Уравнение гамильтона через скобки пуассона

Уравнение гамильтона через скобки пуассона

Название работы: Уравнения Гамильтона (канонические уравнения). Функция Гамильтона. Скобки Пуассона и их свойства

Предметная область: Физика

Описание: Лекция 15. Уравнения Гамильтона канонические уравнения. Функция Гамильтона. Скобки Пуассона и их свойства Одна из форм уравнения движения это уравнения Лагранжа когда задается функция Лагранжа как функция независимых обобщенных координат и обобщенных скоростей

Дата добавления: 2013-07-11

Размер файла: 750 KB

Работу скачали: 33 чел.

Лекция 15. Уравнения Гамильтона (канонические уравнения). Функция Гамильтона. Скобки Пуассона и их свойства

Одна из форм уравнения движения, это уравнения Лагранжа, когда задается функция Лагранжа , как функция независимых обобщенных координат и обобщенных скоростей , а затем составляется система уравнений Лагранжа

Однако такая форма описания механических систем не является единственно возможной. Ряд преимуществ, особенно при исследовании общих теоретических вопросов механики, представляет другая форма записи уравнений движения, когда в качестве независимых переменных выбираются обобщенные координаты и обобщенные импульсы: и .

Чтобы перейти от набора переменных к новому набору переменных нужно воспользоваться стандартным преобразованием Лежандра. Для этого нужно выразить полный дифференциал функции Лагранжа не через дифференциалы и , а через дифференциалы обобщенных координат и импульсов и . Тогда величины, стоящие при соответствующих дифференциалах будут частными производными по обобщенным координатам и импульсам от некоторой функции этих же переменных. В результате получим уравнения движения в переменных .

Рассмотрим сначала для простоты, механическую систему с одной степенью свободы , т.е. с одной обобщенной координатой . Тогда , и уравнение Лагранжа будет имеет вид:

В этом случае движение механической системы описывается одним дифференциальным уравнением второго порядка, а независимые переменные и входят в него явно не симметричным образом. Время играет в уравнениях Лагранжа роль независимой переменной, т.е. параметра в том смысле, что в эти уравнения не входит производная . Уравнение (2) можно формально записать в виде

— обобщенный импульс, соответствующий обобщенной координате .

В рассматриваемом случае преобразование Лежандра сводится к следующему. Вычислим полный дифференциал от функции Лагранжа :

В полученном выражении нужно исключить дифференциал , выразив его через дифференциал . Для этого воспользуемся очевидным равенством

Подставляя это в соотношение (4) получим

Левая часть соотношения (6), есть дифференциал от энергии системы, т.к. по определению

Величина в уравнении (6) выражена через обобщенные координаты и импульсы, т.к. в правой части равенства (6), стоят дифференциалы именно этих величин. Величина

называется гамильтоновой функцией системы, или просто функцией Гамильтона. Из дифференциального равенства (6)

Это и есть искомые уравнения в переменных и — уравнения Гамильтона.

Видим, что для системы с одной степенью свободы, уравнения Гамильтона представляют собой два дифференциальных уравнения первого порядка, вместо одного дифференциального уравнения Лагранжа (2) второго порядка. В уравнения (10) переменные и входят симметричным образом. Ввиду их формальной простоты и симметрии эти уравнения называются каноническими уравнениями движения.

Наличие слагаемого с в дифференциальной форме (9), которое учитывает возможную явную зависимость функции Лагранжа (и, как следствие этого, функции Гамильтона) от времени не имеет отношения к выводу самих уравнений Гамильтона, поскольку, как и в уравнениях Лагранжа, время в рассматриваемом аспекте играет роль параметра. Из (9) следует, что

Все сказанное выше непосредственно обобщается на систему с любым числом степеней свободы . В этом случае будем иметь:

Рассмотрим несколько простых примеров.

1. Написать функцию Лагранжа и функцию Гамильтона, а так же уравнения Лагранжа и уравнения Гамильтона в декартовых координатах для частицы , движущейся в произвольном поле .

a ). Функция и уравнения Лагранжа

b ). Функция и уравнения Гамильтона . Т.к. , то

Видим, что и те и другие уравнения фактически сводятся ко второму закону Ньютона.

2. Написать функцию Лагранжа и функцию Гамильтона, а так же уравнения Лагранжа и уравнения Гамильтона в цилиндрических координатах для частицы , движущейся в произвольном поле .

a ). Функция и уравнения Лагранжа

b ). Функция и уравнения Гамильтона

Сначала нужно записать функцию Гамильтона, т.е. выразить энергию системы

через обобщенные импульсы

Отсюда выражаем обобщенные скорости через обобщенные импульсы:

Подставляя это в формулу для энергии, получим выражение для функции Гамильтона:

Уравнения Гамильтона в цилиндрических координатах

3. Записать уравнения Гамильтона для линейного гармонического осциллятора, когда и .

