускулярных свойств микрообъектов. Их движениями управляют законы квантовой механики. В основе этой науки лежит теория абсолютно черного тела, доказанная М. Планком, и квантовая, предложенная Эйнштейном.

Рисунок 5 . 2 . 4 . Модель фотоэффекта

Фотоэффект

теория по физике 🧲 квантовая физика

Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.

Что такое фотоэффект

Фотоэффект — испускание электронов из вещества под действием падающего на него света.

Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.

Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.

Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.

Если между световым пучком и отрицательно заряженной пластиной поставить

Лист — наружный орган растения, основными функциями которого является фотосинтез, газообмен и транспирация.

Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.

Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.

Законы фотоэффекта

Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.

Первый закон фотоэффекта

Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.

В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.

Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.

Ток насыщения обозначается как I н . Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:

Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.

Первый закон фотоэффекта:

Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.

Второй закон фотоэффекта

Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.

Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное U з , сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.

Напряжение, равное U з , называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:

m v 2 2 . . = e U з

Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.

Второй закон фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.

Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.

Теория фотоэффекта

Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.

В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:

h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10 –34 Дж∙с.

Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10 –7 м.

Энергия фотона равна:

Выразим частоту фотона через скорость света:

Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.

Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Кинетическую энергию фотоэлектрона можно найти, используя закон сохранения энергии. Энергия порции света идет на совершение работы выхода А и на сообщение электрону кинетической энергии. Отсюда:

h ν = A + m v 2 2 . .

Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.

Для каждого вещества фотоэффект наблюдается лишь при освещении его светом с минимальной частотой волны νmin. Это объясняется тем, что для вырывания электрона без сообщения ему скорости нужно выполнять как минимум работу выхода. Поэтому энергия кванта должна быть больше этой работы:

Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.

Красная граница фотоэффекта равна:

Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.

Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:

Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.

Третий закон фотоэффекта:

Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.

Вспомните опыт, который мы описали в самом начале. Когда между цинковой пластинкой и световым пучком мы поставили зеркало, фотоэффект был прекращен. Это связано с тем, что красная граница для цинка определяется величиной λmах = 3,7 ∙ 10 -7 м. Эта длина волны соответствует ультрафиолетовому излучению, которое не пропускало стекло.

Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10 –19 Дж?

Применим формулу для вычисления красной границы фотоэффекта:

Фотоэффект (виды формула Эйнштейна)

Фотоэффект это испускание электронов в результате действия на вещество (твердые жидкие) солнечного света, а также электромагнитного излучения, это происходит из за передачи части энергии фотонов электронам этого вещества.

Разделяется на два основных вида: внешний и внутренний.

Внешний — это поглощение фотонов который сопровождается вылетом электронов за пределы этого вещества.

Внутренний — здесь электроны остаются в данном веществе и изменяют свое энергетическое состояние.

Примером фотоэффекта служит солнечная батарея, в результате действия солнечного света образуется постоянный электрический ток.

Что такое фотоэффект

Свет, падая на поверхность металла и поглощаясь в нем, вызывает эмиссию электронов. Это явление называется фотоэлектрическим эффектом (сокращенно — фотоэффектом).

Фотоэффект можно показать следующим опытом: хорошо очищенной и укрепленной на электроскопе Э цинковой пластинке П (рис. ) предварительно сообщают отрицательный заряд (избыток электронов облегчает их эмиссию) и действуют на нее излучением электрической дуги или ртутной лампы. При этом пластинка быстро разряжается, что наблюдается по электроскопу.

Кто открыл фотоэффект

В 1887 году при работе Генрихом Герцем с открытым резонатором было выяснено , что освещение на цинковые пластинки разрядника ультрафиолетом, прохождение искры облегчается.

Основные закономерности фотоэффекта были установлены А. Г. Столетовым в 1890 г. В 1905 г. Эйнштейн показал, что фотоэффект хорошо объясняется, если предположить, что свет поглощается прерывно такими же порциями, какими он по предположению Планка испускается. Эти элементарные порции или кванты света Эйнштейн назвал фотонами.

