Уравнение гармонических колебаний тока и напряжения

Электромагнитные колебания и волны

Свободные электромагнитные колебания. Колебательный контур

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур — это замкнутый контур, образованный последовательно соединенными конденсатором и катушкой.

Сопротивление катушки ​ \( R \) ​ равно нулю.

Если зарядить конденсатор до напряжения ​ \( U_m \) ​, то в начальный момент времени ​ \( t_1=0 \) ​, напряжение на конденсаторе будет равно ​ \( U_m \) ​. Заряд конденсатора в этот момент времени будет равен ​ \( q_m=CU_m \) ​. Сила тока равна нулю.

Полная энергия системы будет равна энергии электрического поля:

Конденсатор начинает разряжаться, по катушке начинает течь ток. Вследствие самоиндукции в катушке конденсатор разряжается постепенно.

Ток достигает своего максимального значения ​ \( I_m \) ​ в момент времени ​ \( t_2=T/4 \) ​. Заряд конденсатора в этот момент равен нулю, напряжение на конденсаторе равно нулю.

Полная энергия системы в этот момент времени равна энергии магнитного поля:

В следующий момент времени ток течет в том же направлении, постепенно (вследствие явления самоиндукции) уменьшаясь до нуля. Конденсатор перезаряжается. Заряды обкладок имеют заряды, по знаку противоположные первоначальным.

В момент времени ​ \( t_3=T/2 \) ​ заряд конденсатора равен ​ \( q_m \) ​, напряжение равно ​ \( U_m \) ​, сила тока равна нулю.

Полная энергия системы равна энергии электрического поля конденсатора.

Затем конденсатор снова разряжается, но ток через катушку течет в обратном направлении.

В момент времени ​ \( t_4=3T/4 \) ​ сила тока в катушке достигает максимального значения, напряжение на конденсаторе и его заряд равны нулю. С этого момента ток в катушке начинает убывать, но не сразу (явление самоиндукции). Энергия магнитного поля переходит в энергию электрического поля. Конденсатор начинает заряжаться, и через некоторое время его заряд равен первоначальному, а сила тока станет равной нулю.

Через время, равное периоду ​ \( T \) ​, система возвращается в начальное состояние. Совершилось одно полное колебание, дальше процесс повторяется.

Важно!
Колебания, происходящие в колебательном контуре, – свободные. Они совершаются без какого-либо внешнего воздействия — только за счет энергии, запасенной в контуре.

В контуре происходят превращения энергии электрического поля конденсатора в энергию магнитного поля катушки и обратно. В любой произвольный момент времени полная энергия в контуре равна:

где ​ \( i, u, q \) ​ – мгновенные значения силы тока, напряжения, заряда в любой момент времени.

Эти колебания являются затухающими. Амплитуда колебаний постепенно уменьшается из-за электрического сопротивления проводников.

Вынужденные электромагнитные колебания. Резонанс

Вынужденными электромагнитными колебаниями называют периодические изменения заряда, силы тока и напряжения в колебательном контуре, происходящие под действием периодически изменяющейся синусоидальной (переменной) ЭДС от внешнего источника:

где ​ \( \varepsilon \) ​ – мгновенное значение ЭДС, \( \varepsilon_m \) – амплитудное значение ЭДС.

При этом к контуру подводится энергия, необходимая для компенсации потерь энергии в контуре из-за наличия сопротивления.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре с малым активным сопротивлением при совпадении частоты вынужденных колебаний внешней ЭДС с частотой собственных колебаний в контуре.

Емкостное и индуктивное сопротивления по-разному изменяются в зависимости от частоты. С увеличением частоты растет индуктивное сопротивление, а емкостное уменьшается. С уменьшением частоты растет емкостное сопротивление и уменьшается индуктивное сопротивление. Кроме того, колебания напряжения на конденсаторе и катушке имеют разный сдвиг фаз по отношению к колебаниям силы тока: для катушки колебания напряжения и силы тока имеют сдвиг фаз ​ \( \varphi_L=-\pi/2 \) ​, а на конденсаторе \( \varphi_C=\pi/2 \) ​. Это означает, что когда растет энергия магнитного поля катушки, то энергия электрического поля конденсатора убывает, и наоборот. При резонансной частоте индуктивное и емкостное сопротивления компенсируют друг друга и цепь обладает только активным сопротивлением. При резонансе выполняется условие:

Резонансная частота вычисляется по формуле:

Важно!
Резонансная частота не зависит от активного сопротивления ​ \( R \) ​. Но чем меньше активное сопротивление цепи, тем ярче выражен резонанс.

Чем меньше потери энергии в цепи, тем сильнее выражен резонанс. Если активное сопротивление очень мало ​ \( (R\to0) \) ​, то резонансное значение силы тока неограниченно возрастает. С увеличением сопротивления максимальное значение силы тока уменьшается, и при больших значениях сопротивления резонанс не наблюдается.

График зависимости амплитуды силы тока от частоты называется резонансной кривой. Резонансная кривая имеет больший максимум в цепи с меньшим активным сопротивлением.

Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке. Эти напряжения становятся одинаковыми и во много раз больше внешнего напряжения. Колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. При резонансе амплитуды этих напряжений одинаковы и они компенсируют друг друга. Падение напряжения происходит только на активном сопротивлении.

При резонансе возникают наилучшие условия для поступления энергии от источника напряжения в цепь: при резонансе колебания напряжения в цепи совпадают по фазе с колебаниями силы тока. Установление колебаний происходит постепенно. Чем меньше сопротивление, тем больше времени требуется для достижения максимального значения силы тока за счет энергии, поступающей от источника.

Явление резонанса используется в радиосвязи. Каждая передающая станция работает на определенной частоте. С приемной антенной индуктивно связан колебательный контур. При приеме сигнала в катушке возникают переменные ЭДС. С помощью конденсатора переменной емкости добиваются совпадения частоты контура с частотой принимаемых колебаний. Из колебаний всевозможных частот, возбужденных в антенне, контур выделяет колебания, равные его собственной частоте.

Резонанс может привести к перегреву проводов и аварии, если цепь не рассчитана на работу в условиях резонанса.