Получили обычное уравнение для линейного осциллятора.

4. Записать уравнения Гамильтона для математического маятника длиной , который совершает колебания в вертикальной плоскости. Ось направлена вниз, так, что . — угол отклонения от положения равновесия.

В цилиндрических координатах

Получили обычное уравнение колебания математического маятника.

Введем теперь понятие скобок Пуассона. Пусть имеется механическая система с одной степенью свободы: . Её обобщенные координата и импульс удовлетворяют уравнениям Гамильтона (10)

Пусть — некоторая функция величин , и времени . Составим её полную производную по времени, учитывая, что величины и тоже зависят от времени

Поскольку и , то выражение (28) принимает вид

Здесь введено обозначение

Выражение , определяемое формулой ( 30 ) называется скобкой Пуассона для величин и . Если число степеней свободы механической системы больше единицы, то скобка Пуассона функции Гамильтона и некоторой функции динамических переменных равна

где — число степеней свободы системы. Для любой пары функций динамических переменных скобка Пуассона определяется аналогично формуле (31)

Для скобок Пуассона справедливы очевидные равенства

2. где — постоянная

Поскольку для полной производной по времени функции динамических переменных справедливо соотношение

то величины независящие явно от времени являются интегралами движения, если их скобка Пуассона с функцией Гамильтона системы равна нулю.

Скобки Пуассона.

Рассмотрим некоторые свойства интегралов уравнений Гамильтона. Если для всех значений qi и pi канонических уравнений , (i = 1, …, n) какая-либо функция f(qi, pi, t) сохраняет постоянное значение, то f(qi, pi, t) = c называется интегралом канонических уравнений. Если функция Гамильтона не зависит явно от времени t , то при движении системы она сохраняет постоянное значение и, следовательно, H(qi, pi,) = h есть интеграл канонического уравнения.

Если обобщенная координата является циклической, то pk = const является интегралом уравнений Гамильтона.

Очевидно, что если две функции являются интегралами уравнений движения, то произвольная функция от этих интегралов будет также интегралом. Поэтому в дальнейшем нас будут интересовать независимые интегралы.

Предположим, что нам известны 2n (nчисло степеней свободы) независимых интегралов уравнений Гамильтона, т.е. fk(pi, pi, t) =ci (i = 1, …, 2n).

Разрешая систему относительно qi и pi , получим конечные уравнения движения, т.е. решение уравнений Гамильтона, содержащие 2n произвольных постоянных.

Таким образом, если известны все 2n независимых интегралов, то известны все движения системы. Поэтому мы всегда заинтересованы в нахождении возможно большего числа независимых интегралов.

Если число интегралов меньше 2n , то можно найти другие интегралы с помощью метода Якоби- Пуассона.

Введем некоторую комбинацию частных производных функции Гамильтона, которая носит название скобок Пуассона.

Пусть f(qi, pi, t) некоторая функция координат и времени (интеграл уравнений Гамильтона). Составим ее полную производную по времени

Подставим сюда и из уравнений Гамильтона:

или ,

где .

Это выражение называется скобками Пуассона для величин H и f .

Из соотношения видно, что условие того, чтобы величина f была интегралом движения

можно записать в виде: .

Это условие является необходимым и достаточным. Если же интеграл движения не зависит от времени явно, то (H,f) = 0, т.е. скобки Пуассона с функцией Гамильтона должны обращаться в нуль.

Верно и обратное утверждение, а именно, если для некоторой функции f(qi, pi, t) имеет место указанное тождество, то эта функция является интегралом канонических уравнений.

Аналогично определяются скобки Пуассона для любой пары величин решений уравнений Гамильтона f и g:

Можно показать, что если одна из функций f или g совпадает с одним из импульсов или с одной из координат, то скобки Пуассона сводятся к частной производной

,

Положив в этих формулах функцию f равной qi и pi, получим, в частности скобки от самих переменных (фундаментальные скобки Пуассона).

Скобки Пуассона можно использовать в качестве критерия каноничности преобразования.

Для того, чтобы преобразование было каноническим, необходимо и достаточно, чтобы скобки Пуассона и от переменных и удовлетворяли равенствам , , .

Скобки Пуассона обладают следующими свойствами:

4)

Между скобками Пуассона, составленными из трех функций, существует соотношение, которое называется тождеством Якоби: (f,(g,h)) + (g,(h,f)) + (h,(f,g)) =0.

Важное свойство скобок Пуассона состоит в том, что если f и g два интеграла движения, то составленные из них скобки тоже являются интегралом движения.

Теорема Якоби – Пуассона. Если f и g — интегралы движения, то (f,g) -также есть интеграл этих уравнений.

Доказательство: Пусть f=c1 и g=c2 — интегралы движения. Для них имеем следующие тождества: , .

Требуется доказать, что соотношение равно нулю, т.е. также является интегралом движения.