Более подробные характеристики фотоэффекта были получены позже, пользуясь вакуумной камерой Т (рис. , а) в которую помещались металлические электроды А и К.

Излучение И пропускалось через окно О, закрытое кварцевой пластинкой Я, измерялся фототок I ф, образуемый потоком электронов, испускаемых катодом (гальванометр Г) и напряжение U между электродами (вольтметр V), которое регулировалось потенциометром Р.

При постепенном увеличении напряжения фототок I ф нарастал, достигая при некотором его значении максимальной величины — фототока насыщения I ф.н.

При обратной полярности приложенного напряжения фототок постепенно убывал и при некотором его значении U3 снижался до нуля (рис. , б).

Наличие фототока при отрицательном напряжении между электродами показывает, что фотоэлектроны имеют начальную скорость и кинетическую энергию, которая позволяет им преодолевать противодействие сил электрического поля между электродами.

В результате были установлены три закона фотоэффекта.

Законы фотоэффекта

  1. Первый закон фотоэффекта (закон Столетова). Фототок насыщения Iф(т. е. наибольшее количество фотоэлектронов, испускаемое катодом в единицу времени) прямо пропорционален лучистому потоку Фэ, падающему на металл: Iф = kФэ, где k — коэффициент пропорциональности, который зависит как от природы металла, так и от длины волны излучения и называется чувствительностью к фотоэффекту.
  2. Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности.
  3. Третий закон фотоэффекта. Фотоэффект вызывается только под действием излучения, длина волны которого меньше некоторой предельной длины волны λк, характер ной для каждого металла и называемой красной границей фотоэффекта.

При длине волны большей, чем предельная λк независимо от интенсивности излучения, фотоэффект не происходит.

Фотоэффект происходит в результате поглощения фотонов свободными электронами металла. Каждый фотон взаимодействует с одним электроном (рис. 2). При этом электрон получает дополнительную энергию, равную энергии фотона Еф. Если эта энергия меньше работы выхода А электрона из металла:

то фотоэффекта не происходит (усиливается тепловое движение электрона).

Если энергия фотона равна или больше работы выхода:

то фотоэффект происходит (работа выхода зависит от природы металла и одинакова как при фотоэлектронной, так и термоэлектронной эмиссии). При этом, если энергия фотона превышает работу выхода, то разность между ними переходит в кинетическую энергию 2 э/2 фотоэлектрона. Энергия фотона по Планку Е ф = hv, следовательно,

Это уравнение называется уравнение Эйнштейна для фотоэффекта.

Из уравнения следует, что 2 э/2 = hv — A, т.е. энергия и скорость фотоэлектронов зависят только от частоты излучения и с повышением ее увеличивается. Это объясняет II закон фотоэффекта.

В предельном случае h vK = A, где. vK — наименьшая частота, при ко торой происходит фотоэффект vк = A/h. Соответствующая ей длина волны (красная граница фотоэффекта):

где A выражена в эргах. Это объясняет III закон фотоэффекта.

Таблица фотоэффекта металлов

Данные о длине волны красной границы фотоэффекта и о работе выхода для некоторых металлов приведены в таблице.

Металл λкр в ммк А эв
Серебро2604,75
Вольфрам2764,50
Цинк2904,20
Натрий5502,25
Цезий6202,0

Количество фотоэлектронов, испускаемых металлом в единицу времени (или фототок насыщения), пропорционально количеству фотонов, падающих на металл в единицу времени, или лучистому потоку. Этим объясняется I закон фотоэффекта.

Чем объясняется фотоэффект

Практически только небольшая доля от всех падающих на металл фотонов вызывает фотоэффект, причем она зависит как от природы металла (например, у щелочно-земельных металлов и их окисей она выше, чем у других металлов), так и от энергии фотонов: с повышением ее она возрастает.

В связи с этим чувствительность металла к фотоэффекту возрастает с уменьшением длины волны. У ряда веществ имеются резко выделяющиеся максимумы чувствительности к фотоэффекту в определенных узких интервалах длины волны. Это явление называется избирательным фотоэффектом.

