Уравнение фотосинтеза темновой фазы фотосинтеза

Фотосинтез

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД + превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S +4 O3) 2- —> (S +6 O4) 2-
  • Железобактерии — окисляют Fe +2 —>Fe +3
  • Водородные бактерии — окисляют H2 —> H +1 2O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Лекция № 12. Фотосинтез. Хемосинтез

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

Радикалы •ОН объединяются, образуя воду и свободный кислород:

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

2Н + + 2е — + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Значение фотосинтеза

Купить проверочные работы
и тесты по биологии

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+ ).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Смотреть оглавление (лекции №1-25)

Этапы пути прохождения темновой стадии фотосинтеза

Существует две стадии процесса фотосинтеза. Они принципиально отличаются по химическим реакциям, происходящим в клетках растения. Первая или световая стадия напрямую связана с наличием световой энергии. 2 или темновая стадия названа так, поскольку процессы, происходящие во время нее, не зависят от наличия света. Химические процессы, которые происходят в темновую фазу фотосинтеза, различны у разных видов растений.

Что такое ферментативная фаза фотосинтеза

Темновая или ферментативная стадия фотосинтеза характеризуется: синтезом глюкозы, фиксацией углекислого газа и протеканием процессов в хлоропластах. Она запускается после расщепления воды под действием энергии света на 1 световой стадии и образования ее конечных продуктов:

  • АТФ (аденозинтрифосфат) – источник энергии, необходимой для прохождения множества химических реакций темновой стадии;
  • НАДФН (восстановленный никотинамидадениндинуклеотидфосфат) – катализатор, являющийся источником водорода. Водород, который отдает НАДФН, используется в процессе получения органических соединений во время темновой стадии;
  • О2(молекулярный кислород) не принимает участия в процессах второй стадии фотосинтеза, поэтому выделяется в атмосферу.

Далее во время темновой стадии растение поглощает из атмосферы СО2. Из этого соединения и водорода, отдаваемого молекулой НАДФН, синтезируется органическое соединение глюкоза (C6H12O6). Реакции синтеза проходят с поглощением энергии. Энергия для этого процесса выделяется молекулами АТФ, которые превращаются в АДФ (аденозиндифосфат).

Химические процессы, которые происходят в темновой стадии фотосинтеза, можно представить следующим уравнением:

В темновой стадии фотосинтеза энергия для синтеза высвобождается при распаде АТФ на АДФ и фосфорную кислоту:

АТФ → Q + АДФ + фосфорная кислота

Темновая фаза фотосинтеза разделяется на несколько этапов в зависимости от пути прохождения, присущих разным видам растений. Результатом темновой фазы фотосинтеза независимо от ее пути прохождения всегда является органическое соединение — глюкоза. Ниже представлена общая схема фотосинтеза: световая и темновая фаза.

Где протекают реакции темновой стадии фотосинтеза

Реакции темновой фазы фотосинтеза происходят, протекают в специальных клеточных структурах растения — в стромах хлоропластов. Хлоропласт – зеленая пластида, содержащая хлорофилл и отвечающая за химические реакции, проходящие во время всех стадий фотосинтеза. Хлоропласт имеет достаточно сложную структуру.

Основными его частями являются:

  • Тилакоиды – специальные структуры для преобразования световой энергии в химическую;
  • Граны – стопки тилакоидов;
  • Строма – плотная жидкость внутри хлоропласта между тилакоидами;
  • Мембраны.

Вся 1 световая стадия фотосинтеза проходит в гранах тилакоидов. Внутри них имеется хлорофилл – зеленый пигмент, способный поглощать световую энергию.

2 темновая стадия фотосинтеза проходит в строме хлоропласта. В состав стромы входят необходимые ферменты, которые обеспечивают прохождение химических реакций синтеза углеводов.

Цикл Кальвина

Самым распространенным видом фотосинтеза является С3 фотосинтез, который называется циклом Кальвина. Процессы, проходящие в цикле Кальвина, характерны для большинства видов растений нашей планеты. С3— фотосинтез делится на 3 фазы:

  • Карбоксилирование;
  • Восстановление;
  • Регенерация или превращение углеродных соединений.

В фазе карбоксилирования углекислый газ, поглощаемый растением из воздуха, связывается с ферментом (рибулозобисфосфат), образуя фосфоглицериновую кислоту (3-ФГК). Это 3-углеродное соединение дало название данному виду фотосинтеза – С3.

В следующей фазе восстановления 3-ФГК восстанавливается до 3-фосфоглицеринового альдеги­да (3-ФГА). Этот процесс происходит с участием НАДФН и АТФ. В фазе регенерации часть молекул 3-ФГА покидают цикл.

Из них во время темновой стадии фотосинтеза образуется вещество — глюкоза. Остальные молекулы данного вещества регенерируют в рибулозобисфосфат, способный связывать углекислый газ. Цикл Кальвина повторяется. Для синтеза одной молекулы глюкозы цикл должен пройти 6 раз.

Растения, использующие С3— фотосинтез должны непрерывно получать углекислый газ из окружающей атмосферы. При его дефиците или отсутствии темновая фаза фотосинтеза не может проходить у них эффективно.