Гармонические электромагнитные колебания

Гармоническими электромагнитными колебаниями называются периодические изменения заряда, силы тока и напряжения, происходящие по гармоническому – синусоидальному или косинусоидальному – закону.

В электрических цепях это могут быть колебания:

  • силы тока – ​ \( i=I_m\cos(\omega t+\varphi+\frac<\pi><2>); \) ​
  • напряжения – \( u=U_m\cos(\omega t+\varphi); \)
  • заряда – \( q=q_m\cos(\omega t+\varphi); \)
  • ЭДС – \( \varepsilon=\varepsilon_m\sin\omega t. \)

В этих уравнениях ​ \( \omega \) ​ –циклическая частота, ​ \( \varphi \) ​ – начальная фаза колебаний, амплитудные значения: силы тока – ​ \( I_m \) ​, напряжения – ​ \( U_m \) ​ и заряда – ​ \( q_m \) ​.

Важно!
Если в начальный момент времени заряд имеет максимальное значение, а сила тока равна нулю, то колебания заряда совершаются по закону косинуса с начальной фазой, равной нулю. Если в начальный момент времени заряд равен нулю, а сила тока максимальна, то колебания заряда совершаются по закону синуса.

Сила тока равна первой производной заряда от времени:

Амплитуда колебаний силы тока равна:

Колебания заряда и напряжения в колебательном контуре происходят в одинаковых фазах. Амплитуда напряжения равна:

Колебания силы тока смещены по фазе относительно колебаний заряда на ​ \( \pi/2 \) ​.

Период свободных электромагнитных колебаний

Период свободных электромагнитных колебаний находится по формуле Томсона:

где ​ \( L \) ​ – индуктивность катушки, ​ \( C \) ​ – электроемкость конденсатора.

Важно!
Период и циклическая частота не зависят от начальных условий, а определяются только индуктивностью катушки и электроемкостью конденсатора. Амплитуда колебаний заряда и силы тока определяются начальным запасом энергии в контуре.

При свободных гармонических колебаниях происходит периодическое преобразование энергии. Период колебаний энергии в два раза меньше, чем период колебаний заряда, силы тока и напряжения. Частота колебаний энергии в два раза больше частоты колебаний заряда, силы тока и напряжения.

Переменный ток. Производство, передача и потребление электрической энергии

Переменным называется ток, изменяющийся по величине и направлению по гармоническому закону.

Переменный ток представляет пример вынужденных электромагнитных колебаний. Для описания переменного электрического тока используют следующие величины:

• мгновенное значение силы тока – i;

• мгновенное значение напряжения – u;

• амплитудное значение силы тока – Im;

• амплитудное значение напряжения –Um.

Цепь переменного тока представляет собой колебательный контур, к которому приложена внешняя синусоидальная ЭДС. В цепь переменного тока могут включаться различные нагрузки: резистор, катушка, конденсатор.

Активное сопротивление

Проводник, преобразующий всю энергию электрического тока во внутреннюю, называется активным сопротивлением ​ \( R \) ​. (Эту величину мы раньше называли сопротивлением.) Активное сопротивление зависит от материала проводника, его длины и площади поперечного сечения и не зависит от частоты переменного тока.

В проводнике с активным сопротивлением колебания силы тока и напряжения совпадают по фазе:

Мгновенное значение мощности: ​ \( p=i^2R, \) ​

среднее значение мощности за период: ​ \( \overline

=\frac<2>. \) ​

Действующим значением силы переменного тока ​ \( I_Д \) ​ называют значение силы постоянного тока, который в том же проводнике выделяет то же количество теплоты , что и переменный ток за то же время:

Действующим значением напряжения переменного тока ​ \( U_Д \) ​ называют значение напряжения постоянного тока, который в том же проводнике выделяет то же количество теплоты, что и переменный ток за то же время:

Для цепи с активным сопротивлением выполняется закон Ома для мгновенных, амплитудных и действующих значений.

Индуктивное сопротивление

Катушка в цепи переменного тока имеет большее сопротивление, чем в цепи постоянного тока. В такой цепи колебания напряжения опережают колебания силы тока по фазе на ​ \( \pi/2 \) ​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке:

где ​ \( L \) ​ – индуктивность катушки.

Индуктивным сопротивлением ​ \( X_L \) ​ называют физическую величину, равную произведению циклической частоты на индуктивность катушки:

Индуктивное сопротивление прямо пропорционально частоте. Физический смысл индуктивного сопротивления: ЭДС самоиндукции препятствует изменению в ней силы тока. Это приводит к существованию индуктивного сопротивления, уменьшающего силу тока.

Для цепи с индуктивным сопротивлением выполняется закон Ома.

Емкостное сопротивление

В цепи постоянного тока через конденсатор ток не идет. Для переменного тока конденсатор обладает конечным сопротивлением, обратно пропорциональным его емкости. В цепи переменного тока сопротивление конденсатора меньше, чем в цепи постоянного тока.

В такой цепи колебания напряжения отстают от колебаний силы тока по фазе на ​ \( \pi/2 \) ​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке: ​ \( I_m=C\omega U_m. \) ​.

Если ввести обозначение ​ \( X_C=\frac<1> <\omega C>\) ​, то получим соотношение между амплитудными значениями силы тока и напряжения, аналогичное закону Ома: ​ \( I_m=\frac. \) ​

Емкостным сопротивлением ​ \( X_C \) ​ называют величину, обратную произведению циклической частоты на электроемкость конденсатора. Емкостное сопротивление обратно пропорционально частоте.

Физический смысл емкостного сопротивления: изменению переменного тока в любой момент времени противодействует электрическое поле между обкладками конденсатора.

В цепи переменного тока колебания силы тока и ЭДС происходят по синусоидальному закону с одинаковой циклической частотой ​ \( \omega \) ​ и разностью фаз ​ \( \varphi \) ​:

Соотношения амплитудных значений силы тока ​ \( I_m \) ​ и ЭДС ​ \( \varepsilon_m \) ​ в цепи переменного тока связаны между собой законом Ома для цепи переменного тока:

Он гласит: амплитуда силы переменного тока прямо пропорциональна амплитуде ЭДС и обратно пропорциональна полному сопротивлению цепи:

Величина ​ \( Z \) ​ называется полным сопротивлением цепи переменного тока.