Вакуумный фотоэлемент

Вакуумный фотоэлемент (рис. 3, а) состоит из стеклянной вакуумной колбы Б с цоколем Ц со штырьками для установки в гнезда ламповой панельки. Внутренняя поверхность колбы, за исключением окошка, через которое проходит свет, покрыта фоточувствительным слоем.

Слой соединен с выводом в цоколе и служит катодом К лампы. В центре колбы на ножке помещается второй электрод — анод А в виде кольца или сетки. Фотоэлемент включают последовательно в цепь источника постоянного напряжения, величина которого обеспечивает получение в цепи тока насыщения (рис. 3, б).

Чувствительность вакуумных фотоэлементов измеряется током насыщения в микроамперах, приходящимся на 1 лм светового потока, и в области видимого излучения имеет порядок 10—15 мка/лм.

Умножители фотоэффекта

Для усиления фототока применяют фотоэлектронные умножители (ФЭУ) — приборы, в которых, кроме фотоэффекта, используется явление вторичной эмиссии электронов.

Умножитель (рис. 3) представляет вакуумный фотоэлемент с несколькими промежуточными электродами, называемыми эмиттерами, или динодами, которые покрыты веществом, легко испускающим при ударе электроны. Свет, падая на катод К, вызывает фотоэлектронную эмиссию.

Электроны, ускоряясь электрическим полем, создаваемым напряжением U1 источника питания (рис. 3), падают на первый эмиттер и выбивают из него вторичные электроны уже в большем количестве. Эти электроны, ускоряясь, падают на второй эмиттер, количество их увеличивается и т. д.

Постепенно усиливающий поток электронов падает на последний электрод — анод и создает ток через сопротивление R, включенное в цепь анода. Напряжение с него передается на приемное устройство, обычно — электронноламповый усилитель и измерительный прибор.

Если коэффициент усиления электронного тока на одном электроде п, а число их т, то общее усиление в умножителе k — п т и соответственно ток I а в анодной цепи I а = I к п т , где I к — ток фотокатода.

Усиление может достигать сотен тысяч. Напряжение на эмиттеры подается от высоковольтного выпрямителя (500—1000 в) через делитель напряжения на сопротивлениях.

Преобразователь состоит из стеклянного сосуда К с высоким вакуумом, в котором имеется полупрозрачный фотокатод ФК, против него расположен флуоресцирующий экран Э.

Между ними находится система электродов Н—Л, ускоряющая и фокусирующая электроны подобно электродам в электроннолучевой трубке. К электродам подводится постоянное высокое напряжение U.

Оптическое изображение предмета с помощью линзы проектируется на фотокатод ФК (при рентгеновском изображении последнее отбрасывается непосредственно на фотокатод, который в этом случае покрывается со стороны падающих лучей флуоресцирующим слоем).

Эмиссия электронов с фотокатода прямо пропорциональна его освещенности, поэтому плотность потока электронов отражает характер изображения на фотокатоде.

Электроны ускоряются электрическим полем между элект родами, падая на экран эт на нем вторичное флуоресцирующее изображение предмета. Оно может быть сделано значительно более ярким, чем изображение, падающее на фотокатод, а также наблюдаться увеличенным с помощью окуляра О.

Фотоэффект в полупроводниках

Фотоэффектом в наиболее широком значении называется отрыв электронов от атомов или молекул, происходящий в результате поглощения фотонов электромагнитного излучения. Если процесс завершается выходом электронов за пределы вещества, то фотоэффект называется внешним, если электроны остаются внутри вещества — то внутренним.

Внешний фотоэффект характерен для металлов. Внутренний фотоэффект происходит в полупроводниках. При этом может иметь место повышение их электропроводности (такой полупроводник называется фоторезистором) или — при определенных условиях — образование фотоэлектродвижущей силы. Это используется в фотоэлементах с запирающим слоем.

К явлениям внутреннего фотоэффекта относится также первичная ионизация газа, происходящая при поглощении оптического излучения, а также ионизация любого вещества под действием рентгеновского и радиоактивного гамма излучения.

