Уравнение гармонических колебаний в идеальном колебательном контуре вывод

Лекция № 5 Свободные электромагнитные колебания

СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Выписка из рабочей программы дисциплины «Колебания и волны» – 010900

2.1 Свободные электромагнитные колебания.

Колебательный контур. Процессы в идеализированном колебательном контуре. Электромагнитные гармонические колебания. Дифференциальное уравнение свободных незатухающих электромагнитных колебаний и его решение. Собственная частота свободных электромагнитных колебаний. Формула Томсона. Закон сохранения и превращения энергии в идеализированном колебательном контуре.

1. Свободные электромагнитные колебания

Электромагнитные колебания представляют собой взаимосвязанные периодические изменения зарядов, токов, характеристик электрического и магнитного полей, сопровождающиеся взаимными превращениями этих полей.

Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из конденсатора ёмкостью и катушки индуктивностью .

Если сопротивление контура равно нулю, колебательный контур называют идеальным. В идеальном колебательном контуре отсутствуют потери энергии, поэтому собственные колебания, возникающие в нем, являются незатухающими.

Рассмотрим процесс возникновения свободных незатухающих колебаний в идеальном колебательном контуре. Чтобы возбудить колебания, необходимо сообщить конденсатору некоторый заряд, а потом замкнуть ключ К (рис.1).

Пусть в начальный момент времени () конденсатору сообщили некоторый заряд . При этом напряжение между его обкладками , напряженность электрического поля и энергия электрического поля – максимальны, а ток в цепи отсутствует (рис. 2,а). Затем начинается разряд конденсатора. Возникающий при этом разрядный ток, проходя через катушку , создает в ней изменяющееся магнитное поле, которое продолжает расти до тех пор, пока ток не достигает максимального значения . При этом вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки , а индукция магнитного поля достигает максимума (рис. 2,б). Несмотря на то, что конденсатор полностью разрядился, ток в колебательном контуре не прекращается и поддерживается э. д.с. самоиндукции, что в итоге приведет к перезарядке конденсатора. При этом заряд конденсатора, напряжение между обкладками, напряженность и энергия электрического поля вновь достигают максимальных значений, однако полярность обкладок конденсатора и направление напряженности электрического поля между ними противоположны тем, какие были в начальный момент времени (рис. 2, в). По окончании перезарядки энергия магнитного поля катушки перейдет в энергию электрического поля конденсатора. Начиная с этого момента, ток в контуре меняет направление, и процесс воспроизводится в обратном направлении (рис. 2, г). Система возвращается в исходное состояние (рис. 2, д), и начинается следующий период колебаний.

В контуре возникают электромагнитные колебания, при которых происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. Рисунок 2 представляет собой график зависимости заряда конденсатора от времени , , на котором значениям заряда в моменты времени сопоставлены соответствующие состояния колебательного

контура (а; б; в; г; д).

Так как сопротивление контура равно нулю, т. е. нет потерь энергии, такой процесс должен продолжаться бесконечно, а возникающие колебания называются собственными или свободными.

Период собственных незатухающих колебаний в колебательном контуре определяется формулой Томсона

, (5)

а циклическая частота

. (6)

Колебания заряда происходят по гармоническому закону

, (7)

где – максимальный заряд на обкладках конденсатора;

– циклическая частота собственных колебаний;

– начальная фаза.

На рисунках 3 и 4 представлены соответственно идеальный колебательный контур и график зависимости при .

Очевидно, что изменение напряжения между обкладками описывается таким же законом

(8)

где – максимальное напряжение между обкладками конденсатора.

Так как электрический ток характеризует скорость изменения заряда на обкладках конденсатора,

(9)

где – амплитуда силы тока.

Из выражений (7), (8), (9) следует, что колебания заряда (напряжения) и тока в контуре сдвинуты по фазе на , т. е. ток достигает максимального значения в те моменты времени, когда заряд и напряжение на обкладках конденсатора равны нулю, и наоборот. Этот же вывод следует из анализа рис. 2 (а, б, в, г, д).

Идеальный колебательный контур (рис. 3), в котором происходят свободные незатухающие электромагнитные колебания, представляет собой электрическую цепь, состоящую из конденсатора емкостью и катушки индуктивности . Запишем для этого замкнутого контура второе правило Кирхгофа: сумма падений напряжений равна сумме э. д.с., действующих в контуре.

В контуре действует только одна э. д.с. – э. д.с. самоиндукции, следовательно

,

где – падение напряжения на конденсаторе;

– мгновенное значение заряда на обкладках конденсатора;

.

