Уравнение гармонических колебаний онлайн решение

Гармонические колебания

теория по физике 🧲 колебания и волны

Гармоническими законами называют законы синуса и косинуса. Следовательно, гармоническими колебаниями называют те колебания, при которых координата тела изменяется синусоидально или косинусоидально.

Гармонические колебания — колебания, при которых координата тела изменяется с течением времени по гармоническому закону.

Ниже представлен график косинусоидальной функции. Обратите внимание, что косинус при возрастании аргумента от нуля сначала меняется медленно, а потом он все быстрее и быстрее приближается к нулю. Пройдя через него, его модуль снова быстро возрастает. Но по мере приближения к максимальному значению он снова замедляется. Точно так же меняются координаты свободно колеблющегося тела.

Важно! Гармоническими можно считать только те колебания, что совершаются грузом, закрепленном на пружине, или математическим маятником, отклоняемым на малый угол, при котором ускорение тела пропорционально его смещению.

Уравнение движения гармонических колебаний

Известно, что ускорение колеблющегося на пружине груза пропорционально его смещению от положения равновесия:

Также известно, что ускорение есть вторая производная координаты. Следовательно, при свободных колебаниях координата изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x″ = − x m a x cos . t = − x

Видно, что в этом случае теряется величина k m . . , служащая постоянной для каждой колебательной системы. Чтобы получить ее во второй производной, нужно усложнить функцию до следующего вида:

x = x m a x cos . √ k m . . t

Тогда первая производная примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x′ = − √ k m . . x m a x sin . √ k m . . t

Вторая производная примет вид:

x″ = − k m . . x m a x cos . √ k m . . t = − k m . . x

Так как мы получили ровно такое же выражение, то описать свободные колебания можно уравнениями следующего вида:

x = x m a x sin . √ k m . . t

x = x m a x cos . √ k m . . t

Обозначим постоянную величину √ k m . . , зависящую от свойств системы, за ω0:

x = x m a x sin . ω 0 t

x = x m a x cos . ω 0 t

Само уравнение движения, описывающего свободные колебания, примет вид:

Период и частота гармонических колебаний

Минимальный промежуток времени T, через который движение тела полностью повторяется, называют периодом колебания. Зная его, можно вычислить частоту колебаний, равную числу колебаний в единицу времени. Эти величины связаны между собой выражением:

Через промежуток времени, равный периоду T и соответствующий изменению аргумента косинуса на ω 0 T , движение тела повторяется, и косинус принимает прежнее значение. Но из математики известно, что наименьший период косинуса равен 2π. Следовательно:

ω 0 = 2 π T . . = 2 π ν

Таким образом, величина ω 0 представляет собой число колебаний тела, но не за 1 секунду, а за 2 π секунд. Эта величина называется циклической (круговой) частотой. А частоту свободных колебаний называют собственной частотой колебательной системы.

Зависимость частоты и периода свободных колебаний от свойств системы

Изначально за величину ω 0 мы принимали постоянную, характеризующую свойства системы:

Теперь мы выяснили, что циклическая частота связана с периодом и частотой колебаний. Следовательно, период и частота колебаний также зависят от свойств системы:

ω 0 = √ k m . . = 2 π T . . = 2 π ν

Отсюда период и частота колебаний соответственно равны:

T = 2 π ω 0 . . = 2 π √ m k . .

ν = 1 2 π . . √ k m . .

Вспомним, что свойства колебательной системы математического маятника определяются постоянной величиной g l . . . Следовательно, циклическая частота для него равна:

Отсюда период и частота колебаний математического маятника соответственно равны:

T = 2 π ω 0 . . = 2 π √ l g . .

ν = 1 2 π . . √ g l . .

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом, современником И. Ньютона.

Период колебания возрастает с увеличением длины маятника. От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода от ускорения свободного падения также легко прослеживается. Чем меньше величина g, тем больше период колебания маятника, и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут в сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета, который находится на высоте 200 м. И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебания, можно легко измерить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно неодинаково, так как плотность земной коры неоднородна. В районах, где залегают более плотные породы, ускорение свободного падения принимает большие значения.