На основании свойства 4) скобок Пуассона .

Значит, выражение может быть представлено в виде

Последнее тождество равно нулю в силу тождества Якоби. Таким образом доказано, что

выражение = 0, т.е. (f,g)=c3 является интегралом канонических уравнений.

Эта теорема дает правило, по которому их двух интегралов f и g при помощи алгебраических операций и дифференцирования можно получить третий интеграл (f,g).

Но не во всех случаях этот интеграл может быть независимым.

Задача. Показать, что для системы с гамильтонианом функции являются первыми интегралами.

Решение. Пусть , тогда .

Задача. Показать, что уравнения Гамильтона могут быть записаны в виде

, .

Решение. Условие . , . Заменим f на и

и получаем , .

Уравнения Гамильтона , .

Задача. Показать, что функция является интегралом движения свободной материальной точки.

Решение. Покажем, что функция удовлетворяет условию .

, в отсутствии внешних сил .

,

.

Задача. Проекции моментов количества движения на оси декартовой системы координат:

, , .

Покажем, что .

Решение. .

Задача. Показать, что для функции канонических переменных имеют место соотношения , .

Дата добавления: 2015-09-12 ; просмотров: 60 | Нарушение авторских прав

Реферат: Теоретическая физика: механика

Название: Теоретическая физика: механика
Раздел: Рефераты по физике
Тип: реферат Добавлен 04:51:41 04 августа 2005 Похожие работы
Просмотров: 2635 Комментариев: 23 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно Скачать

Преподаватель Джежеря Ю.И . ___________

“Согласовано”“Утверждено”
Методист ____________________

План-конспект занятия

По теоретической физике

Студента V курса физико-математического факультета, гр. ОФ-61

Филатова Александра Сергеевича

Дата проведения занятия: 20.12.2000

Тема: «Канонические преобразования. Функция Гамильтона-Якоби. Разделение переменных»

Цели : Развить навык использования канонических преобразований. Закрепить умение осуществлять преобразования Лежандра для перехода к производящей функции от необходимых переменных. Научить использовать метод Гамильтона-Якоби при решении задач с разделением переменных. Сформировать понимание сути и могущественности метода. Воспитывать трудолюбие, прилежность.

Тип занятия : практическое.

Ход занятия


Краткие теоретические сведения


Канонические преобразования

Канонические преобразования переменных – это такие преобразования, при которых сохраняется канонический вид уравнений Гамильтона. Преобразования производят с помощью производящей функции, которая является функцией координат, импульсов и времени. Полный дифференциал производящей функции определяется следующим образом:

Выбирая производящую функцию от тех или иных переменных, получаем соответствующий вид канонических преобразований. Заметим, что если частная производная будет браться по «малым» , то будем получать малое , если же по «большим» , то и получать будем соответственно .

Функция Гамильтона-Якоби

При рассмотрении действия, как функции координат (и времени), следует выражение для импульса:

Из представления полной производной действия по времени следует уравнение Гамильтона-Якоби:

Здесь действие рассматривается как функция координат и времени: .

Путем интегрирования уравнения Гамильтона-Якоби , находят представление действия в виде полного интеграла, который является функцией s координат, времени, и s +1 постоянных ( s – число степеней свободы). Поскольку действие входит в уравнение Гамильтона-Якоби только в виде производной, то одна из констант содержится в полном интеграле аддитивным образом, т.е. полный интеграл имеет вид:

Константа А не играет существенной роли, поскольку действие входит везде лишь в виде производной. А определяет, что, фактически, лишь s констант меняют действие существенным образом. Эти константы определяются начальными условиями на уравнения движения, которые для любого значения А будут иметь одинаковый вид, как и само уравнение Гамильтона-Якоби.

Для того чтобы выяснить связь между полным интегралом уравнения Г.-Я. и интересующими нас уравнениями движения, необходимо произвести каноническое преобразование, выбрав полный интеграл действия в качестве производящей функции.

Константы будут выступать в качестве новых импульсов. Тогда новые координаты

тоже будут константы, поскольку

Выражая из уравнения координаты в виде функций от , мы и получим закон движения:

Решение задачи на нахождение зависимости существенно упрощается в случае разделения переменных. Такое возможно, когда какая-то координата может быть связана лишь с соответствующим ей импульсом и не связана ни с какими другими импульсами или координатами, входящими уравнение Г.-Я. В частности это условие выполняется для циклических переменных.

Итак, нахождение уравнений движения методом Гамильтона-Якоби сводится к следующему:

составить функцию Гамильтона;

записать уравнение Г.-Я., и определить какие переменные разделяются;

Путем интегрирования уравнения Г.-Я. получить вид полного интеграла ;

Составить систему s уравнений, и получить закон движения ;

По необходимости найти закон изменения импульсов: . Для чего продифференцировать полный интеграл по координатам , а потом подставить их явный вид, полученный в пункте 4.

