Уравнение гармонической бегущей волны видеоурок

Уравнение гармонической бегущей волны видеоурок

«Физика — 11 класс»

Длина волны. Скорость волны

За один период волна распространяется на расстояние λ.

λ = vT

Длина волны — это расстояние, на которое распространяется волна за время, равное одному периоду колебаний.

Так как период Т и частота v связаны соотношением

При распространении волны:

1. Каждая частица шнура совершает периодические колебания во времени.
В случае гармонических колебаний (по закону синуса или косинуса) частота и амплитуда колебаний частиц одинаковы во всех точках шнура.
Эти колебания различаются только фазами.

2. В каждый момент времени форма волны повторяется через отрезки длиной λ.

Спустя промежуток времени Δt волна будет иметь вид, изображенный на том же рисунке второй линией.

Для продольной волны также справедлива формула, связывающая скорость распространения волны, длину волны и частоту колебаний.

Все волны распространяются с конечной скоростью. Длина волны зависит от скорости ее распространения и частоты колебаний.

Уравнение гармонической бегущей волны

Вывод уравнения волны, позволяющего определить смещение каждой точки среды в любой момент времени при распространении гармонической волны (на примере поперечной волны, бегущей по длинному тонкому резиновому шнуру).

Ось ОХ направлена вдоль шнура.
Начало отсчета — левый конец шнура.
Смещение колеблющейся точки шнура от положения равновесия — s.
Для описания волнового процесса нужно знать смещение каждой точки шнура в любой момент времени:

s = s (х, t).

Конец шнура (точка с координатой х = 0) совершает гармонические колебания с циклической частотой ω.
Колебания этой точки будут происходят по закону:

s = sm sinc ωt

Если начальную фазу колебаний считать равной нулю.
sm — амплитуда колебаний.

Колебания распространяются вдоль оси ОХ со скоростью υ и в произвольную точку с координатой х придут спустя время

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ.

Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой sm, но с другой фазой:

Это и есть уравнение гармонической бегущей волны, распространяющейся в положительном направлении оси ОХ.

Используя уравнение можно определить смещение различных точек шнура в любой момент времени.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Механические волны. Физика, учебник для 11 класса — Класс!ная физика

Механические волны

теория по физике 🧲 колебания и волны

Отдельные частицы любого тела — твердого, жидкого или газообразного — взаимодействуют друг с другом. Поэтому если какая-то частица начинает колебаться, то благодаря взаимодействию между частицами это движение с некоторой скоростью начинает распространяться во все стороны.

Волна — колебания, распространяющиеся в пространстве с течение времени.

В воздухе, твердых телах и внутри жидкостей механические волны возникают благодаря силам упругости. Эти силы осуществляют связь между отдельными частями тела. В образовании волн на поверхности воды играют роль сила тяжести и сила поверхностного натяжения. Такие волны позволяют наиболее наглядно рассмотреть главные особенности волнового движения.

Волна на поверхности воды представляет собой бегущие вперед валы округлой формы. Расстояние между валами, которые также называют гребнями, примерно одинаковы. Волны распространяются в среде с определенной скоростью. Так, если чайка летит вперед, а по ней в любой момент времени оказывается один и тот же гребень, то скорость распространения волны можно принять равной скорости полета чайки. Волны на воде наблюдать удобно потому, что скорость их распространения невелика.

Если бросить в воду легкий предмет, он не будет увлекаться волной, а начнет совершать колебания вверх и вниз, оставаясь примерно на одном месте, как поплавок. Это говорит о том, что частицы воды остаются на месте в то время, как волна распространяется на большие расстояния.

Если же резко толкнуть горизонтальную пружину, можно будет наблюдать, как в одних местах она разрежается, в других — уплотняется. Это тоже волна. Видно, что энергия, полученная от толчка руки, переносится через пружину, хотя ее частицы остаются на месте.

Примеры с поплавком на воде и горизонтальной пружиной позволяют сделать вывод, что волна переносит энергию, но не переносит вещество среды.