Пример №1. Сколько колебаний совершает математический маятник длиной 4,9 м за время 5 минут?

Искомое число колебаний равно отношению времени к периоду колебаний:

Период колебаний для математического маятника определяется формулой:

N = t 2 π . . √ g l . . = 300 2 · 3 , 14 . . √ 9 , 8 4 , 9 . . ≈ 68

Фаза колебаний

При заданной амплитуде гармонических колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса, который равен ω 0 t . Обозначим его за ϕ и получим:

Величину ϕ, стоящую под знаком косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах — радианах (рад).

Фаза определяет значение не только координаты, но и других физических величин (к примеру, скорости и ускорения, которые также изменяются по гармоническому закону). Отсюда можно сделать вывод, что фаза определяет при заданной амплитуде состояния колебательной системы в любой момент времени.

Колебания с одинаковыми частотами и амплитудами могут отличаться друг от друга фазами. Так как ω 0 = 2 π T . . , фаза определяется формулой:

ϕ = ω 0 t = 2 π t T . .

t T . . — отношение, которое указывает, какая часть периода прошла от момента начала колебаний. Любому моменту времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. К примеру:

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. В этом случае графиком также будет являться косинусоида (или синусоида), но аргументом функции будет не время (период), а фаза, выражающаяся в радианах (см. рис.).

Синус от косинуса отличается только смещением аргумента на π 2 . . (см. рис. ниже). Поэтому для описания гармонических колебаний можно использовать как синусоидальный, так и косинусоидальный закон.

Выбор закона зависит от условий задачи. Если колебания начинаются с того, что тело выводят из положения равновесия и отпускают, удобнее пользоваться косинусоидальным законом, поскольку в начальный момент времени косинусоида показывает, что это тело отклонено максимально, а не находится в положении равновесия. Если для того чтобы начались колебания, совершают толчок, удобнее использовать синусоидальный закон, так как начальному моменту времени на синусоиде соответствует положение равновесия.

Колебания, совершаемые по закону синуса и косинуса, отличаются только фазой, которая смещена на значение, равное π 2 . . . Это значение называют сдвигом фаз, или их разностью. Поэтому косинусоидальная функция также может быть записана как:

x = x m a x cos . ω 0 t = x m a x sin . ( ω 0 t + π 2 . . )

Превращение энергии при гармонических колебаниях

Чтобы описать превращения энергии при гармонических колебаниях, условимся, что силой трения будем пренебрегать. Для описания обратимся к рисунку ниже.

Точке О на рисунке соответствует положение равновесия шарика. Если его оттянуть на расстояние xmax, равное амплитуде, пружина получит потенциальную энергию, которая примет в этом положении максимальное значение, равное:

W p m a x = k x 2 m a x 2 . .

Когда шарик отпускают, возникает сила упругости, под действием которой шарик устремляется влево. По мере уменьшения расстояния между точкой максимального отклонения и положением равновесия уменьшается и потенциальная энергия. Но в это время увеличивается кинетическая энергия шарика. Когда шарик проходит через положение равновесия в первый раз, его потенциальная энергия становится равной нулю, а кинетическая энергия обретает максимальное значение (скорость в этот момент времени тоже максимальна):

W k m a x = m v 2 m a x 2 . .

После прохождения точки О расстояние между шариком и положением равновесия снова увеличивается, и потенциальная энергия растет. Кинетическая же энергия при этом уменьшается. А в крайнем положении слева она становится равной нулю, в то время как потенциальная энергия снова примет максимальное значение.

Так как мы условились пренебрегать трением, данную колебательную систему можно считать изолированной. Тогда в ней должен соблюдаться закон сохранения энергии. Согласно ему, полная механическая энергия системы равна:

W = W p + W k = k x 2 x 2 . . + m v 2 x 2 . . = k x 2 m a x 2 . . = m v 2 m a x 2 . .

В действительности свободные колебания всегда затухают, так как в колебательной системе действует сила трения. И часть механической энергии рассеивается в виде тепла. Пример графика затухающих колебаний выглядит следующим образом:

Пример №2. Груз, прикрепленный к пружине, колеблется на горизонтальном гладком стержне. Найдите отношение кинетической энергии груза к его потенциальной энергии системы в момент, когда груз находится в точке, расположенной посередине между крайним положением и положением равновесия.