Электрическая энергия имеет перед другими видами энергии следующие преимущества:

  • можно передавать на большие расстояния с малыми потерями;
  • удобно распределять между потребителями;
  • легко превращать в другие виды энергии.

В настоящее время производится и используется энергия переменного тока. Это связано с возможностью преобразовывать его напряжение и силу тока с малыми потерями энергии, что особенно важно при передаче электроэнергии на большие расстояния.

Различают следующие типы электростанций:

Получение переменного тока

Переменный ток получают с помощью генератора переменного тока.

Генератор переменного тока (электромеханический генератор переменного тока) – это устройство, преобразующее механическую энергию в электрическую. В основе работы генератора переменного тока лежит явление электромагнитной индукции.

Процесс получения переменного тока можно рассмотреть на примере вращения витка провода в однородном магнитном поле. Магнитный поток через площадь витка равен:

Если период вращения витка ​ \( T \) ​, то угол ​ \( \alpha=\frac<2\pi t>=\omega t \) ​.

Тогда ​ \( \Phi=BS\cos\omega t. \) ​

ЭДС индукции изменяется по закону ​ \( e=-\Phi’=BS\omega\sin\omega t=\varepsilon_m\sin\omega t. \) ​

Амплитуда ЭДС ​ \( \varepsilon_m=BS\omega. \) ​

Если рамка содержит ​ \( N \) ​ витков, то ​ \( \varepsilon_m=NBS\omega. \) ​

Основные части генератора переменного тока:

  • обмотка статора с большим числом витков, в ней индуцируется ЭДС. Статор состоит из отдельных пластин из электротехнической стали для уменьшения нагрева от вихревых токов;
  • ротор (вращающаяся часть генератора) создает магнитное поле. Для получения нужной частоты переменного тока может иметь несколько пар полюсов. На гидроэлектростанциях в генераторе число пар полюсов равно 40–50, на тепловых электростанциях – 10 -16 ;
  • клеммы для снятия напряжения.

Промышленные генераторы вырабатывают напряжение порядка 10 4 В. Промышленная частота переменного тока в нашей стране 50 Гц.

Передача электроэнергии

Электроэнергия производится в основном вдалеке от основных потребителей энергии, там, где есть топливные ресурсы.

С электростанции переменный ток по проводам линии электропередач (ЛЭП) поступает к различным потребителям электрической энергии. Для уменьшения потерь при передаче переменного тока необходимо использовать высокое напряжение. Чем длиннее линия, тем выше должно быть напряжение. В высоковольтных ЛЭП оно может достигать 500 кВ. Генераторы на электростанциях вырабатывают напряжение 16–20 кВ. Потребителям не нужно высокое напряжение. Возникает необходимость преобразования напряжения. С электростанции электрический ток поступает на повышающую подстанцию, затем передается по линии электропередач на понижающую подстанцию, где напряжение понижается до 6–10 кВ, а затем до 220–380 В. Для преобразования напряжения используют трансформатор.

Трансформатор – устройство, преобразующее переменное напряжение без изменения его частоты.

На схемах трансформатор обозначается:

Основные части трансформатора:

  • замкнутый сердечник из электротехнической стали;
  • две катушки-обмотки.

Катушка, подключаемая к источнику переменного напряжения, называется первичной обмоткой; катушка, к которой подключается нагрузка, – вторичной обмоткой.

Сердечник набирается из отдельных пластин для уменьшения потерь на нагревание вихревыми токами.

Принцип действия основан на явлении электромагнитной индукции. При подключении первичной обмотки к полюсам источника напряжения в ней возникает переменный ток. Напряжение изменяется с течением времени по гармоническому закону. С такой же частотой будут изменяться сила тока в катушке и магнитный поток, создаваемый этим током.

При изменении магнитного потока в каждом витке провода первичной обмотки возникает переменная ЭДС самоиндукции. Этот магнитный поток будет пронизывать и вторую катушку. В каждом ее витке возникает ЭДС индукции, изменяющаяся по гармоническому закону с той же частотой. Число витков в обмотках различно. Отношение ЭДС самоиндукции ​ \( \varepsilon_1 \) ​ в первичной обмотке к ЭДС индукции во вторичной обмотке \( \varepsilon_2 \) равно отношению числа витков в первичной обмотке ​ \( N_1 \) ​ к числу витков во вторичной обмотке ​ \( N_2 \) ​:

Режим работы

  • Режим холостого хода – разомкнута цепь вторичной обмотки. Напряжение ​ \( U_2 \) ​ на ее концах в любой момент времени равно ЭДС индукции ​ \( \varepsilon_2 \) ​, взятой с противоположным знаком. Поэтому можно записать:

где ​ \( k \) ​ – коэффициент трансформации.

Если ​ \( k>1 \) ​, то трансформатор понижающий, если \( k , то повышающий.

  • Режим нагрузки. При подключении нагрузки к концам вторичной обмотки в ней возникает переменный ток. Напряжение ​ \( U_2 \) ​ на ее концах в любой момент времени отличается от ЭДС индукции ​ \( \varepsilon_2 \) ​ на величину падения напряжения на внутреннем сопротивлении вторичной обмотки ​ \( r \) ​: ​ \( U_2=\varepsilon_2-I_2r \) ​ или ​ \( U_2=I_2R \) ​.

Мощность тока в обмотках одинакова. Поэтому увеличение напряжения на входе повышающего трансформатора в ​ \( k \) ​ раз сопровождается уменьшением силы тока во вторичной катушке во столько же раз.

В трансформаторе нет потерь на трение, так как нет вращающихся частей. Потери в сердечнике состоят из потерь на нагревание и на перемагничивание.

Отношение мощности ​ \( P_2 \) ​, потребляемой нагрузкой, к мощности ​ \( P_1 \) ​, потребляемой первичной обмоткой трансформатора, называется коэффициентом полезного действия трансформатора:

КПД трансформатора – 98%.

Потребление электрической энергии: промышленность – около 70%; сельское хозяйство; транспорт; строительство; средства связи; в быту.