Примеры решения задач

№ 11.14 [] Как известно, замена функции Лагранжа на

,

где – произвольная функция, не изменяет уравнений Лагранжа. Показать, что это преобразование является каноническим, и найти его производящую функцию.

Перепишем штрихованную функцию Лагранжа, представив полную производную функции через частные:

Функции Гамильтона, соответствующие штрихованной и не штрихованной функциям Лагранжа, определяются следующим образом:

Распишем , используя представление штрихованной функции Лагранжа :

Подставляя формулы и в выражение для штрихованной функции Гамильтона , получим:

Взаимно сократив второе слагаемое с последним, учитывая зависимость , получим:

Но согласно каноническим преобразованием с производящей функцией Ф :

Полученное соотношение определяет условие на временную часть производящей функции канонического преобразования, соответствующего преобразованию функции Лагранжа .

Поскольку вид обобщенных импульсов и координат при преобразовании функции Лагранжа не изменился, координатно-импульсная часть производящей функции должна соответствовать тождественному каноническому преобразованию. Как было показано в задаче №9.32 [] (д/з пред. занятия), производящая функция определяющая тождественное каноническое преобразование с неизменным гамильтонианом, имеет вид:

Учитывая условие на временную часть производящей функции, окончательно получим:

Полученная производящая функция определяет тождественное каноническое преобразование с заменой функции Гамильтона соответствующей замене функции Лагранжа .

Задача. Система, состоящая из двух шариков массами , соединенных невесомой пружиной, расположенной вертикально, начинает двигаться в поле сил тяжести. Длина пружины — . Произвести каноническое преобразование и записать новую функцию Гамильтона, соответствующие производящей функции

.

Составим функцию Гамильтона системы:

Здесь потенциальная энергия состоит из энергии гармонических колебаний и потенциальной энергии шариков в поле сил земного тяготения. По определению потенциального поля:

Мы имеем дело с одномерным движением, поэтому градиент в формуле заменяется производной по х . В то же время сила, является суммарной силой тяжести. Принимая во внимание принцип суперпозиции гравитационного поля, проинтегрируем последнее уравнение:

Значение смещения пружины от положения равновесия будет определяться следующим образом:

Подставив выражения и в формулу , получим вид функции Гамильтона, выраженной через импульсы и координаты явно:

Переход к новым каноническим переменным производится в случае, когда возможно упростить вид функции Гамильтона, а соответственно и исходящих из нее уравнений движения.

В данной ситуации удобно выбрать новые координаты так, чтобы одна описывала движение центра масс системы, а вторая колебания пружины в собственной системе отсчета. Убедимся, что заданная в условии производящая функция отвечает именно такому преобразованию.

Новая координата совпадает со значением смещения пружины от положения равновесия.

Новая координата совпадает со значением положения центра масс системы.

Сложив оба уравнения, получим:

,

,

Запишем функцию Гамильтона в новых переменных:

,

,

– суммарная масса системы.

Действительно, функция Гамильтона в новых переменных распалась на две части, что соответствует двум парам канонических уравнений. Одна часть описывает колебания шариков в собственной системе отсчета, другая – движение системы как целого в поле сил тяжести.

№ 9.21 [] Найти полный интеграл уравнения Г.-Я. и закон свободного движения материальной точки.

1. Составим функцию Гамильтона свободной частицы:

2. Запишем уравнение Г.-Я.:

3. Произведем разделение переменных и проинтегрируем по времени.

Используем начальное условие:

Тогда подставляя вид функции S в уравнение Г.-Я. , последнее примет вид:

Следовательно, полный интеграл уравнения Г.-Я.:

4. Закон движения определяется из канонического преобразования:

Откуда сам закон движения:

5. Импульс свободно движущейся материальной точки определяется следующим образом:

Действительно, частица в отсутствии внешнего поля движется с постоянным импульсом.

Домашнее задание:

№ 11.2 [] Найти производящую функцию вида , приводящую к тому же каноническому преобразованию, что и .

№ 9.38 [] Найти уравнение, которому удовлетворяет производящая функция , порождающая каноническое преобразование к постоянным импульсам и координатам.

№ 9.23 [] Найти полный интеграл уравнения Г.-Я. для тела, движущегося по гладкой наклонной плоскости, составляющей угол  с горизонтом.

№ 12.1 a) [] Найти траекторию и закон движения частицы в поле

Литература:

Л.Д. Ландау, Е.М. Лифшиц «Механика, электродинамика», — М.: «Наука», 1969 г., — 272 с.

Л.Д. Ландау, Е.М. Лифшиц «Механика», — М.: «Наука», 1965 г., — 204 с.

И.И. Ольховский, Ю.Г. Павленко, Л.С. Кузьменков «Задачи по теоретической механике для физиков», — М.: 1977 г., — 389 с.

Г.Л. Коткин, В.Г. Сербо «Сборник задач по теоретической механике», — М.: «Наука», 1977 г., — 320 с.