Так как , , то дифференциальное уравнение свободных незатухающих электромагнитных колебаний может быть записано в виде

,

,

где – собственная циклическая частота контура.

Уравнение колебаний принимает вид

и называется уравнением свободных незатухающих электромагнитных колебаний в дифференциальной форме.

Из математики известно, что решение этого уравнения имеет вид

,

т. е. соответствует формуле (7) и рис. 4 (при ).

Таким образом, свободные незатухающие электромагнитные колебания являются гармоническими, а их период определяется формулой Томсона:

2. Закон сохранения и превращения энергии в идеализированном колебательном контуре

Исключительно важным является вопрос об энергии гармонических колебаний. С энергетической точки зрения гармоническое колебание представляет собой непрерывный процесс перехода кинетической энергии движущихся частей осциллятора в потенциальную энергию упругого элемента. Полная энергия гармонического осциллятора есть величина постоянная, так как для него потерь нет. Она равна либо максимальной кинетической энергии ( в момент прохождения положения равновесия) , либо максимальной потенциальной энергии (при амплитудном смешении). В задачах используются именно эти энергии, так как с их помощью можно оценить величину амплитуды и частоты собственных колебаний осциллятора.

Расчет энергии W гармонического осциллятора осуществляют стандартным образом. Для механических осцилляторов:

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Колебательный контур в физике — формулы и определения с примерами

Колебательный контур:

Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции.

Под явлением самоиндукции понимают возникновение в контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре. Правило Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение внешнего магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, содержащую конденсатор электроемкостью С и катушку (соленоид) индуктивностью L (рис. 15). Такая цепь называется идеальным колебательным контуром или LC-контуром.

В отличие от реального колебательного контура, который всегда обладает некоторым электрическим сопротивлением (R

Пусть в начальный момент времени (t = 0) конденсатор С заряжен так, что на его первой обкладке находится заряд +, а на второй —. При этом конденсатор обладает энергией

С течением времени конденсатор начнет разряжаться, и в цепи появится электрический ток, сила l(t) которого будет меняться с течением времени. Поскольку при прохождении такого электрического тока в катушке индуктивности возникнет изменяющийся во времени магнитный поток, то это вызовет появление ЭДС самоиндукции, препятствующей изменению силы тока.

Вследствие этого сила тока в колебательном контуре будет возрастать от нуля до максимального значения в течение некоторого промежутка времени, определяемого индуктивностью катушки.

В момент полной разрядки конденсатора (q = 0) сила тока в катушке I(t) достигнет своего максимального значения . В соответствии с законом сохранения энергии первоначально запасенная в конденсаторе энергия электростатического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

После разрядки конденсатора сила тока в катушке начнет убывать. Это также произойдет не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создаст индукционный ток. Он будет иметь такое же направление, как и уменьшающийся ток в цепи, и поэтому будет «поддерживать» его. Индукционный ток, создаваемый ЭДС самоиндукции катушки, перезарядит конденсатор до начального напряжения обратной полярности — знак заряда на каждой обкладке окажется противоположным начальному.

Соответственно, к моменту исчезновения тока заряд конденсатора достигнет максимального значения . При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно (см. рис. 15). Далее процесс повторится с той лишь разницей, что электрический ток будет проходить в противоположном направлении.

Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением в катушке ЭДС самоиндукции, которая «обеспечивает» эту перезарядку. Заметим, что заряд q(t) конденсатора и сила тока I(t) в катушке достигают своих максимальных значений и в различные моменты времени (см. рис. 15).

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в контуре определяется по формуле Томсона:

Получим эту формулу, используя закон сохранения энергии. Поскольку полная энергия идеального LC-контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

(1)

Поскольку закономерности гармонических колебаний носят универсальный характер, то можно сравнить колебания в LC-контуре с колебаниями пружинного маятника.

Для пружинного маятника полная механическая энергия в любой момент времени 2 ,

(2)

и период его колебаний

Проанализируем соотношения (1) и (2). Сравним выражения для энергии электростатического поля конденсатора и потенциальной энергии упругой деформации пружины энергии магнитного поля катушки и кинетической энергии груза Аналогом координаты x(t) при колебаниях в электрическом контуре является заряд конденсатора q(t), а аналогом проекции скорости груза служит сила тока I(t) в колебательном контуре.

Следуя аналогии, заменим в формуле для периода колебаний пружинного маятника т на L и k на , тогда для периода свободных колебаний в LC-контуре получим формулу Томсона:

Несложные дальнейшие рассуждения позволяют установить аналогии между физическими величинами при электромагнитных и механических колебаниях (табл. 4).