Электромагнитное поле

Электромагнитное поле – это особый вид материи, с помощью которого осуществляется электромагнитное взаимодействие заряженных тел или частиц.

Это понятие было введено Д. Максвеллом, развившим идеи Фарадея о том, что переменное магнитное поле порождает вихревое электрическое поле.

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты. Вихревое электрическое поле порождает появление вихревого магнитного поля и так далее. Эти переменные электрическое и магнитное поля, существующие одновременно, и образуют единое электромагнитное поле.

Характеристиками этого поля являются вектор напряженности и вектор магнитной индукции.

Если электрический заряд покоится, то вокруг него существует только электрическое поле.

Если напряженность электрического поля равна нулю, а магнитная индукция отлична от нуля, то обнаруживается только магнитное поле.

Если электрический заряд двигается с постоянной скоростью, то вокруг него существует электромагнитное поле.

Максвелл предположил, что при ускоренном движении зарядов в пространстве будет возникать возмущение, которое будет распространяться в вакууме с конечной скоростью. Когда это возмущение достигнет второго заряда, то изменится сила, с которой электромагнитное поле действует на этот заряд.

При ускоренном движении заряда происходит излучение электромагнитной волны. Электромагнитное поле материально. Оно распространяется в пространстве в виде электромагнитной волны.

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно!
Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд.

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Электромагнитная волна называется монохроматической, если векторы ​ \( \vec \) ​ и \( \vec \) ​ совершают гармонические колебания с одинаковой частотой (частотой волны).

Длина электромагнитной волны: ​ \( \lambda=cT=\frac<\nu>, \) ​

где ​ \( c \) ​ – скорость электромагнитной волны, ​ \( T \) ​ – период, ​ \( \nu \) ​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·10 8 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно!
Электромагнитная волна в отличие от механической волны может распространяться в вакууме.

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​ \( I \) ​, единица измерения в СИ – ватт на квадратный метр (Вт/м 2 ).

Важно!
Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты.

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Различные виды электромагнитных излучений и их применение

Электромагнитные излучения имеют длины волн от 10 -12 до 10 4 м или частоты от 3·10 4 до 3·10 20 .

Различают следующие виды электромагнитных излучений:

  • радиоволны;
  • инфракрасное излучение;
  • видимое излучение (свет);
  • ультрафиолетовое излучение;
  • рентгеновское излучение;
  • гамма-излучение.

Границы между диапазонами условны, но излучения имеют качественные различия в свойствах. При переходе от излучений с малой частотой к излучениям с большей частотой волновые свойства проявляются слабее, а корпускулярные (квантовые) – сильнее.

Радиоволны

​ \( \lambda \) ​ = 10 3 –10 -3 м, ​ \( \nu \) ​ = 10 5 –10 11 Гц. Источники радиоволн – колебательный контур, вибратор.

Радиоволны делятся на:

  • длинные (длина больше 1 км);
  • средние (от 100 м до 1 км);
  • короткие (от 10 до 100 м);
  • ультракороткие (меньше 10 м).

Свойства: отражение, поглощение, интерференция, дифракция. Применение: радиосвязь, телевидение, радиолокация.

Радиосвязью называется передача информации с помощью радиоволн. Радиосвязь осуществляется с помощью модулированных радиоволн. Модуляцией радиоволны называется изменение ее параметров (амплитуды, частоты, начальной фазы) с частотой, меньшей частоты передаваемой волны.

Схема радиосвязи показана на рисунке:

Передача радиоволн. Генератор высокой частоты вырабатывает высокочастотные колебания несущей частоты. Звуковые колебания поступают в микрофон, где преобразуются в электромагнитные колебания. В модуляторе эти колебания преобразуются в модулированные колебания. После усиления модулированные колебания поступают в передающую антенну, которая излучает электромагнитные волны. На рисунке показан звуковой сигнал низкой частоты и модулированный высокочастотный сигнал.

Прием радиоволн. Электромагнитные колебания поступают в приемную антенну и вызывают электромагнитные колебания в приемном контуре. Эти колебания поступают в усилитель, а затем в детектор. В качестве детектора используют устройство с односторонней проводимостью. Это может быть полупроводниковый диод. В детекторе сигнал демодулируют (детектируют). Процесс детектирования заключается в выделении из высокочастотных модулированных колебаний колебаний низкой (звуковой) частоты. После сглаживания и усиления сигнал поступает в динамик. На рисунке показаны процессы детектирования (демодуляции) и сглаживания.

Радиолокацией называют обнаружение и определение местоположения объектов с помощью радиоволн. Излучение осуществляется короткими импульсами. В интервале времени между излучением двух последовательных импульсов осуществляется прием отраженного от объекта сигнала. Для радиолокации используют ультракороткие радиоволны.

Инфракрасное (тепловое) излучение

​ \( \lambda \) ​ = 10 -3 – 10 -7 м, ​ \( \nu \) ​ = 10 11 – 10 14 Гц. Источники – атомы и молекулы вещества.

Это излучение испускают все тела при температуре, отличной от 0 К. Свойства: нагревает вещество при поглощении; интерференция; дифракция; проходит через дождь, снег, дымку; невидимо; преломление, отражение. Применение: в приборах ночного видения, в физиотерапии, промышленности (для сушки). Регистрируют с помощью термопары, болометра, фотографическим методом.

Видимое излучение

​ \( \lambda \) = 8·10 -7 – 4·10 -7 м, \( \nu \) = 4·10 11 – 8·10 14 Гц.

Это излучение воспринимается глазом. Свойства: отражение, преломление, поглощение, интерференция, дифракция.

Ультрафиолетовое излучение

\( \lambda \) = 10 -8 – 4·10 -7 м, \( \nu \) = 8·10 14 – 3·10 15 Гц. Источники – кварцевые лампы.

Ультрафиолетовое излучение дают светящиеся пары ртути и твердые тела, у которых температура выше 1000°С. Свойства: химическое действие; большая проникающая способность; биологическое действие; невидимо. Применение: в медицине, промышленности. Регистрируют фотографическими методами.