Так как груз находится посередине между крайним положением и положением равновесия, его координата равна половине амплитуды:

В это время потенциальная энергия груза будет равна:

W p = k x 2 2 . . = k ( x m a x 2 . . ) 2 2 . . = k x 2 m a x 8 . .

Согласно закону сохранения энергии, кинетическая энергия в это время равна:

Полная механическая энергия системы равна максимальной потенциальной энергии:

W = W p m a x = k x 2 m a x 2 . .

Тогда кинетическая энергия равна:

W k = k x 2 m a x 2 . . − k x 2 m a x 8 . .

Следовательно, отношение кинетической энергии к потенциальной будет выглядеть так:

W k W p . . = k x 2 m a x 2 . . − k x 2 m a x 8 . . k x 2 m a x 8 . . . . = k x 2 m a x 2 . . 8 k x 2 m a x . . − 1 = 4 − 1 = 3

Резонанс

Самый простой способ возбуждения незатухающих колебаний состоит в том, что на систему воздействуют внешней периодической силой. Такие колебания называют вынужденными.

Работы силы над такой системой обеспечивает приток энергии к системе извне. Приток энергии не дает колебаниям затухнуть, несмотря на действие сил трения.

Особый интерес вызывают вынужденные колебаний в системе, способной совершать свободные колебания. Примером такой системы служат качели. Их не получится отклонить на большой угол всего лишь одним толчком. Если их толкать то в одну, то в другую сторону, тоже ничего не получится. Но если подталкивать качели всякий раз, как они сравниваются с нами, можно раскачать их очень сильно. При этом не нужно прикладывать большую силу, но на это понадобится время. Причем после каждого такого толчка амплитуда колебаний качелей будет увеличиваться до тех пор, пока не достигнет своего максимального значения. Такое явление называется резонансом.

Резонанс — резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой свободных колебаний.

Графически явление резонанса можно изобразить как резкий скачок графика вверх (см. рис. выше). Причем высота «зубца», или амплитуда колебаний, будет зависеть от величины сил трения. Чем больше сила трения, тем меньше при резонансе возрастает амплитуда вынужденных колебаний. Это можно продемонстрировать графиками на рисунке ниже. Графику 1 соответствует минимальное трение, графику 3 — максимальное.

На явлении резонанса основан принцип работы частотомера — устройства, предназначенного для измерения частоты переменного тока. Он состоит из набора упругих пластин, которые закреплены на одной планке. Каждая пластина обладает определенной собственной частотой колебаний, которая зависит от упругих свойств, длины и массы. Собственные колебания пластин известны. Под действием электромагнита планка, а вместе с ней и пластины совершают вынужденные колебания. Но лишь та пластина, собственная частота которой совпадает с частотой колебаний планки, будет иметь большую амплитуду колебаний. Таким образом, определяется частота переменного тока.

Пример №3. Автомобиль движется по неровной дороге, на которой расстояние между буграми равно приблизительно 8 м. Период свободных колебаний автомобиля на рессорах 1,5 с. При какой скорости автомобиля его колебания в вертикальной плоскости станут особенно заметными?

Колебания автомобиля в вертикальной плоскости будут заметны тогда, когда частота наезда на бугры сравняется с частотой свободных колебаний автомобиля на рессорах. Поскольку частота обратно пропорциональна периоду, можно сказать, что резонанс будет достигнут тогда, когда автомобиль будет наезжать на бугры каждые 1,5 секунды. Зная расстояние между буграми и время, можем вычислить скорость:

v = s t . . = 8 1 , 5 . . ≈ 5 , 33 ( м с . . ) ≈ 19 , 2 ( к м ч . . )

Смещение груза пружинного маятника меняется с течением времени по закону x = A cos . 2 π T . . t , где период Т = 1 с. Через какое минимальное время, начиная с момента t = 0, потенциальная энергия маятника вернется к своему исходному значению?

Гармонические колебания.