И.В. Мещерский «Сборник задач по теоретической механике», — М.: «Наука», 1986 г., — 448 с.

Л.П. Гречко, В.И. Сугаков, О.Ф. Томасевич, А.М. Федоренко «Сборник задач по теоретической физике», — М.: «Высшая школа» 1984 г., — 319 с.

Студент-практикант: Филатов А.С.

“Согласовано”“Утверждено”

Преподаватель Джежеря Ю.И . ___________

Методист ____________________

План-конспект занятия

По теоретической физике

Студента V курса физико-математического факультета, гр. ОФ-61

Филатова Александра Сергеевича

Дата проведения занятия: 06.12.2000

Тема: «Функция Гамильтона. Функция Рауса. Канонические уравнения»

Цели : Развить у учащихся навык решения задач на составление и использование функции Гамильтона и функции Рауса. Сформировать понимание взаимосвязи между функцией Гамильтона, Рауса и функцией Лагранжа. Закрепить знание свойств функции Лагранжа. Воспитывать трудолюбие, прилежность.

Тип занятия : практическое.

Ход занятия


Краткие теоретические сведения

Функция Гамильтона:

Функция Рауса:

Канонические уравнения:

Схема составления функции Гамильтона

Как следует из определения функции Гамильтона для составления самой функции необходимо знать вид функции Лагранжа. Однако при подстановке функции Лагранжа в явном виде в выражение в правой части будут присутствовать переменные . А мы знаем, что функция Гамильтона зависит только от . Т.о. необходимо установить связь . Эту зависимость нам дает определение обобщенных импульсов:

Итак, при решении задач на нахождение функции Гамильтона, когда вид функции кин. энергии не известен, что является самым общим случаем, вид функции Гамильтона необходимо искать опираясь на ее определение. Т.е. через функцию Лагранжа. При этом нужно следовать следующей схеме:

Записать функцию Лагранжа, при возможности преобразовав ее к более простому виду (это в частном случае подразумевает выбор новых обобщенных координат).

Определить зависимость

Записать саму функцию Гамильтона

Примеры решения задач

№ 10.3 [] Определить функцию Гамильтона ангармонического осциллятора, функция Лагранжа которого:

Подставляя полученное выражение в , имеем:

49.8 [] Материальная точка массы т подвешена с помощью стержня длины к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью . Составить а) функцию Гамильтона и б) канонические уравнения движения. Массу стержня не учитывать.

а) 1. Действуя согласно предлагаемой схеме составления функции Гамильтона, определим функцию Лагранжа системы:

Где . Поскольку функция Лагранжа определена с точностью до аддитивной константы, либо постоянного множителя, перепишем в виде:

Согласно выбранной системе координат:

Учитывая, что – по условию, получим выражение для функции Лагранжа с новой обобщенной координатой :

2. Найдем зависимость обобщенной скорости от обобщенного импульса системы. По определению обобщенных импульсов:

3. Следовательно, функция Гамильтона:

б) Используя формулы , найдем уравнения движения системы:

В частности, представляет интерес случай, когда , т.е. шарик движется в горизонтальной плоскости, описывая окружность. Логично предположить, что такое движение будет выполняться лишь при некотором фиксированном угле , значение которого как-то зависит от параметров системы. Найдем эту зависимость. Для этого заметим, что во втором уравнении системы левая часть будет равна нулю:

Первое уравнение дает тривиальное решение , что соответствует просто провисанию шарика — материальной точки. Т.о. условие движения маятника в плоскости есть:

Где – собственная частота колебаний маятника. Более того, выражение дает зависимость угла отклонения, обуславливающего движение в плоскости, от частоты вращения вертикальной оси, и собственной частоты маятника. Т.о., чтобы добиться устойчивого вращения в плоскости при желаемом угле отклонения, необходимо подбирать отношение между собственной частотой (которая определяется длинной стержня) и частотой вращения оси. Заметим также, что значение угла в этом случае не зависит от массы маятника. При значении частоты вращения вертикальной оси, превышающим значение собственной частоты маятника, второе уравнение системы решений не имеет. Но работает первое уравнение, из которого . Т.е. маятник будет провисать.

№ 9.5 [] Найти траекторию одномерного гармонического осциллятора в фазовом пространстве.

Фазовым пространством называется такое 2 s -мерное пространство, по осям которого откладываются s импульсов и s координат. ( s – число степеней свободы). Изменение состояния системы соответствует непрерывной линии – траектории движения системы в фазовом пространстве.

Функция Гамильтона гармонического осциллятора имеет вид:

Из закона сохранения энергии получим уравнение фазовой траектории гармонического осциллятора:

Т.е. траекторией является эллипс.