Рентгеновское излучение

\( \lambda \) = 10 -8 – 10 -11 м, \( \nu \) = 3·10 16 – 3·10 19 Гц. Источник – рентгеновские трубки.

Возникает при торможении быстрых электронов. Свойства: высокая химическая активность; биологическое действие; интерференция; дифракция на кристаллической решетке; высокая проникающая способность. Применение: в медицине, промышленности, науке.

Гамма-излучение

Длина волны меньше 10 -11 м, частота от 10 20 Гц и выше. Источник – ядерные реакции.

Свойства: высокая проникающая способность, сильное биологическое действие. Применение: в медицине, промышленности (дефектоскопия), науке.

Шкала электромагнитных излучений позволяет сделать вывод: все электромагнитные излучения обладают одновременно волновыми и квантовыми свойствами, которые дополняют друг друга.

Важно!
Волновые свойства сильнее выражены при малых частотах и больших длинах волн, а квантовые – при больших частотах и малых длинах волн.

Решение задач по теме «Электромагнитные колебания и волны»

По этой теме можно выделить четыре группы задач:

  • на определение параметров колебательного контура;
  • на уравнения гармонических электромагнитных колебаний;
  • на применение закона Ома;
  • на расчет мощности и КПД трансформатора.

Решение первой группы задач на определение параметров колебательного контура основано на использовании формулы Томсона (формулы периода свободных электромагнитных колебаний) и закона сохранения и превращения энергии в колебательном контуре. Поэтому необходимо записать уравнения для мгновенных значений заряда и напряжения на конденсаторе и силы тока в катушке; записать уравнение для полной энергии колебательного контура в произвольный момент времени. В качестве дополнительных формул могут понадобиться формулы электроемкости плоского конденсатора, индуктивности катушки и длины электромагнитной волны. Помните, что скорость распространения электромагнитной волны в вакууме равна скорости света – 3·10 8 м/с. В среде с показателем преломления ​ \( n \) ​ скорость света можно рассчитать по формуле: ​ \( v=\frac. \) ​

Важно!
Амплитудное значение напряжения – ​ \( U_m=\frac \) ​, амплитудное значение силы тока – ​ \( I_m=q_m\omega \) ​.

При решении второй группы задач на уравнения гармонических электромагнитных колебаний рекомендуется записать заданное в задаче уравнение и уравнение гармонических колебаний в общем виде. Сравнить эти уравнения и определить основные характеристики: амплитуду, частоту, фазу.

При решении задач на закон Ома нужно помнить, что электроизмерительные приборы показывают действующие значения напряжения и силы тока. Действующие значения величин пропорциональны амплитудным значениям. Важно помнить, что резонанс возникает при равенстве индуктивного и емкостного сопротивлений.

Решение четвертой группы задач на расчет мощности и КПД трансформатора опирается на знание формул КПД и мощности в цепи.

Гармонические напряжения и токи

Содержание:

Гармонические напряжения и токи:

В предыдущих лекциях рассматривались электрические цепи при условии, что они находятся под воздействием постоянных напряжений и токов. В действительности же действующие в электрических цепях токи и напряжения являются переменными, т. е. представляют собой электрические колебания. Напомним, что колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени. Различают непериодические и периодические колебания.

Простейшим и в то же время наиболее важным типом периодических колебаний являются гармонические, когда колеблющаяся величина

Исключительная роль гармонических колебаний в теории и практике радиотехники объясняется следующими обстоятельствами:

  • они широко используются для передачи сигналов и электрической энергии (например, промышленный ток с частотой 50 Гц);
  • применяются как простейший испытательный сигнал;
  • являются единственным типом колебаний, форма которых не изменяется при прохождении через любую линейную систему;
  • любое периодическое негармоническое колебание может быть представлено в виде суммы (наложения) различных гармонических колебаний (такое представление называют спектром негармонического колебания).

Если временной интервал ограничен то имеет место отрезок гармонического колебания, который уже будет обладать отличными от гармонического колебания свойствами; при этом чем больше временной интервал, тем ближе свойства отрезка к свойствам самого гармонического колебания; во всём курсе лекций предполагается, что временной интервал исчисляется от нуля до бесконечности:

Определение гармонических напряжений и токов

Электрическое гармоническое колебание аналитически записывают в виде функции:

Традиционно в электротехнике используют синусную форму записи, а в теории электрических цепей (радиотехнике) — косинусную, которой, если это не оговаривается особо, и будем пользоваться в дальнейшем:

(7.1)

Если под колебанием понимать ток или напряжение то (7.1) будет представлять собой соответственно гармонический ток или гармоническое напряжение, причём

Гармоническое колебание определено полностью, если заданы все три его параметра: — амплитуда, — круговая частота, — начальная фаза.

Рассмотрим смысл указанных параметров (рис. 7.1):

амплитуда колебания — наибольшее по абсолютному значению отклонение колеблющейся величины; размерность амплитуды совпадает с размерностью колебания

— периодически изменяющийся аргумент функции называемый мгновенной фазой или просто фазой колебания; выражается в радианах (рад);

— начальная фаза (рад) — значение мгновенной фазы при , т. е. начальная фаза может быть как положительной, так и отрицательной; начальная фаза определяет значение гармонического колебания в момент и пропорциональна расстоянию от ближайшего максимума до оси ординат. При максимум смещён влево от оси, а при — вправо; при максимум располагается на оси ординат;

— круговая частота (угловая скорость) — определяет скорость изменения фазы, выражается в радианах в секунду (рад/с),
т. е. круговая частота численно равна изменению мгновенной фазы за единицу времени (секунду).

Введём ещё два характерных для периодических колебаний параметра: период и частоту.

Т период колебания — наименьший интервал времени, через который процесс повторяется, а именно:

(7.2)

этому периоду соответствует изменение фазы на радиан

(7.3)

(7.4)

называется циклической частотой и измеряется в герцах (Гц).

В ряде практических задач требуется знать фазовые соотношения между гармоническими колебания одинаковой частоты. Фазовые соотношения характеризуют разностью фаз сравниваемых колебаний.

