Уравнение гамильтона якоби для чего оно

гамильтона — якоби уравнение

ГАМИЛЬТОНА — ЯКОБИ УРАВНЕНИЕ — дифференциальное ур-ние в частных производных 1-го порядка, описывающее движение голономных механич. систем под действием потенц. сил. Чтобы составить Г.- Я. у., необходимо для данной механич. системы знать Гамильтона функцию H(qi, pi, t), где qi и рi— — канонич. переменные: обобщённые координаты и обобщённые импульсы, a t — время. Тогда Г.- Я. у. будет иметь вид

где правая часть представляет собой выражение ф-ции H, в к-ром все pi заменены на , a S — подлежащая определению ф-ция координат qi и времени t, представляющая собой действие по Гамильтону; иногда ф-цию S (qi, t)наз. главной ф-цией Гамильтона.

В частном случае при движении одной материальной точки в силовом поле, определяемом силовой ф-цией U(x, у, z, t), Г.- Я. у. имеет вид

,

где т — масса точки, х, у, z — её координаты.

Г.- Я. у. непосредственно связано с Гамильтона уравнениями ,к-рые с матем. точки зрения являются для ур-ния (1) ур-ниями характеристик.

Чтобы с помощью Г.- Я. у. найти закон движения механич. системы, надо определить полный интеграл ур-ния (1), т. е. его решение, содержащее столько постоянных интегрирования, сколько в ур-нии независимых переменных. Этими переменными являются координаты qi и время t; число их равно s+1, где s — число степеней свободы системы. Следовательно, полный интеграл ур-ния (1) должен содержать s+l постоянную, из к-рых одна, как аддитивная, может быть отброшена, и имеет вид

Если решение Г.- Я. у. в виде (2) будет найдено, то, составив s равенств

где — новые произвольные постоянные, получим s алгебраических (недифференциальных) ур-ний, левые части к-рых содержат qi, и t и из к-рых можно определить qi в виде

Значения др. группы канонич. переменных рi находят из равенств

Ур-ния (4), выражающие qi как ф-ции t, и определяют положение механич. системы в любой момент времени, т. е. закон её движения. Входящие сюда постоянные и находят подстановкой начальных данных в равенства (4) и (5).

Если ф-ция Гамильтона H явно не содержит время, что, в частности, имеет место для консервативных систем, то S можно искать в виде

где h — постоянная, равная полной энергии системы, a S0 — величина, наз. укороченным действием (действием по Лагранжу) или характеристич. ф-цией и определяемая как полный интеграл ур-ния в частных производных

в виде Тогда полный интеграл Г.- Я. у. будет и закон движения системы определится в соответствии с (3) из равенств

Ур-ния (7), содержащие в данном случае только qi, и не содержащие время t, определяют в многомерном пространстве траекторию точки, изображающей данную механич. систему, а ур-ние (8) даёт закон движения вдоль этой траектории. Значения постоянных определяются и в этом случае подстановкой начальных данных в равенстве (5), (7) и (8).

Г.- Я. у. и связанный с ним метод решения задач механики играют важную роль и в др. областях физики, особенно в оптике и квантовой механике. В частности, известное в геом. оптике ур-ние эйконала подобно Г—Я. у. в виде (6), где S0 играет роль эйконала. Этот результат позволяет рассматривать классич. механику как аналог геом. оптики, в к-ром роль поверхностей движущейся волны играют поверхности S0(qi)=const, а роль световых лучей — ортогональные к этим поверхностям траектории движения.

Лит. см. при ст. Действие. С. M. Тарг.

Уравнение Гамильтона-Якоби — Методы решения уравнения Гамильтона–Якоби

Уравнение Гамильтона-Якоби

  • Уравнение Гамильтона-Якоби. § 43. Понятие действия как функция коор Ужин и время. Было показано, что частная производная по времени этой функции S (q, t) связана с функцией Гамильтона соотношением ^ + H (q, p, t) = 0, Частная производная по координатам согласуется с импульсом.

Замена импульса p функции Гамильтона на дифференциал dS / dq соответственно приводит к уравнению. -ds. И (ds ds * Ln (A * 7n \ + H (q1, …, qs; -; j = 0, Какая функция S (q, t) должна удовлетворять. Это уравнение в частных производных первого порядка. Это называется уравнением Гамильтона-Якоби.

уравнение Гамильтона-Якоби имеет вид Общий способ интегрировать уравнение движения Людмила Фирмаль

Помимо лагранжевых и канонических уравнений, . Возвращаясь к описанию этого метода, сначала напомним, что первое уравнение в частных производных имеет решение, зависящее от произвольной функции.