Вентильный (с запирающим слоем) полупроводниковый фотоэлемент состоит из двух слоев электронного и дырочного полупроводников (или из слоя дырочного полупроводника, нанесенного на металл), между которыми образуется электронно-дырочный переход или запирающий слой.

В результате фотоэффекта, т. е. отрыва электронов, в полупроводниках образуются носители зарядов: электроны и дырки. Те из них, которые являются неосновными для данного полупроводника, проходят через запи рающий слой в соседний полупроводник.

Таким образом происходит разделение зарядов разного знака и между слоями полупроводника образуется разность потенциалов порядка 0,1—0,15 в. В связи с этим фотоэлемент не требует источника питания .

Селеновый фотоэлемент

Селеновый фотоэлемент (рис. 4 , а) состоит из стальной пластинки 1. которая служит одним из электродов. Она покрыта тонким слоем 2 селена с дырочной проводимостью (р). Поверх селена нанесен тончайший слой 3 серебра, который служит вторым электродом.

Атомы серебра проникают в прилежащий к нему слой селена и придают ему электронную проводимость (n). Между верхним и нижним слоями селена образуется электронно-дырочный переход или запирающий слой, в котором возникает контактная разность потенциалов (КРП), направленная от п к р слою (рис. 4 , б).

Фотоэлемент заключен в пластмассовую открытую сверху коробку 4, на которой укреплены два зажима 5, соединенных с электродами.

Применение фотоэффекта

Фотоэффект используется при устройстве электронно-оптических преобразователей (электронных преобразователей оптического изображе ния). Прибор предназначается для усиления яркости изображения при рентгеноскопии, для преобразования изображения, полученного с помощью инфракрасного излучения в видимое изображение и т. п.

Фотоэлектрический эффект используется в приборах, называемых фотоэлементами, которые в настоящее время получили широкое применение в различных областях техники (телевидение, фототелеграф, звуковое кино и др.) и особенно в технике световых измерений.

Фотохимическое действие света

При поглощении света атомы или молекулы вещества получают дополнительную энергию. В определенных случаях при этом атом или молекула получают возможность вступать в такие химические реакции, которые не происходят при их обычном состоянии, такие атомы и молекулы называются активированными.

Активация молекулы описывается уравнением

где А — молекула в основном состоянии, hv — энергия фотона, поглощенного молекулой, и А* —активированная молекула.

Реакции, протекающие с участием активированных атомов или молекул, называются фотохимическими. Примером фотохимической реакции служит реакция разложения светом бромистого серебра, на которой основана фотография.

Основной закон фотохимической реакции: количество прореагировавшего вещества прямо пропорционально количеству поглощенной энергии излучения.

Другими словами: количество Q прореагировавшего вещества прямо пропорционально поглощенному лучистому потоку Фэ и времени его действия:

где k — есть коэффициент, зависящий от природы происходящей реакции и длины волны излучения.

Фотохимическую реакцию может вызывать только излучение, энергия фотонов которого больше некоторой энергии D, необходимой для возбуждения фотохимического процесса (энергия активации):

Поэтому более химически активным является коротковолновое излучение (например, в области оптическо го— ультрафиолетовое), фотоны которого имеют большую энергию. Фотохимические реакции являются первичным звеном многих биологических реакций. Такова, например, реакция фотосинтеза растениями крахмала из активированных молекул углекислоты и воды:

К фотохимическим реакциям относятся реакции синтеза многих витаминов.

К этим реакциям относится также реакция разложения зрительного пурпура в сетчатке глаза. При поглощении фотона hv молекула родопсина R активируется и затем распадается на белок Р и ретинен r — вещество, близкое по составу к витамину А.

При поглощении света может происходить также изменение связей между частицами в сложной, например, белковой молекуле, что вызовет соответствующее изменение ее структуры. Это также относится к фотохимическим процессам.

Похожие страницы:

Понравилась статья поделись ей

Leave a Comment

Для отправки комментария вам необходимо авторизоваться.


источники:

http://spadilo.ru/fotoeffekt/

http://znaesh-kak.com/e/d/%D1%84%D0%BE%D1%82%D0%BE%D1%8D%D1%84%D1%84%D0%B5%D0%BA%D1%82