Пусть рассматриваются два колебания

(7.5)

называется разностью фаз или сдвигом фаз этих колебаний. Если то колебание отстаёт от колебания по фазе на угол ; если то колебание опережает колебание на угол

Если сдвиг фаз между двумя колебаниями равен 0, или радиан, то говорят, что колебания происходят в фазе, противофазе или находятся в квадратуре соответственно.

При практических расчётах часто начальную фазу выражают в градусах (°). Поскольку соответствует 180°, то нетрудно получить соотношение

(7.6)

Линейные операции над гармоническими колебаниями

К линейным операциям над гармоническими колебаниями относятся: умножение на постоянное число (константу), дифференцирование, интегрирование и алгебраическое сложение гармонических колебаний одинаковой частоты. Результатом таких операций являются новые гармонические колебания той же частоты. Рассмотрим эти операции.

1. Умножение на константу

даёт новое гармоническое колебание, амплитуда которого отличается от амплитуды исходного колебания в раз

а фаза остаётся неизменной.

Из полученного результата следует, что при дифференцировании получается гармоническое колебание той же частоты; однако амплитуда и начальная фаза изменяются и оказываются равными

даёт гармоническое колебание той же частоты, но амплитуда и начальная фаза изменяются и оказываются равными:

соответственно при условии равенства нулю постоянной интегрирования.

4. Сложение (наложение, суперпозиция) гармонических колебаний одинаковой частоты

Воспользуемся известной формулой сложения аргументов

и представим гармонические колебания в виде:

Складывая и группируя слагаемые, получаем:

(7.7)

(7.8)

Подставляя (7.8) в (7.7)

(7.8)

где при условии (7.8)

(7.9)

Остаётся найти амплитуду Для этого возведём в квадрат оба равенства (7.8) и извлечём корень из их суммы

(7.10)

Помня, что исследуем результат (7.10) в зависимости от соотношения и

т. е. колебания находятся в фазе: амплитуда результирующего колебания максимальна и равна сумме амплитуд составляющих колебаний

т. е. колебания находятся в противофазе: амплитуда результирующего колебания минимальна и равна абсолютному значению разности амплитуд составляющих колебаний

т. е. колебания находятся в квадратуре: амплитуда результирующего колебания равна корню квадратному из суммы квадратов амплитуд составляющих колебаний

Выводы:

  • линейные операции над гармонической функцией приводят лишь к изменению её амплитуды и начальной фазы;
  • наложение двух гармонических колебаний равных частот образует гармоническое колебание той же частоты; амплитуда результирующего колебания зависит от соотношения начальных фаз слагаемых колебаний и лежит в пределах

  • наложение любого числа гармонических колебаний одной частоты образует гармоническое колебание той же частоты

  • амплитуду и начальную фазу результирующего колебания можно найти, последовательно применяя формулы сложения гармонических колебаний для каждой пары колебаний.

Энергетические характеристики гармонических колебаний

Кроме указанных в разд. 7.1.1 параметров, гармонические колебания описываются энергетическими характеристиками:

  • мгновенной мощностью,
  • средней мощностью,
  • действующими (эффективными) значениями амплитуд напряжения и тока.

Мгновенная мощность гармонических колебаний при согласном выборе положительных направлений тока и напряжения определяется как произведение мгновенных значений тока и напряжения

Заменив произведение косинусов на полусумму косинусов разности и суммы аргументов, получаем

(7.11)

откуда следует, что потребляемая мгновенная мощность содержит постоянную составляющую (первое слагаемое, на графике Рср), относительно которой она колеблется с удвоенной частотой (рис. 7.2).

Положительным значениям мощности соответствует потребление цепью электрической энергии, а отрицательным значениям — отдача электрической энергии. В пассивных цепях это происходит за счёт энергии, запасаемой в конденсаторах (энергия электрического поля) и/или в индуктивностях (энергия магнитного поля). Для цепей, содержащих активные элементы, это означает, что цепь генерирует электрическую энергию.

Средняя (активная) мощность произвольных колебаний определяется как отношение энергии, подведённой к цепи за некоторый промежуток времени, к длительности этого промежутка при условии, что

(7.12)

Для гармонических колебаний пределы интегрирования в (7.12) можно ограничить периодом колебания Т, полагая . При этих условиях из (7.12) и (7.11) имеем:

(7.13)

Левый интеграл в полученной сумме равен:

Обратимся к правому интегралу конечного выражения (7.13), представляющему собой интеграл от функции косинуса на периоде:

Найдём этот интеграл:

Числитель дроби равен нулю, поскольку, во-первых,

и, во-вторых, в силу периодичности функции синуса справедливы равенства:

Таким образом, правый интеграл в (7.13) равен нулю, т. е. попутно доказано, что интеграл от функции косинуса за период равен нулю (это справедливо и для функции синуса).

Следовательно, средняя мощность гармонического колебания равна:

(7.14)

где ; — разность фаз напряжения и тока на входе цепи, и является постоянной составляющей мгновенной мощности (7.11). Выражение (7.14) означает, что:

  • средняя, или активная мощность пропорциональна амплитудам напряжения и тока и косинусу сдвига фазы между ними;
  • чем меньше разность фаз, тем больше активная мощность;
  • для пассивных цепей согласно принципу сохранения энергии при наличии зависимых источников это неравенство может не иметь силы;
  • средняя мощность, потребляемая цепью, должна быть равна арифметической сумме средних мощностей, потребляемых в каждом элементе цепи

где — количество элементов в цепи, — средняя мощность, потребляемая -ым элементом.

На практике необходимо также знать среднеквадратичные значения произвольных напряжений и токов, которые определяются по формулам:

(7.15)

Отсюда для периодических, в том числе и гармонических, колебаний в соответствии с (7.13) имеем:

(7.16)

Подставляя в (7.16) выражения для мгновенных напряжений и токов

(7.17)

Среднеквадратические значения напряжений и токов называют действующими (эффективными). Они меньше амплитуд соответствующих колебаний в раз.

Покажем вывод формул (7.17) на примере напряжения:

подкоренное выражение примет вид:

поскольку по доказанному ранее второй интеграл последней суммы равен нулю.