Такое решение называется общим интегралом уравнения. Однако в машинных приложениях основной Роль не является общим интегралом уравнения Гамильтона-Якоби, Так называемый совершенный интеграл — это имя решения уравнения в частных производных, которое содержит такое же количество независимых констант, что и число независимых переменных.

  • В уравнении Гамильтона-Якоби независимая переменная ми это время и координаты. Так что для систем с По степени свободы полный интеграл этого уравнения должен содержать произвольную постоянную 5 + 1. Кроме того, поскольку функция S входит в уравнение только через свои производные, Тогда одна из произвольных постоянных включается в аддитивно полное интегрирование.

Полная интеграция уравнений Форма Гамильтона Якоби s = f (t, Людмила Фирмаль

Для этого канонические преобразования из q, p / (Ј, q, σ) и выберите величину ai, (X2, …, cx5 в качестве нового импульса. Новые координаты обозначены s.

Потому что мы зависим от Необходимо использовать выражение (45.8). D). _ d / o _ df tg! _ T T I & f P r% ‘^ d o’ ’+ 3 t ‘ Но так как функция / удовлетворяет уравнению, Вы можете видеть Гамильтона Якоби, а затем исчезает и новая функция Гамильтона: я = я +! = я + х = ° — Таким образом, новое переменное каноническое уравнение является нефть = 0, (3r = 0, ots = const, (3 ^ = const. (47,3)

Между тем, уравнение S ^ doc = p6 * s-координата q может быть выражена во времени и 25 Постоянные os и (3. Поэтому находим общий интеграл уравнения движения. Следовательно, решение проблемы механического движения Система Гамильтона-Якоби сводится к следующей операции.

Функция Гамильтона составляет уравнение Гамильтона Он-Якоби является полным интегралом (47.2) этого уравнения. Продифференцируем по произвольной постоянной a, чтобы получить новую постоянную (3, систему алгебраических уравнений. E. = E. (».4) Решение этого находит координату q как функцию времени и 25 Любая константа.

Зависимость импульса от времени можно определить по уравнению = OS / dqi. Если существует неполный интеграл уравнения Гамильтона, Якоби, зависит от любой константы, меньшей s, но с ее помощью невозможно найти общий интеграл Хотя это уравнение движения, его можно немного упростить. Discovery.

Так что, если мы знаем функцию S ‘, которая содержит произвольную константу а, 8 секунд — = const доктор Дайте одно уравнение, связанное с gi, …, qs, t. Уравнение Гамильтона-Якоби занимает еще несколько Простая форма, когда функция явно не зависит от времени, то есть система является консервативной. Зависимость действия от времени — «Et: S = S0 (q) -E t (47,5) (См. §44) и заменяя (47.1) Уравнение действия Гамильтона-Якоби So (q) вида (47-б)

Если вам потребуется помощь по физике вы всегда можете написать мне в whatsapp.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

ГА́МИЛЬТОНА – ЯКО́БИ УРАВНЕ́НИЕ

  • В книжной версии

    Том 6. Москва, 2006, стр. 358

    Скопировать библиографическую ссылку:

    ГА́ МИЛЬТОНА – ЯК О́БИ УРАВНЕ́НИЕ, диф­фе­рен­ци­аль­ное урав­не­ние в ча­ст­ных про­из­вод­ных 1-го по­ряд­ка, к ин­тег­ри­ро­ва­нию ко­то­ро­го сво­дит­ся ре­ше­ние урав­не­ний дви­же­ния го­ло­ном­ной кон­сер­ва­тив­ной ме­ха­нич. сис­те­мы, пред­став­лен­ных в фор­ме Га­миль­то­на урав­не­ний . Г. – Я. у. име­ет вид $$\frac<\partial S><\partial t>+H \big(t,q_1, \cdots, q_n, \frac<\partial S><\partial q_1>, \cdots,\frac<\partial S><\partial q_n>\big)=0,$$ где $S$ – не­из­вест­ная функ­ция вре­ме­ни $t $ и обоб­щён­ных ко­ор­ди­нат $q_1, . q_n$ , на­зы­вае­мая дей­ст­ви­ем , $H=H(t, q_i, p_i)$ – Га­миль­то­на функ­ция , $p_1, . p_n$ – обоб­щён­ные им­пуль­сы, $n$ – чис­ло сте­пе­ней сво­бо­ды сис­те­мы.


    источники:

    http://lfirmal.com/uravnenie-gamiltona-yakobi-2/

    http://bigenc.ru/physics/text/2343170