Таблица 4

Сопоставление физических величин, характеризующих электромагнитные и механические колебания


Соответственно, зависимость заряда конденсатора от времени будет иметь такой же характер, как и зависимость координаты (смещения) тела, совершающего гармонические колебания, от времени:

Также по гармоническому закону (но с другими начальными фазами) будут изменяться сила тока в цепи, напряжение на конденсаторе.

Для определения начальной фазы и амплитуды колебаний заряда необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени (t = 0).

Полная энергия идеального колебательного контура (R = 0) с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется.

Как уже отмечалось, реальный колебательный контур всегда имеет некоторое сопротивление R, обусловленное сопротивлением катушки, соединительных проводов и т. д. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они «будут происходить» сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без трения, а механическим аналогом реального колебательного контура — пружинный маятник с трением.

Пример №1

При изменении емкости конденсатора идеального LC-контура на = 50 пФ частота свободных электромагнитных колебаний в нем увеличилась с = 100 кГц до = 120 кГц. Определите индуктивность L контура.

Решение

Частота колебаний в контуре

Поскольку частота колебаний в контуре увеличилась (), то электроемкость должна уменьшится, т. е. .

Из условия задачи получаем систему уравнений

Откуда

Вычитая из первого уравнения второе, получаем

Ответ: L = 0,015 Гн.

Пример №2

Колебательный контур состоит из конденсатора емкостью С = 400пФ и катушки индуктивностью L=10 мГн. Определите амплитудное значение силы тока в контуре, если амплитудное значение напряжения на конденсаторе = 500 В.

Решение

Максимальная энергия электростатического поля конденсатора

а максимальная энергия магнитного поля катушки

Так как контур идеальный (R = 0), то его полная энергия не меняется с течением времени. Кроме того, в момент, когда заряд конденсатора максимален, сила тока в катушке равна нулю, а в момент, когда заряд конденсатора равен нулю, сила тока в ней максимальна. Это позволяет утверждать, что максимальные энергии в конденсаторе и катушке равны: , т. е.

откуда

Ответ: .

Колебательный контур и свободные электромагнитные колебания в контуре

Явление возникновения ЭДС в любом контуре при изменении магнитного потока через поверхность, ограниченную контуром, называется явлением электромагнитной индукции.

Под явлением самоиндукции понимают возникновение в замкнутом проводящем контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре.

Правило Ленца: возникающий в замкнутом проводящем контуре индукционный ток имеет такое направление, при котором созданный им магнитный поток через поверхность, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора электроемкостью и катушки (соленоида) индуктивностью (рис. 29, а), называемую идеальным колебательным контуром или -контуром. Электрическое сопротивление идеального контура считают равным нулю Следовательно, идеальный колебательный контур является упрощенной моделью реального колебательного контура.

Подключив (при помощи ключа источник тока, зарядим конденсатор до напряжения сообщив ему заряд (рис. 29, б). Следовательно, в начальный момент времени конденсатор заряжен так, что на его обкладке 1 находится заряд а на обкладке 2 — заряд При этом электростатическое поле, создаваемое зарядами обкладок конденсатора, обладает энергией

Рассмотрим процесс разрядки конденсатора в колебательном контуре. После соединения заряженного конденсатора с катушкой (при помощи ключа (рис. 30) он начнет разряжаться, так как под действием электрического поля, создаваемого зарядами на обкладках конденсатора, свободные электроны будут перемещаться по цепи от отрицательно заряженной обкладки к положительно заряженной. На рисунке 30 стрелкой показано начальное направление тока в электрической цепи.

Таким образом, в контуре появится нарастающий по модулю электрический ток, сила которого будет изменяться с течением времени (рис. 31, а). Но мгновенная разрядка конденсатора невозможна, так как изменение магнитного поля катушки, создаваемое нарастающим по модулю током, вызывает возникновение вихревого электрического поля. Действительно, в катушке индуктивности возникнет изменяющийся во времени магнитный поток, который вызовет появление ЭДС самоиндукции. Согласно правилу Ленца ЭДС самоиндукции стремится противодействовать вызвавшей ее причине, т. е. увеличению силы тока по модулю.

Вследствие этого модуль силы тока в колебательном контуре будет в течение некоторого промежутка времени плавно возрастать от нуля до максимального значения определяемого индуктивностью катушки и электроемкостью конденсатора (рис. 31, б).