Гармонические колебания — это колебания, при которых физическая величина меняется во времени по синусоидальному закону:

.

где х — значение колеблющейся величины в момент времени t, А — амплитуда, ω — круговая частота, φ — начальная фаза колебаний, (φt + φ) — полная фаза колебаний. При этом величины А, ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость, для электрических колебаний — напряжение и сила тока.

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии Wp в кинетическую Wk и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней­шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво­начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости, она равна:

.

где vm — максимальная скорость тела (в положении равновесия), хm = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.

Гармонические колебания

Колебаниями называют такие движения или процессы, которые повторяются.

По своей природе колебания делят на механические, электромагнитные и др. Разные виды колебаний описывают при помощи одинаковых уравнений и при этом используют одинаковые характеристики.

Колебания являются свободными (собственными), если они происходят за счет энергии, которая получена колебательной системой один раз и в дальнейшем внешние воздействия на эту систему отсутствуют.

Уравнение и характеристики гармонических колебаний

Самым простым видом колебаний считают гармонические колебания.

Гармоническими колебаниями называют такие колебания, при которых переменная величина изменяется в зависимости от времени по закону синуса или косинуса. Пусть происходят гармонические колебания никоторого параметра $s$, тогда они описываются как:

где $A=s_$ — амплитуда колебаний; $<\omega >_0$ — циклическая (круговая) частота колебаний; $\varphi $ — начальная фаза колебаний (фаза при $t=0$); $(<\omega >_0t+\varphi )$ — фаза колебаний. Величина $s$ изменяется $-A\le s\le $+A.

Промежуток времени, через который повторяются определенные состояния системы (T) называют периодом. За время равное периоду колебаний фаза изменяется на величину равную $2\pi $, поэтому:

Любые процессы, которые повторяются через одинаковые промежутки времени (периодические процессы) можно представить в виде совокупности наложенных гармонических колебаний.

Физическая величина обратная периоду колебаний называется частотой ($\nu $). Частота — это количество полных колебаний, которые совершаются за единицу времени.

Из (2) и (3) следует, что циклическая частота равна:

Дифференциальное уравнение гармонических колебаний

Дифференциальное уравнение гармонических колебаний записывают как:

Решением уравнения (5) является выражение (1).

Графическое изображение гармонических колебаний

В физике применяют еще один метод, который отличается от метода векторных диаграмм формой. В этом методе колеблющуюся величину в виде комплексного числа. В соответствии с формулой Эйлера:

где $i$ — мнимая единица. При этом уравнение гармонических колебаний записывают как:

Вещественная часть выражения (7) — гармоническое колебание:

Часто значок, обозначающий реальную часть ($Re$) опускают, тогда записывают:

Примеры задач с решением

Задание. Запишите уравнение гармонических колебаний материальной точки, если амплитуда колебаний равна 8м, за $t=1\ мин$ точка совершает $n=$120 колебаний. Начальная фаза колебаний равна $\varphi =\frac<\pi ><4>$.

Решение. Найдем циклическую частоту колебаний ($<\omega >_0$):

Период колебаний вычислим, так как нам известно, что на 120 колебаний затрачено время $t=1$ мин=60с:

Циклическая частота колебаний равна:

Уравнение гармонических колебаний будем записывать в форме:

Задание. Материальная точка, массы $m$ подвешена на пружине (рис.2). Она совершает гармонические колебания под действием силы упругости. Чему равна потенциальная энергия ($E_p$) этой материальной точки?

Решение. Материальная точка совершает прямолинейные гармонические колебания вдоль оси X (рис.1). Сила, действующая на точку равна:

Так как по условию колебания гармонические, запишем:

Из (2.1) и (2.2) получаем:

Сила упругости является потенциальной, следовательно:

Ответ. $E_p=\frac^2_0A^2><2><^2 \left(<\omega >_0t+\varphi \right)\ >$


источники:

http://www.calc.ru/Garmonicheskiye-Kolebaniya.html

http://www.webmath.ru/poleznoe/fizika/fizika_14_garmonicheskie_kolebanija.php

Время, t (с)0
Фаза, ϕ (рад)0