Действующие значения напряжения и тока позволяют записать среднюю мощность в форме:

Символическое изображение гармонических колебаний

Гармонические напряжения и токи в линейной цепи находятся в результате решения задач анализа, которые даже для относительно простых цепей, как это будет видно из дальнейшего, оказываются достаточно трудоёмкими. На практике используются функциональные преобразования, в результате которых операции над исходными функциями заменяются более простыми операциями над некоторыми новыми функциями. Исходные функции называются оригиналами, а соответствующие им новые функции — изображениями или символами.

Решение любой задачи методом функционального преобразования состоит из трёх следующих основных этапов:

  1. Прямого преобразования оригиналов к их изображениям (символам).
  2. Вычисления изображений искомых функций по правилам операций над изображениями.
  3. Обратного преобразования полученных изображений искомых функций к их оригиналам.

Рассматриваемое здесь функциональное преобразование, получившее название символического изображения гармонических колебаний, не является единственным; в лекции 16 будет рассмотрено более общее преобразование — преобразование Лапласа.

Идея символического изображения гармонических колебаний состоит в замене гармонических функций комплексными числами. Возможность такого изображения гармонических функций заложена в том, что в режиме гармонических колебаний все колебания имеют одну и ту же заранее известную частоту равную частоте внешнего воздействия. Тогда гармоническое колебание

достаточно охарактеризовать только двумя вещественными числами: которые можно объединить в одно комплексное число и рассматривать его как символическое изображение гармонического колебания. А операции над числами проще операций над функциями.

Представим гармоническое колебание в виде действительной части новой комплексной функции, опустив для простоты записи индекс 0 при

(7.18)

Тогда комплексная функция, стоящая в правой части равенства, может быть представлена как произведение некоторой комплексной функции на комплексную экспоненту

Определение:

(7.19)

называется комплексной амплитудой или символическим изображением гармонического колебания: её модуль равен амплитуде а аргумент — начальной фазе гармонического колебания.

Восстановление по символическому изображению ясно из соотношений (7.18) и (7.19). Например, гармоническое напряжение

имеет комплексную амплитуду (символическое изображение) вида:

Соответствия между линейными операциями над гармоническими колебаниями и операциями над их символическими изображениями

1. Умножение на константу:

Полученная формула показывает, что умножению гармонического колебания на константу соответствует умножение на константу его комплексной амплитуды.

2. Сложение: пусть гармоническое колебание представляет собой сумму N гармонических колебаний одинаковой частоты со, но имеющих разные амплитуды и начальные фазы

Применим к обеим частям данного равенства преобразование (7.41) с учётом того, что суммируемые колебания имеют одну и ту же частоту. Тогда получим:

Следовательно, операции сложения (суммирования) гармонических колебаний соответствует операция сложения их комплексных амплитуд.

3. Дифференцирование: дифференцируя функцию

Комплексная амплитуда, т. е. символическое изображение найденной функции, оказывается такой:

поскольку согласно формуле Эйлера (7.40)

Следовательно, операции дифференцирования гармонического колебания соответствует операция умножения его комплексной амплитуды на оператор

4. Интегрирование: интегрируя функцию

Символическое изображение этой функции имеет вид:

Следовательно, операции интегрирования гармонического колебания соответствует операция деления символического изображения на оператор

Заметим, что комплексные амплитуды напряжения и тока имеют вид:

Например, мгновенному значению гармонического напряжения

В соответствует комплексная амплитуда напряжения

а комплексной амплитуде тока

при известной круговой частоте соответствует мгновенное значение гармонического тока:

Законы Ома и Кирхгофа для комплексных амплитуд

  • комплексную амплитуду тока
  • комплексную амплитуду напряжения

Покажем, что изученные ранее законы Ома и Кирхгофа справедливы и для комплексных амплитуд.

Закон Ома в символической форме:
для определения закона Ома необходимо установить связи между комплексными токами и напряжениями, действующими в некотором двухполюснике (рис. 7.3).

Введём следующие определения:

Комплексным сопротивлением двухполюсника называется отношение комплексных амплитуд напряжения и тока на входе двухполюсника

(7.20)

Комплексное сопротивление называют также комплексом полного сопротивления, или импедансом.

Комплексной проводимостью двухполюсника называется отношение комплексных амплитуд тока и напряжения на входе двухполюсника

(7.21)

Комплексную проводимость называют также комплексом полной проводимости, или адмитансом.

Из определений следует соотношение:

(7.22)

откуда вытекает, что комплексные амплитуды напряжений и токов на входе двухполюсника формально удовлетворяют закону Ома:

(7.23)

Комплексные сопротивления и проводимости двухполюсников представляют собой в общем случае комплексные величины, зависящие как от параметров цепи, так и от частоты воздействия.

Первый закон Кирхгофа в символической форме:
сумма комплексных амплитуд токов всех N ветвей, подключённых к каждому из узлов электрической цепи, равна нулю.

Действительно, для мгновенных значений токов имеем:

где — номер ветви, подключённой к рассматриваемому узлу. Тогда, заменяя мгновенные значения токов их комплексными амплитудами, согласно правилу сложения комплексных амплитуд получаем:

Второй закон Кирхгофа в символической форме.
сумма комплексных амплитуд напряжений на всех N ветвях, входящих в любой контур цепи, равна нулю.

Это показывается так же, как и для первого закона:

Комплексные сопротивления и проводимости

Поставим задачу установить связь между активными и реактивными составляющими комплексных сопротивлений и проводимостей, для чего подробнее рассмотрим комплексные амплитуды напряжения и тока (7.45).

Из комплексной амплитуды напряжения имеем:

(7.24)

называется модулем комплексного сопротивления, или полным сопротивлением двухполюсника. Таким образом, полное сопротивление двухполюсника равно отношению амплитуды гармонического напряжения на зажимах двухполюсника к амплитуде гармонического тока, протекающего через эти зажимы.

Аналогично из соотношения

можно выделить модуль комплексной проводимости, или полную проводимость двухполюсника:

Аргументы комплексного сопротивления и комплексной проводимости у пассивных двухполюсников могут меняться только в пределах:

Для решения поставленной задачи представим комплексное сопротивление и комплексную проводимость в алгебраической форме:

— активная составляющая,

— реактивная составляющая комплексного сопротивления. Подобным образом для комплексной проводимости

(7.27)

— активная составляющая,

— реактивная составляющая комплексной проводимости.