Виды механических волн

По характеру колебаний частиц среды относительно положения равновесия различают два вида волн:

Определения

  1. Поперечная волна— волна, при которой частицы среды колеблются перпендикулярно направлению распространения этой волны.
  2. Продольная волна— волна, при которой частицы среды колеблются параллельно направлению распространения этой волны.

Волны, распространяющиеся вдоль резинового шнура, являются поперечными (см. рисунок ниже). Чтобы появилась волна, нужно взять конец шнура, прикрепленного к вертикальной опоре, и дернуть его. При этом волна побежит к вертикальной опоре, а сам шнур будет менять свою форму. Каждая частица шнура станет совершать колебания относительно своего неизмененного положения равновесия сверху вниз (перпендикулярно направлению распространения волны).

Рассмотрим поперечные волны подробнее. Каждый участок шнура обладает массой и упругостью. При деформации шнура в любом его сечении появляются силы упругости. Эти силы стремятся возвратить шнур в исходное положение. Благодаря инертности участок колеблющегося шнура не останавливается в положении равновесия, а проходит его, продолжая двигаться до тех пор, пока силы упругости не остановят этот участок в момент максимального отклонения от положения равновесия.

На рисунках а, б, в, г, д и е изображен процесс распространения поперечной волны. На них показаны положения частиц среды в последовательные моменты времени.

Теперь рассмотрим распространение в среде продольной волны. Такую волну можно наблюдать, собрав установку из цепочки массивных шариков, связанных пружинками. Шары подвешены так, чтобы они могли колебаться только вдоль цепочки (см. рисунок ниже).

Если первый шар привести в колебательное движение, то вдоль цепочки побежит продольная волна, состоящая из чередующихся уплотнений и разрежений шаров. Уплотнения и разрежения (см. рисунок ниже) появляются вследствие горизонтальных колебаний шаров у положения равновесия. Волна также распространяется горизонтально.

Физические характеристики волны

Обратимся к рисункам д, е еще раз. Видно, что когда частица 1 находится в положении равновесия и движется вверх, частица 13 тоже находится в положении равновесия и движется вверх. Спустя четверть период частица 1 будет максимально отклонена от положения равновесия, ровно, как и частица 13. Так как частицы 1 и 13 движутся одинаково, говорят, что колебания этих частиц происходят в одинаковых фазах. Расстояние между этими частицами называют длиной волны.

Внимание! В действительности частица 13 отстает по фазе от частицы 1 на 2π. Но поскольку такая разница фаз не приводит к различию в состояниях колеблющихся частиц, можно считать, что частицы колеблются в одинаковых фазах.

Длина волны расстояние между двумя ближайшими точками волны, колеблющимися в одинаковых фазах.

Длина волны обозначается как λ (лямбда). Единица измерения длины волны — метр (м).

Согласно рисунку е, в одинаковых фазах колеблются частицы 1 и 13, 2 и 14, 3 и 15, 4 и 16. Поэтому расстояния между этими частицами равно длине волны. Но частицы 1 и 7, находящиеся на расстоянии λ 2 . . , колеблются в противоположных фазах. Посмотрите на рисунок д: когда 1 частица находится в положении равновесия и движется вверх, частица 7 находится в положении равновесия и движется низ. На рисунке е обе частицы максимально отклонены от положения равновесия, но в противоположных направлениях.

Волна распространяется на расстояние λ за время, равное периоду колебаний частиц вещества. Зная расстояние, на которое распространилась волна, и время, в течение которого это распространение происходило, можно найти скорость волны:

Но мы знаем, что период равен величине, обратной частоте колебаний:

Тогда скорость распространения волны равна:

Скорость волны равна произведению длины волны на частоту колебаний.