№ 10.4 [] Найти закон движения частицы, функция Гамильтона которой:

Закон движения частицы дают функции:

,

вид которых можно получить исходя из уравнений Гамильтона . Поделив 1-ое уравнение на 2-ое получим:

,

Выражая отсюда и приравнивая его к значению из уравнения Гамильтона, получим:

,

где

Или после интегрирования:

Подставляя полученную зависимость в выражение , получим:

Задача №1. Математический маятник массы т прикреплен к движущейся вдоль горизонтальной прямой муфте, масса которой М . Определить функцию Рауса системы.

Составим функцию Лагранжа:

Где .

Координату х можно представить в виде суммы:

Где х 1 – координата муфты (координата лабораторной системы отсчета), а х 2 – координата смещения шарика мат. маятника в системе отсчета муфты.

Из выражения следует:

Заметим, что х 1 – циклическая переменная.

Найдем обобщенный импульс :

Следовательно, по определению функция Рауса с учетом выражения :

Подставляя в последнее выражение зависимость , окончательно получим:

Запишем уравнение связи импульса с функцией Рауса:

Но поскольку х 1 не входит в функцию Рауса явно, то правая часть записанного равенства есть ноль. Т.е. импульс в процессе движения остается постоянным. Следовательно, функция Рауса фактически зависит только от 2-х независимых переменных: .

Задача №2. Определить функцию Рауса симметричного волчка в поле .

Используем известное нам значение функции Лагранжа для симметричного волчка:

По определению обобщенных импульсов:

Следовательно, по определению функция Рауса с учетом выражения :

Домашнее задание:

Задача№1. Исходя из функции Гамильтона для гармонического осциллятора, получить закон движения гармонического осциллятора.

№ 10.5 [] Найти уравнения движения частицы, функция Гамильтона которой: .

Указание: получить .

Литература:

Л.Д. Ландау, Е.М. Лифшиц «Механика, электродинамика», — М.: «Наука», 1969 г., — 272 с.

Л.Д. Ландау, Е.М. Лифшиц «Механика», — М.: «Наука», 1965 г., — 204 с.

И.И. Ольховский, Ю.Г. Павленко, Л.С. Кузьменков «Задачи по теоретической механике для физиков», — М.: 1977 г., — 389 с.

Г.Л. Коткин, В.Г. Сербо «Сборник задач по теоретической механике», — М.: «Наука», 1977 г., — 320 с.

И.В. Мещерский «Сборник задач по теоретической механике», — М.: «Наука», 1986 г., — 448 с.

Л.П. Гречко, В.И. Сугаков, О.Ф. Томасевич, А.М. Федоренко «Сборник задач по теоретической физике», — М.: «Высшая школа» 1984 г., — 319 с.

Студент-практикант: Филатов А.С.

“Согласовано”“Утверждено”

Преподаватель Джежеря Ю.И . ___________

Методист ____________________

План-конспект занятия

По теоретической физике

Студента V курса физико-математического факультета, гр. ОФ-61

Филатова Александра Сергеевича

Дата проведения занятия: 27.12.2000

Тема: «Функция Гамильтона-Якоби. Разделение переменных»

Цели : Закрепить умение использования метода Гамильтона-Якоби при решении задач с разделением переменных. Сформировать понимание сути и могущественности метода. Воспитывать трудолюбие, прилежность.

Тип занятия : практическое.

Ход занятия


Краткие теоретические сведения

При рассмотрении действия, как функции координат (и времени), следует выражение для импульса:

Из представления полной производной действия по времени следует уравнение Гамильтона-Якоби:

Здесь действие рассматривается как функция координат и времени: .

Путем интегрирования уравнения Гамильтона-Якоби , находят представление действия в виде полного интеграла, который является функцией s координат, времени, и s+1 постоянных ( s – число степеней свободы). Поскольку действие входит в уравнение Гамильтона-Якоби только в виде производной, то одна из констант содержится в полном интеграле аддитивным образом, т.е. полный интеграл имеет вид:

Константа А не играет существенной роли, поскольку действие входит везде лишь в виде производной. А определяет, что, фактически, лишь s констант меняют действие существенным образом. Эти константы определяются начальными условиями на уравнения движения, которые для любого значения А будут иметь одинаковый вид, как и само уравнение Гамильтона-Якоби.

Для того чтобы выяснить связь между полным интегралом уравнения Г.-Я. и интересующими нас уравнениями движения, необходимо произвести каноническое преобразование, выбрав полный интеграл действия в качестве производящей функции.

Константы будут выступать в качестве новых импульсов. Тогда новые координаты

тоже будут константы, поскольку

Выражая из уравнения координаты в виде функций от , мы и получим закон движения:

Решение задачи на нахождение зависимости существенно упрощается в случае разделения переменных. Такое возможно, когда какая-то координата может быть связана лишь с соответствующим ей импульсом и не связана ни с какими другими импульсами или координатами, входящими уравнение Г.-Я. В частности это условие выполняется для циклических переменных.