Они должны постоянно держать устьица на своих листьях открытыми, чтобы поглощать СО2. В случае же его дефицита такие растения переходят в режим дыхания и выделяют углекислый газ, необходимый им в дальнейших фазах фотосинтеза.

Также через эти отверстия испаряется много влаги. Поэтому растения с С3-фотосинтезом не могут существовать в жарких и засушливых регионах. Там живут растения, которые используют другие виды фотосинтеза.

Цикл Хэтча-Слэка

Существует множество видов растений, фотосинтез которых проходит по пути С4. Он отличается от С3-фотосинтеза тем, что поступивший СО2 при участии ферментов образует не 3-углеродное, а 4-углеродное соединение.

Путь фотосинтеза С4 называется циклом Хэтча-Слэка в честь его первооткрывателей. Цикл Хэтча-Слэка проходит в 3 этапа:

  • Акцептация;
  • Декарбоксилирование;
  • Цикл Кальвина.

В процессе акцептации углекислый газ, поступивший в клетки растения из окружающей среды, соединяется не с рибулозобисфосфатом, как в цикле Кальвина, а с 3-углеродным соединением — фосфоенолпировиноградной кислотой.

В результате этой реакции получается 4-углеродное соединение – щавелевоуксусная кислота. Затем в зависимости от вида растения это вещество превращается в другие 4-углеродные соединения: яблочную и яспарагиновую кислоты.

На этапе декарбоксилирования из полученных 4-углеродных соединений получается свободный углекислый газ. Он не выделяется в атмосферу, а сразу поступает в цикл Кальвина. Оставшиеся 3-углеродные молекулы вновь могут использоваться для захвата СО2 в начале цикла Хэтча-Слэка.

Рассмотренный вариант фотосинтеза намного прогрессивнее, чем С3-фотосинтез. Здесь растение может накапливать углекислый газ в составе 4-углеродных кислот, чтобы потом использовать его по необходимости. Это обеспечивает непрерывный и эффективный цикл синтеза глюкозы, не зависящий от присутствия углекислоты в атмосфере.

У таких видов растений очень редко происходит процесс дыхания. Фотосинтез С4 обнаружен у более 900 видов растений. Среди них есть немало сельскохозяйственных культур, в том числе просо, сорго, кукуруза и сахарный тростник. Все эти виды приспособлены к жизни в засушливых районах с повышенной температурой воздуха.

Исследования показали, что при повышении температуры эффективность фотосинтеза у них значительно повышается. В то же время они не испытывают дефицита влаги. Среди комнатных растений также немало видов, использующих С4-фотосинтез.

Такими свойствами обладают все бромелиевые. Не следует располагать их рядом с С3-растениями. Пока последние будут медленно усваивать углекислый газ, С4-виды быстро поглотят всю углекислоту из воздуха, создавая для обычных разновидностей неблагоприятные условия.

Этапы САМ-фотосинтеза

Существует модификация пути С4, которая называется САМ (Crassulacean Аcid Metabolism). Этот путь фотосинтеза типичен для всех суккулентов, которые приспособлены выживать в жарком климате с дефицитом воды.

Этапы САМ-фотосинтеза ничем не отличаются от С4 пути, но его этапы разделены во времени. Углекислый газ поступает в клетки растения только ночью, когда устьица на листьях открыты. Таким образом, в ночное время возможно прохождение этапов: акцептации и декарбоксилирования.

Значение темновой стадии фотосинтеза для растений

Темновая стадия фотосинтеза позволяет растению завершить синтез органического вещества из неорганических. Этот процесс имеет в их жизни решающее значение. Глюкоза, синтезируемая растениями, принимает участие во многих биологических процессах, проходящих в растительных клетках. Вот основные из них:

  • Синтез белков, жиров и более сложных углеводов для постройки организма и обеспечения его жизнедеятельности;
  • Дыхание, при котором глюкоза расщепляется на углекислый газ и воду с выделением энергии;
  • Накопление питательных веществ в тканях растения для увеличения его жизнеспособности.

Белки жиры и сложные углеводы входят в состав клеток растения. Их необходимо синтезировать, чтобы растение могло расти и развиваться. Глюкоза является одним из важнейших материалов, используемых для такого синтеза.

Также растение вынуждено дышать, если вокруг него недостаточно углекислого газа, необходимого для фотосинтеза. Тогда часть конечного продукта темновой фазы фотосинтеза, которым является синтезированная глюкоза, расщепляется с выделением СО2. При накоплении питательных веществ глюкоза переходит в более стойкое вещество – крахмал, который и накапливается в органах растения.

Крахмал может использоваться по необходимости, расщепляясь сначала до глюкозы, а затем в конечные продукты окисления – воду и СО2. Запасы позволяют растению расходовать их в наступивших неблагоприятных условиях, сохраняя жизнеспособность.


источники:

http://licey.net/free/6-biologiya/21-lekcii_po_obschei_biologii/stages/266

http://florist-club.com/fotosintez/temnovaya-faza.html