При распространении волны мы имеем дело с периодичностью двоякого рода:

  1. Во-первых, каждая частица среды совершает периодические колебания во времени. В случае гармонических колебаний (эти колебания происходят по синусоидальному или косинусоидальному закону) частота постоянна и амплитуда одинакова во всех точках. Колебания отличаются только фазами.
  2. Во-вторых, в данный момент времени форма волны повторяется в пространстве через отрезки длиной λ вдоль линии распространения волны. На рисунке ниже показан профиль волны в определенный момент времени (сплошная линия). С течением времени вся эта картина перемещается со скоростью v направо. Спустя промежуток времени ∆t волна будет иметь

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Пример №1. Определите скорость распространение волны на поверхности воды, если расстояние между ее гребнями равно 1 метру. Учитывайте, что мимо наблюдателя за 5 секунд прошло 10 волн.

Обычно под волной на воде люди понимают гребни — частицы воды, максимально отклоненные от положения равновесия. Расстояние между гребнями равно длине волны. Чтобы найти скорость распространения волны, нужно знать частоту колебания молекул воды. Ее можно вычислить по следующей формуле:

где n — количество «волн», прошедших мимо наблюдателя.

Тогда скорость волны равна:

v = λ ν = λ n t . . = 1 · 10 5 . . = 2 ( м с . . )

Уравнение бегущей волны

Бегущая волна — волна, распространяющаяся в пространстве.

Колебания гармонической волны в любой точке происходят по гармоническому закону с одной и той же амплитудой. Найдем уравнение, описывающее колебательный процесс в любой точке пространства при распространении гармонической волны.

Будем рассматривать волну, бегущую по длинному тонкому резиновому шнуру. Ось Ox направим вдоль шнура, а начало отсчета свяжем с левым концом шнура. Смещение любой колеблющейся точки шнура от положения равновесия обозначим буквой s. Для описания волнового процесса необходимо знать значение s в любой точке шнура в любой момент времени. Следовательно, нужно знать вид функции:

Заставим конец шнура (точка х = 0) совершать гармонические колебания с частотой ω. Если начальную фазу колебаний считать равной 0, то колебания этой точки будут происходить по закону:

s = s m a x s i n ω t

s m a x — амплитуда колебаний (рис. а).

Колебания распространяются вдоль шнура (оси Ox) со скоростью v и в произвольную точку шнура с координатой х придут спустя время, которое можно определить следующим выражением:

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ (рис. б). Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой smax, но с другой фазой:

Уравнение бегущей волны

s = s m a x s i n [ ω ( t − τ ) ] = s m a x s i n [ ω ( t − x v . . ) ]

Это уравнение называется уравнением бегущей волны, распространяющейся в положительном направлении оси Ox.

Пример №2. Уравнение бегущей волны имеет вид s ( x , t ) = 0 , 1 sin . ( 2 π t − x π 2 . . ) . Найдите частоту волны, скорость её распространения и длину.

Запишем уравнение бегущей волны:

s = s m a x s i n [ ω ( t − τ ) ] = s m a x s i n [ ω ( t − x v . . ) ]

Сопоставляя эти два уравнения можно определить, что циклическая частота и скорость распространения соответственно равны:

ω = 2 π ( р а д с . . )

Циклическую частоту также можно рассчитать по формуле:

Тогда частота волны равна:

ν = ω 2 π . . = 2 π 2 π . . = 1 ( Г ц )

Тогда длина волны равна:

λ = v ν . . = 4 1 . . = 4 ( м )

На рисунке показан профиль бегущей волны в некоторый момент времени. Разность фаз колебаний точек 1 и 5 равна

Алгоритм решения

  1. Определить характер движения указанных точек.
  2. По характеру движения точек определить их разность фаз.

Решение

Точки 1 и 5 соответствуют максимальной амплитуде колебаний. В этот момент они меняют направление движения (до этого двигались вверх, теперь меняют направление в противоположную сторону). Поскольку точки 1 и 5 движутся одинаково, можно считать, что они колеблются в одинаковых фазах. Это возможно, если разность фаз кратна 2π.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Какова скорость звуковых волн в среде, если при частоте 400 Гц длина волны λ = 4 м?