Итак, нахождение уравнений движения методом Гамильтона-Якоби сводится к следующему:

составить функцию Гамильтона;

записать уравнение Г.-Я., и определить какие переменные разделяются;

Путем интегрирования уравнения Г.-Я. получить вид полного интеграла ;

Составить систему s уравнений, и получить закон движения ;

По необходимости найти закон изменения импульсов: . Для чего продифференцировать полный интеграл по координатам , а потом подставить их явный вид, полученный в пункте 4.

Примеры решения задач

На прошлом занятии был продемонстрирован пример нахождения закона движения для свободной точки. Что же будет происходить при помещении точки в поле?

№ 9.22 [] Составить уравнения Г.-Я. для точки, движущейся в однородном гравитационном поле. Найти полный интеграл этого уравнения, а также траекторию и закон движения точки.

1. Направим ось Oz вверх по вертикали. Тогда функция Гамильтона точки в декартовых координатах примет вид:

2. Соответственно уравнение Г.-Я.:

3. Все переменные в этом уравнении разделяются. Здесь . Разделение переменных позволяет нам представить действие в виде суммы:

Тогда, к примеру, изменение х, повлечет за собой изменение лишь первого слагаемого в квадратных скобках уравнения . Слагаемое может меняться, а все выражение все равно тождественный ноль. Следовательно, это слагаемое есть константа.

Выполняя такого рода действия, получим следующий вид полного интеграла уравнения Г.-Я.:

Заметим, что в выражении полного интеграла уже содержится три константы. Система имеет три степени свободы. Поэтому эти три константы уже однозначно определяют уравнения движения. 4-ая константа может входить в действие только аддитивным образом и не играет существенной роли. Соответственно функция не должна содержать более констант. Полученная при интегрировании этой части действия константа будет выражаться через уже имеющиеся три. Поэтому вид функции определим, подставив действие в виде в уравнение Г.-Я. :

Интегрирование последнего уравнения приводит к функции:

Окончательно полный интеграл:

4. Отсюда на основании теоремы Якоби:

Первые два из этих уравнения показывают, что траекторией частицы является парабола, а третье уравнение представляет собой закон движения.

Далее найдем, что компоненты – сохраняются:

В частности, при нулевых значениях движение происходит по прямой вдоль оси Oz .

Найдем также компоненту , как функцию координат:

№ 9.24 [] Найти полный интеграл уравнения Г.-Я. для мат. маятника и закон его движения в квадратуре.

1. Чтобы составить функцию Гамильтона, можно пойти двумя путями.

Записать вид функции Гамильтона в полярных координатах:

Но поскольку длина стержня мат. маятника – величина постоянная, то , а функция Гамильтона примет вид:

2) Записать функцию Лагранжа, и из нее получить вид функции Гамильтона, который будет совпадать с представлением . Предлагается учащимся убедиться в этом самостоятельно в качестве домашнего задания.

2. Запишем уравнение Г.-Я.:

3. И время t и координата  – разделяются. Следовательно, полный интеграл имеет вид:

Подставляя его в уравнение Г.-Я. получим вид функции :

На основании теоремы Якоби найдем закон движения маятника:

Литература:

Л.Д. Ландау, Е.М. Лифшиц «Механика, электродинамика», — М.: «Наука», 1969 г., — 272 с.

Л.Д. Ландау, Е.М. Лифшиц «Механика», — М.: «Наука», 1965 г., — 204 с.

И.И. Ольховский, Ю.Г. Павленко, Л.С. Кузьменков «Задачи по теоретической механике для физиков», — М.: 1977 г., — 389 с.

Г.Л. Коткин, В.Г. Сербо «Сборник задач по теоретической механике», — М.: «Наука», 1977 г., — 320 с.

И.В. Мещерский «Сборник задач по теоретической механике», — М.: «Наука», 1986 г., — 448 с.

Л.П. Гречко, В.И. Сугаков, О.Ф. Томасевич, А.М. Федоренко «Сборник задач по теоретической физике», — М.: «Высшая школа» 1984 г., — 319 с.

Студент-практикант: Филатов А.С.

“Согласовано”“Утверждено”

Преподаватель Джежеря Ю.И . ___________

Методист ____________________

План-конспект занятия

По теоретической физике

Студента V курса физико-математического факультета, гр. ОФ-61

Филатова Александра Сергеевича

Дата проведения занятия: 13.12.2000

Тема: «Скобки Пуассона. Канонические преобразования»

Цели : Развить навык обращения со скобками Пуассона. Развить навык использования канонических преобразований. Научить осуществлять преобразования Лежандра для перехода к производящей функции от необходимых переменных. Воспитывать трудолюбие, прилежность.

Тип занятия : практическое.