Наконец, установим связь между активными и реактивными составляющими комплексных сопротивлений и проводимостей:

(7.28)

Аналогично получаем соотношения:

(7.29)

Выводы:

  • активные составляющие комплексных сопротивлений и проводимостей пассивных двухполюсников не могут принимать отрицательных значений;
  • реактивные составляющие могут принимать как положительные, так и отрицательные значения: если и сопротивление (проводимость) имеет индуктивный характер, в противном случае — ёмкостной;
  • если колебания напряжения и тока происходят в фазе двухполюсник обладает чисто активным сопротивлением (проводимостью).

Комплексные числа и операции над ними

Рассмотрим всевозможные пары действительных (обычных) чисел, взятых в определённом порядке. Каждую такую упорядоченную пару называют комплексным числом, обозначают одной буквой (например, ) и записывают в виде

где символ отделяет одно число из пары от другого; знаки ± указывают на то, что два действительных числа объединяются в нечто единое. Число а называется действительной частью число мнимой частью комплексного числа. Комплексные числа можно записывать как соответственно. При этом:

  • комплексное число вида называется действительным (вещественным);
  • комплексное число вида называется чисто мнимым;
  • число 0— единственное комплексное число, которое является одновременно и действительным, и мнимым;
  • два комплексных числа, которые отличаются только знаком мнимой части, называются комплексно-сопряжёнными; число, комплексно-сопряжённое с числом обозначают таким образом, если

Запишем формулы для натуральных степеней числа

Из (7.30) видно, что при возведении числа j в степень п наблюдается периодичность значений степени, а именно: из равенства следует, что если Иными словами: чтобы найти достаточно возвести в степень, показатель которой равен остатку от деления на 4.

Арифметические действия над комплексными числами

  1. Два комплексных числа считаются равными, если равны их действительные и мнимые части.
  2. Сложение, вычитание и умножение комплексных чисел следует производить так, словно это многочлены относительно буквы при этом произведение заменяется на -1.

Пусть тогда на основании записанных правил получаем:

равенство если

сумму или в общей форме:

(7.31)

разность:

(7.32)

произведение:

или в общей форме

(7.33)

3. Деление комплексных чисел определяется как действие, обратное умножению: частным от деления комплексного числа на число называют такое число , что т. е.

(7.34)

4. Полезные тождества:

(7.35)

Геометрический смысл комплексных чисел

Как известно, положение точки Z на координатной плоскости задаётся двумя действительными числами, являющимися координатами этой точки, что записывается в виде , но точно так же задаётся и комплексное число z. Таким образом, между координатами точки и комплексным числом существует однозначное соответствие, а именно: точке на плоскости соответствует комплексное число ; это комплексное число назовём комплексной координатой, а саму плоскость — комплексной плоскостью, по оси абсцисс которой откладываются значения действительной части а по оси ординат — значения мнимой части комплексного числа Эти оси комплексной плоскости называются действительной и мнимой соответственно (рис. 7.4, а). Комплексной координатой начала координат О является число 0 (нуль).

С другой стороны, на той же комплексной плоскости выберем произвольный радиус-вектор для простоты выходящий из начала координат. Тогда конец его будет иметь координату Комплексное число называется комплексной координатой вектора А. Длина этого вектора (расстояние от начала координат до точки называется модулем комплексного числа .

Угол наклона вектора к действительной оси называется аргументом числа

где называется главным значением аргумента (главным аргументом); главное значение аргумента удовлетворяет неравенствам:

(7.37)

Из рис. 7.4, б следует, что

(7.38)

Аргумент считается положительным при отсчёте против часовой стрелки и отрицательным — при отсчёте в противоположном направлении.

Формулы Эйлера и Муавра

Вновь обратимся к рис. 7.4, б и найдём значения и через значения

которые позволяют записать комплексное число в тригонометрической форме:

(7.39)

В 1743 году Эйлер предложил обозначить

(7.40)

и назвать полученное соотношение мнимой экспонентой. Тогда комплексное число z можно записать в показательной (полярной) форме

(7.41)

Из (7.40) следуют две формулы, выражающие через и мнимые экспоненты. Заменяя в (7.40) на , имеем:

(7.42)

Складывая и вычитая почленно (7.40) и (7.42), получаем:

(7.43)

откуда следуют интересующие нас формулы:

Заметим также, что модуль комплексной экспоненты равен единице; действительно:

(7.44)

Найдём выражение, соответствующее степени мнимой экспоненты (7.40):

(7.45)

(7.46)

Формулы (7.45) и (7.2) называются формулами Муавра.

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей
  • Электрические цепи несинусоидального тока
  • Несинусоидальный ток
  • Электрические цепи с распределенными параметрами
  • Резистивные электрические цепи и их расчёт

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Уравнение гармонических колебаний

Вы будете перенаправлены на Автор24

Колебаниями называют любые периодические движения. Если при таких движениях изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Уравнение гармонических колебаний можно записать следующим образом:

где $t$-время; $q$ заряд, $q_0$— максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; $<\omega >_0t+<\alpha >_0$- фаза колебаний; $<\alpha >_0$- начальная фаза; $<\omega >_0$- циклическая частота. За период фаза меняется на $2\pi $.

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac<\pi ><2>.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Готовые работы на аналогичную тему

Если сопротивление, которое входит в состав контура $R \[q=A_0e^<\left(-\beta t\right)>_0\right)\left(7\right),\ >\]

где $\omega =\sqrt<\frac<1>-\frac<4L^2>>$ — циклическая частота колебаний. $\beta =\frac<2L>-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени ($<\alpha >_0$) равна:

При $R >2\sqrt<\frac>$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что $<\omega >_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Ответ: $T=0,1$ c, $C=2,5\cdot <10>^<-4>Ф.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 13 04 2021


источники:

http://www.evkova.org/garmonicheskie-napryazheniya-i-toki

http://spravochnick.ru/fizika/elektromagnitnye_kolebaniya/uravnenie_garmonicheskih_kolebaniy/