При разрядке конденсатора энергия его электростатического поля превращается в энергию магнитного поля катушки с током. Согласно закону сохранения энергии суммарная энергия идеального колебательного контура остается постоянной с течением времени (уменьшение энергии электростатического поля конденсатора равно увеличению энергии магнитного поля катушки):

где — мгновенное значение заряда конденсатора и — сила тока в катушке в некоторый момент времени после начала разрядки конденсатора.

В момент полной разрядки конденсатора сила тока в катушке достигнет своего максимального по модулю значения (см. рис. 31, б). В соответствии с законом сохранения энергии запасенная в конденсаторе энергия электростатического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

После разрядки конденсатора сила тока в катушке начинает убывать по модулю. Это также происходит не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создает индукционный ток. Он имеет такое же направление, как и уменьшающийся по модулю ток в цепи, и поэтому «поддерживает» его. Индукционный ток, создаваемый ЭДС самоиндукции катушки, перезаряжает конденсатор до начального напряжения но знак заряда на каждой обкладке оказывается противоположным знаку начального заряда. Соответственно, к моменту исчезновения тока заряд конденсатора достигнет максимального значения При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно. Далее процесс повторится с той лишь разницей, что электрический ток в ко туре будет проходить в противоположном направлении, что отражено на рисунке 31, а.

Таким образом, в идеальном -контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без пополнения энергии от внешних источников.

Таким образом, существование свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора, вызванной возникновением ЭДС самоиндукции в катушке. Заметим, что заряд конденсатора и сила тока в катушке достигают своих максимальных значений в различные момента времени (см. рис. 31 а, б).

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальным значениям заряда на каждой из обкладок), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Получим формулу для периода свободных электромагнитных колебаний в контуре, используя закон сохранения энергии. Поскольку полная энергия идеального -контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство:

Процессы, происходящие в колебательном контуре, аналогичны колебаниям пружинного маятника. Для полной механической энергии пружинного маятника в любой момент времени:

где — жесткость пружины, — масса груза, — проекция смещения тела от положения равновесия, — проекция его скорости на ось

Период его колебаний:

Проанализируем соотношения (1) и (2). Видно, что энергия электростатического поля конденсатора является аналогом потенциальной энергии упругой деформации пружины Соответственно, энергия магнитного поля катушки которая обусловлена упорядоченным движением зарядов, является аналогом кинетической энергии груза Следовательно, аналогом координаты пружинного маятника при колебаниях в электрическом контуре является заряд конденсатора Тогда, соответственно, аналогом проекции скорости груза будет сила тока в колебательном контуре, поскольку сила тока характеризует скорость изменения заряда конденсатора с течением времени.

Следуя проведенной аналогии, заменим в формуле для периода колебаний пружинного маятника массу на индуктивность и жесткость тогда для периода свободных колебаний в -контуре получим формулу:

которая называется формулой Томсона.

Несложные дальнейшие рассуждения позволяют установить аналогии между физическими величинами при электромагнитных и механических колебаниях (табл. 4).

Для наблюдения и исследования электромагнитных колебаний применяют электронный осциллограф, на экране которого получают временную развертку колебаний (рис. 32).

Зависимость заряда конденсатора от времени имеет такой же вид, как и зависимость координаты (проекции смещения) тела, совершающего гармонические колебания, от времени:

Также по гармоническому закону изменяются сила тока (но с другой начальной фазой) в цепи и напряжение на конденсаторе.

Для определения начальной фазы и максимального заряда необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени

Отметим, что колебательный контур, в котором происходит только обмен энергией между конденсатором и катушкой, называется закрытым.

Полная энергия идеального колебательного контура с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется. Реальный колебательный контур всегда имеет некоторое электрическое сопротивление которое обусловлено сопротивлением катушки и соединительных проводов. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они будут происходить сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без учета трения, а механическим аналогом реального колебательного контура — пружинный маятник с учетом трения.

Пример решения задачи:

Идеальный колебательный контур состоит из конденсатора емкостью пФ и катушки индуктивностью мГн. Определите максимальное значение силы тока в контуре, если максимальное значение напряжения на конденсаторе
Дано:


Решение

Максимальная энергия электростатического поля конденсатора:


а максимальная энергия магнитного поля катушки:

Так как контур идеальный то его полная энергия сохраняется с течением времени. По закону сохранения энергии т. е.


Ответ:

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Исследовательские методы в физике
  • Вертикальное движение тел в физик
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Распространение механических волн в средах
  • Электромагнитное поле
  • Опыты Фарадея в физике
  • Электромагниты и их применение в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://skysmart.ru/articles/physics/garmonicheskie-kolebaniya

http://www.evkova.org/kolebatelnyij-kontur-v-fizike