Ход занятия


Краткие теоретические сведения

Скобки Пуассона:

Канонические преобразования переменных – это такие преобразования, при которых сохраняется канонический вид уравнений Гамильтона. Преобразования производят с помощью производящей функции, которая является функцией координат, импульсов и времени. Полный дифференциал производящей функции определяется следующим образом:

Выбирая производящую функцию от тех или иных переменных, получаем соответствующий вид канонических преобразований.

Примеры решения задач

№ 9.6 [] Показать, что уравнения Гамильтона можно записать в виде:

№ 9.7 [] Показать, что для функции канонических переменных имеют место соотношения:

№ 9.10 [] С помощью скобок Пуассона показать, что импульс системы является интегралом движения, если ее гамильтониан инвариантен относительно произвольного параллельного переноса системы в пространстве.

По определению обобщенный импульс есть:

Но в силу однородности времени функция Лагранжа явно от времени не зависит, следовательно, и выражение для импульса также не содержит в себе явной зависимости по времени:

Тогда следуя формуле :

При параллельном переносе тела в пространстве координаты каждой точки этого тела преобразуются по закону:

При этом изменение гамильтониана равно нулю. Но с другой стороны изменение гамильтониана равно:

Где суммирование идет по всем частицам системы. Но поскольку при параллельном переносе для каждой частицы , можем вынести его за знак суммы. Принимая во внимание, что , получим:

С другой стороны для каждой декартовой компоненты имеет место соотношение вида:

Здесь было использовано свойство аддитивности скобок Пуассона. Запишем совокупность этих соотношений в краткой форме:

Сопоставляя и находим:

Что означает, что импульс системы является интегралом движения.

№ 9.9а) [] Доказать, что скобки Пуассона .

Принимая во внимание, что , и что импульсы и координаты являются независимыми переменными, получим:

Проверяя равенство для всех значений i , т.е. для поочередно убеждаемся в тождественности последнего.

№ 10.14 а-1) [] Вычислить скобки Пуассона .

В силу равенств :

Компоненты вектора момента инерции можно записать как свертку тензоров (сам вектор является тензором I ранга):

,

где – полностью антисимметричный тензор, причем

,

остальные компоненты тензора равны нулю.

Подставляя формулу в выражение , получим:

Посчитаем по полученной формуле , к примеру, :

№ 9.31 [] Найти каноническое преобразование, соответствующее производящей функции: .

Поскольку производящая функция явно от времени не зависит, .

Такое преобразование явно не меняет вид канонических уравнений, к тому же сводит просто к взаимному переименованию координат и импульсов. Следовательно, в гамильтоновом формализме понятие обобщенных координат и импульсов лишено их первоначального смысла. Мы всегда можем назвать координаты импульсами, а импульсы координатами (см. ). Ввиду этой условности терминологии переменные p и q в формализме Гамильтона часто называют канонически сопряженными величинами.

№ 9.37 [] Показать, что гамильтониан является инвариантом при бесконечно малом каноническом преобразовании с производящей функцией

,

где – интеграл движения.

Запишем канонические преобразования:

Изменение гамильтониана в случае бесконечно малого канонического преобразования есть

Из канонических уравнений следует, что

Выражая из уравнения и подставляя его в уравнение , с точностью до членов первого порядка малости, получим:

Подставим и в выражение для изменения гамильтониана . Получим:

По условию функция f является интегралом движения. А значит

С другой стороны

Подставляя в последнее выражение равенства , получаем:

Сопоставляя и , делаем вывод, что изменение гамильтониана

,

что и требовалось доказать. Т.е. гамильтониан является инвариантом при бесконечно малом каноническом преобразовании с заданной производящей функцией.

Домашнее задание:

№ 9.8 [] Показать, что функция является интегралом движения свободной частицы в отсутствие внешних сил.

Для свободной частицы:

№ 9.9б) [] Доказать, что скобки Пуассона .

№ 10.14 а) [] Вычислить скобки Пуассона: , .

№ 9.32 [] Показать, что производящая функция определяет тождественное каноническое преобразование.

Литература:

Л.Д. Ландау, Е.М. Лифшиц «Механика, электродинамика», — М.: «Наука», 1969 г., — 272 с.

Л.Д. Ландау, Е.М. Лифшиц «Механика», — М.: «Наука», 1965 г., — 204 с.

И.И. Ольховский, Ю.Г. Павленко, Л.С. Кузьменков «Задачи по теоретической механике для физиков», — М.: 1977 г., — 389 с.

Г.Л. Коткин, В.Г. Сербо «Сборник задач по теоретической механике», — М.: «Наука», 1977 г., — 320 с.

И.В. Мещерский «Сборник задач по теоретической механике», — М.: «Наука», 1986 г., — 448 с.

Л.П. Гречко, В.И. Сугаков, О.Ф. Томасевич, А.М. Федоренко «Сборник задач по теоретической физике», — М.: «Высшая школа» 1984 г., — 319 с.


источники:

http://lektsii.net/5-1562.html

http://www.bestreferat.ru/referat-59633.html