Презентация к уроку Уравнение бегущей волны. Волны в среде

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Бегущие волны. Уравнение волны. Волны в природе.

Бегущая волна – волна, которая при распространении в среде переносит энергию.

Уравнение бегущей волны Уравнение волны позволяет в любой момент времени определить смещение данной точки среды, в которой распространяется волна.

Уравнение гармонической бегущей волны можно записать в виде: s = smsin (ωt – kx), где k — волновое число Фазы колебаний двух точек, находящихся на расстоянии λ, отличаются на 2π, то есть колебания происходят в фазе.

Геометрическое место точек, в которых колебания происходят в одной фазе, называется волновой поверхностью. Луч — линия, перпендикулярная к волновой поверхности и к фронту волны. Направление луча указывает направление переноса энергии волной.

Фронт волны — геометрическое место точек, до которых дошло возмущение к данному моменту времени. Волновой фронт также является волновой поверхностью. Фронт волны отделяет часть пространства, в котором колебания уже есть, от части пространства, в которой колебания отсутствуют.

Плоская волна – это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей. Пример плоской волны – волна, возникающая в цилиндре с газом, при совершении колебаний поршнем.

Сферическая волна – это волна, волновые поверхности которой представляют собой совокупность концентрических сфер Примерами сферических волн служат волны, генерируемые точечным источником в однородной среде.

Задача 1 Определите скорость распространения υ поперечной волны в струне, площадь поперечного сечения которой S , если модуль силы ее натяжения F можно считать постоянным, а плотность вещества, из которого изготовлена струна равна ρ.

Задача 2 Определить частоту звуковых колебаний в стали, если расстояние между ближайшими различающимися по фазе на Δφ= 90° точками звуковой волны ℓ = 1,54 м. Скорость звуковых волн в стали v = 5000 м/с.

Задача 3 Плоская поперечная волна задана уравнением s = 2 • 10

4 sin (628 t — 0,3х), где s — смещение частицы в направлении, перпендикулярном направлению распространения волны, х — расстояние вдоль луча от источника колебаний. Определите частоту колебаний V, скорость распространения волны и, длину волны X и амплитуду колебаний скорости каждой частицы ит. Все величины в данном уравнении выражены в единицах СИ.

Задача 4 Точки, находящиеся на одном луче и удаленные от источника колебаний на L1=12м и L2=14,7м, колеблются с разностью фаз 3п/2 рад. Определите скорость распространения колебаний в данной среде, если период колебания источника 1мс.

Задача 5 Уравнение волны имеет вид x=sin 2,5πt. Найти смещение от положения равновесия, скорость и ускорение точки, находящейся на расстоянии r = 20 м от источника колебаний, для момента времени t=1c после начала колебаний. Скорость распространения колебаний v=100 м/c

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Курс добавлен 23.11.2021
  • Сейчас обучается 40 человек из 25 регионов

Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 26 человек из 16 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 575 765 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 03.11.2017
  • 2469
  • 1
  • 02.11.2017
  • 565
  • 4

  • 02.11.2017
  • 651
  • 4

  • 02.11.2017
  • 1227
  • 18

  • 02.11.2017
  • 800
  • 0

  • 02.11.2017
  • 4222
  • 135
  • 02.11.2017
  • 3058
  • 137
  • 02.11.2017
  • 438
  • 2

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 03.11.2017 11015
  • PPTX 900.3 кбайт
  • 518 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Дежкина Лилия Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 7 лет и 2 месяца
  • Подписчики: 1
  • Всего просмотров: 343150
  • Всего материалов: 65

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Объявлен конкурс дизайн-проектов для школьных пространств

Время чтения: 2 минуты

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://spadilo.ru/mexanicheskie-volny/

http://infourok.ru/prezentaciya-k-uroku-uravnenie-beguschey-volni-volni-v-srede-2242657.html